דלג לתוכן (מקש קיצור 's')
Logo of Technion
Logo of CS Department
אירועים

אירועים

סגמנטציית עצמים בוידאו מונחית טקסט וגזירה מקצה לקצה באמצעות טרנספורמרים מולטי-מודליים
event speaker icon
אדם בוטח, הרצאה סמינריונית למגיסטר
event date icon
יום רביעי, 22.12.2021, 12:00
event location icon
Zoom Lecture: 4942416425 + טאוב 401
event speaker icon
מנחה:  Prof. E. Rivlin, Prof. A. Bronstein, Dr. C. Baskin
The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this work, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can both be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR.
[בחזרה לאינדקס האירועים]