דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

קלסיפיקציה אסטרטגית עם מידע חלקי
event speaker icon
עברי היקרי (הרצאה סמינריונית למגיסטר)
event date icon
יום שני, 23.02.2026, 10:00
event speaker icon
מנחה: דר. ניר רוזנפלד
A common assumption in strategic classification is that the classifier is made public knowledge. However, it remains unclear if, and why, a system would choose to commit to full disclosure. We study a setting in which regulation requires the system to share some, but not all, of the information. This entails a learning task in which the goal is to jointly learn a classifier and the uncertainty surrounding it. Towards this, we adopt from robust mechanism design the notion of ambiguity, which in our setting permits the learner to reveal a set or range of possible classifiers, and choose one to realize. We investigate how ambiguity affects the learning task, propose efficient algorithms for computing best-responses and training, and empirically explore strategic learning and its outcomes in this novel setting and using our approach.