דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

הוכחת חסינות של רשתות נוירונים לשינוי של פיקסלים בודדים
event speaker icon
יובל שפירא (הרצאה סמינריונית למגיסטר)
event date icon
יום רביעי, 03.12.2025, 14:30
event location icon
טאוב 301 & זום
event speaker icon
מנחה: דר. דנה דרקסלר כהן

While successful, neural networks have been shown to be vulnerable to adversarial attacks. In l_0 adversarial attacks, also known as few-pixel attacks, the attacker picks t pixels from the image and arbitrarily perturbs them. While many verifiers prove robustness against l_p attacks for a positive integer p, very little work deals with robustness verification for l_0 attacks. This verification introduces a combinatorial challenge because the space of pixels to perturb is discrete and of exponential size. In this talk, we present a series of papers tackling this challenging problem. We first show that l_∞ verifiers can be used for l_0 verification, and that by relying on covering designs we can significantly reduce the number of l_∞ tasks that need to be submitted to the underlying l_∞ verifier.

This idea is implemented in Calzone, the first sound and complete l_0 verifier. We then present CoVerD, which improves upon Calzone by tailoring effective but analysis-incompatible coverings to l_0 robustness verification. Lastly, we characterize the convex hull of the non-convex l_0 perturbation space. Equipped with this geometric perspective, we examine different approaches for linear bound propagation for l_0 verification, which enables us to improve the precision of CoVerD’s underlying verifier in our settings and boost its performance.