
Tracelet-Based Code Search in Executables

Yaniv David
Technion, Israel

yanivd@cs.technion.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
We address the problem of code search in executables. Given a
function in binary form and a large code base, our goal is to stati-
cally find similar functions in the code base. Towards this end, we
present a novel technique for computing similarity between func-
tions. Our notion of similarity is based on decomposition of func-
tions into tracelets: continuous, short, partial traces of an execution.
To establish tracelet similarity in the face of low-level compiler
transformations, we employ a simple rewriting engine. This engine
uses constraint solving over alignment constraints and data depen-
dencies to match registers and memory addresses between tracelets,
bridging the gap between tracelets that are otherwise similar. We
have implemented our approach and applied it to find matches in
over a million binary functions. We compare tracelet matching to
approaches based on n-grams and graphlets and show that tracelet
matching obtains dramatically better precision and recall.
Categories and Subject Descriptors F.3.2(D.3.1)[Semantics of
Programming Languages: Program analysis]; D.3.4 [Processors:
compilers, code generation];
Keywords x86; x86-64; static binary analysis

1. Introduction
Every day hundreds of vulnerabilities are found in popular software
libraries. Each vulnerable component puts any project that incor-
porates it at risk. The code of a single vulnerable function might
have been stripped from the original library, patched, and statically
linked, leaving a ticking time-bomb in an application but no effec-
tive way of identifying it.

We address this challenge by providing an effective means of
searching within executables. Given a function in binary form and
a large code base, our goal is to statically find similar functions
in the code base. The main challenge is to define a notion of
similarity that goes beyond direct syntactic matching and is able to
find modified versions of the code rather than only exact matches.
Existing Techniques Existing techniques for finding matches in bi-
nary code are often built around syntactic or structural similarity
only. For example, [15] works by counting mnemonics (opcode
names, e.g., mov or add) in a sliding window over program text.
This approach is very sensitive to the linear code layout, and pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9 - 11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594343

duces poor results in practice (as shown in our experiments in Sec-
tion 6). In fact, in Section 5, we show that the utilization of these
approaches critically depends on the choice of a threshold parame-
ter, and that there is no single choice for this parameter that yields
reasonable precision/recall.

Techniques for finding exact and inexact clones in binaries em-
ployed n-grams, small linear snippets of assembly instructions,
with normalization (linear naming of registers and memory loca-
tions) to address the variance in names across different binaries. For
example, this technique was used by [20]. However, as instructions
are added and deleted, the normalized names diverge and similarity
becomes strongly dependent on the sequence of mnemonics (in a
chosen window).

A recent approach [13] combined n-grams with graphlets, small
non-isomorphic subgraphs of the control-flow graph, to allow for
structural matching. This approach is sensitive to structural changes
and does not work for small graphlet sizes, as the number of
different (real) graphlet layouts is very small, leading to a high
number of false positives.

In all existing techniques, accountability remains a challenge.
When a match is reported, it is hard to understand the underlying
reasons. For example, some matches may be the result of a certain
mnemonic appearing enough times in the code, or of a block-layout
frequently used by the compiler to implement a while loop or a
switch statement (in fact, such frequent patterns can be used to
identify the compiler [18, 19]).

Recently, [22] presented a technique for establishing equiva-
lence between programs using traces observed during a dynamic
execution. A static semantic-based approach was presented in [16],
where abstract interpretation was used to establish equivalence of
numerical programs. These techniques are geared towards check-
ing equivalence and less suited for finding partial matches.

In contrast to these approaches, we present a notion of similarity
that is based on tracelets, which capture semantic similarity of
(short) execution sequences and allow matching similar functions
even when they are not equivalent.
Tracelet-based matching Our approach is based on two key ideas:
• Tracelet decomposition: We use similarity by decomposition,

breaking down the control-flow graph (CFG) of a function
into tracelets: continuous, short, partial traces of an execution.
We use tracelets of bounded length k (the number of basic
blocks), which we refer to as k-tracelets. We bound the length
of tracelets in accordance with the number of basic blocks, but
a tracelet itself is comprised of individual instructions. The idea
is that a tracelet begins and ends at control-flow instructions,
and is otherwise a continuous trace of an execution. Intuitively,
tracelet decomposition captures (partial) flow.
• Tracelet similarity by rewriting: To measure similarity be-

tween two tracelets, we define a set of simple rewrite rules
and measure how many rewrites are required to reach from one
tracelet to another. This is similar in spirit to recent approaches

for automatic grading [23]. Rather than exhaustively searching
the space of possible rewrite sequences, we encode the prob-
lem as a constraint-solving problem and measure distance us-
ing the number of constraints that have to be violated to reach a
match. Tracelet rewriting captures distance between tracelets in
terms of transformations that effectively “undo” low-level com-
piler decisions such as memory layout and register allocation.
In a sense, some of our rewrite rules can be thought of “register
deallocation” and “memory reallocation.”

Main contributions:
• A framework for searching in executables. Given a function in

stripped binary form (without any debug information), and a
large code base, our technique finds similar functions with high
precision and recall.
• A new notion of similarity, based on decomposition of functions

into tracelets: continuous, short, partial traces of an execution.
• A simple rewriting engine which allows us to establish tracelet

similarity in the face of compiler transformations. Our rewrit-
ing engine works by solving alignment and data dependencies
constraints to match registers and memory addresses between
tracelets, bridging the gap between tracelets that are otherwise
similar.
We have implemented our approach in a tool called TRACY

and applied it to find matches in a code base of over a million
stripped binary functions. We compare tracelet matching to other
(aforementioned) approaches that use n-grams and graphlets, and
show that tracelet matching obtains dramatically better precision
and recall.

2. Overview
In this section, we give an informal overview of our approach.

2.1 Motivating Example

Consider the source code of Fig. 1(a) and the patched version of
this code shown in Fig. 2(a). Note that both functions have the
same format string vulnerability (printf(optionalMsg), where
optionalMsg is unsanitized and used as the format string argu-
ment). In our work, we would like to consider docommand1 and
docommand2 as similar. Generally this will allow us to use one
vulnerable function to find other similar functions which might
be vulnerable too. Despite the similarity at the source-code level,
the assembly code produced for these two versions (compiled with
gcc using default optimization level O2) is quite different. Fig. 1(b)
shows the assembly code for docommand1 as a control-flow graph
(CFG)G1, and Fig. 2(b) shows the code for docommand2 as a CFG
G2. In these CFGs, we numbered the basic blocks for presentation
purposes. We used the numbering n for a basic block in the origi-
nal program, n′ for a matching basic block in the patched program,
and m∗ for a new block in the patched program.

Trying to establish similarity between these two functions at
the binary level, we face (at least) two challenges: the code is
structurally different and syntactically different. In particular:

(i) The control flow graph structure is different. For example,
block 6∗ in G2 does not have a corresponding block in G1.

(ii) The offsets of local variables on the stack are different, and in
fact all variables have different offsets between versions. For
example, var_18 in G1 becomes var_28 in G2 (this also
holds for immediate values).

(iii) Different registers are used for the same operations. For exam-
ple, block 3 ofG1 uses ecx to pass a parameter to the printf
call, while the corresponding block 3′ in G2 uses ebx.

1 int doCommand1(int cmd,char * optionalMsg,
2 char * logPath) {
3 int counter =1;
4 FILE *f = fopen(logPath,"w");
5 if (cmd == 1) {
6 printf("(%d) HELLO",counter);
7 } else if (cmd == 2) {
8 printf(optionalMsg);
9 }

10 fprintf(f,"Cmd %d DONE",counter);
11 return counter;
12 }

(a)

(b) G1

Figure 1. doCommand1 and its corresponding CFG G1.

(iv) All of the jump addresses have changed, causing jump in-
structions to differ syntactically. For example, the target of the
jump at the end of block 1 is loc_401358, and in the corre-
sponding jump in block 1’, the jump address is loc_401370.

Furthermore, the code shown in the figures assumes that the
functions were compiled in the same context (surrounding code).
Had the functions been compiled under different contexts, the gen-
erated assembly would differ even more (in any location-based
symbol, address or offset).
Why Tracelets? A tracelet is a partial execution trace that repre-
sents a single partial flow through the program. Using tracelets has
the following benefits:
• Stability with respect to jump addresses: Generally, jump

addresses can vary dramatically between different versions of
the same code (adding an operation can create an avalanche of
address changes). Comparing tracelets allows us to side-step
this problem, as a tracelet represents a single flow that implicitly
and precisely captures the effect of the jump.
• Stability to changes: When a piece of code is patched locally,

many of its basic blocks might change and affect the linear lay-
out of the binary code. This makes approaches based on struc-
tural and syntactic matching extremely sensitive to changes. In
contrast, under a local patch, many of the tracelets of the origi-

1 int doCommand2(int cmd,char *optionalMsg,char *logPath){
2 int counter = 1; int bytes = 0; // New variable
3 FILE *f = fopen(logPath,"w");
4 if (cmd == 1) {
5 printf("(%d) HELLO",counter); bytes += 4;
6 } else if (cmd == 2) {
7 printf(optionalMsg); bytes+= strlen(optionalMsg);
8 /* This option is new: */
9 } else if (cmd == 3) {

10 printf("(%d) BYE",counter); bytes += 3;
11 }
12 fprintf(f,"Cmd %d\\%d DONE",counter,bytes);
13 return counter;
14 }

(a)

(b) G2

Figure 2. doCommand2 and its corresponding CFG G2.

nal code remain similar. Furthermore, tracelets allow for align-
ment (also considering insertions and deletions of instructions),
as explained in Sec. 4.3.
• Semantic comparison: Since a tracelet is a partial execution

trace, it is feasible to check semantic equivalence between
tracelets (e.g., using a SAT/SMT solver as in [21]). In general,
this can be very expensive and we present a practical approach
for checking equivalence that is based on data-dependence anal-
ysis and rewriting (see Sec. 4.4).
The idea of tracelets is natural from a semantic perspective. Tak-

ing tracelet length to be the maximal length of acyclic paths through
a procedure is similar in spirit to path profiling [5, 17]. The problem
of similarity between tracelets (loop-free sequences of assembly in-
structions) also arises in the context of super-optimization [6].

push ebp
mov ebp, esp
sub esp, 18h
mov [ebp+var_4], esi
mov eax, [ebp+arg_8]
mov esi, [ebp+arg_0]
mov [ebp+var_8], ebx
mov ebx, offset unk_404000

mov [esp+18h+var_14], ebx
mov [esp+18h+var_18], eax
call _fopen
cmp esi, 1
mov ebx, eax
jz short loc_401358
mov [esp+18h+var_18],...
mov ecx, 1

mov [esp+18h+var_14], ecx
call _printf
jmp short loc_40132F
mov [esp+18h+var_18], ebx
mov edx, 1
mov eax, offset aCmdDDone
mov [esp+18h+var_10], edx
mov [esp+18h+var_14], eax

call _fprintf
mov ebx, [ebp+var_8]
mov eax, 1
mov esi, [ebp+var_4]

mov esp, ebp
pop ebp
retn

push ebp
mov ebp,esp
sub esp,28h
mov [ebp+var_C],ebx
mov eax, [ebp+arg_8]
mov ebx, [ebp+arg_0]
mov [ebp+var_4],edi
mov edi,offset unk_404000
mov [ebp+var_8],esi
xor esi,esi
mov [esp+28h+var_24],edi
mov [esp+28h+var_28],eax
call _fopen
cmp ebx,1
mov edi,eax
jz short loc_401370
mov [esp+28h+var_28],...
mov ebx,1
mov esi,4
mov [esp+28h+var_24],ebx
call _printf
jmp short loc_401339
mov [esp+28h+var_1C],esi
mov edx,1
mov eax,offset aCmdDDDone
mov [esp+28h+var_28],edi
mov [esp+28h+var_20],edx
mov [esp+28h+var_24],eax
call _fprintf
mov ebx,[ebp+var_C]
mov eax,1
mov esi,[ebp+var_8]
mov edi,[ebp+var_4]
mov esp,ebp
pop ebp
retn

{i} {ii}

Figure 3. A pair of 3-tracelets: {i} based on the blocks (1,3,5) in
Fig. 1(b), and {ii} on the blocks (1’,3’,5’) in Fig. 2(b). Note that
jump instructions are omitted from the tracelet, and that empty lines
were added to the original tracelet to align similar instructions.

2.2 Similarity using Tracelets
Consider the CFGs G1 and G2 of Fig. 1 and Fig. 2. In the fol-
lowing, we denote 3-tracelets using triplets of block numbers. Note
that in a tracelet all control-flow instructions (jumps) are removed
(as we show in Fig. 3). Decomposing G1 into 3-tracelets result in
the following sequences of blocks:

(1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 4, 5),

and doing the same for G2 results in the following:

(1′, 2′, 4′), (1′, 2′, 6∗), (1′, 3′, 5′), (2′, 4′, 5′), (2′, 6∗, 7∗), (6∗, 7∗, 5′).

To establish similarity between the two functions, we measure
similarity between the sets of their tracelets.
Tracelet comparison as a rewriting problem As an example of
tracelet comparison, consider the tracelets based on (1, 3, 5) inG1,
and (1′, 3′, 5′) in G2. In the following, we use the term instruc-
tion to refer to an opcode (mnemonic) accompanied by its required
operands. The two tracelets are shown in Fig. 3 with similar in-
structions aligned (blanks added for missing instructions). Note
that in both tracelets, all control-flow instructions (jumps) have
been omitted (shown as strikethrough). For example, in the original
tracelet, je short loc_401358 and jmp short loc_40132F
were omitted as the flow of execution has already been determined.

A trivial observation about any pair of k-tracelets is that syn-
tactic equality results in semantic equivalence and should be con-
sidered a perfect match, but even after alignment this is not true
for these two tracelets. To tackle this problem, we need to be able
to measure and grade the similarity of two k-tracelets that are not
equal. Our approach is to measure the distance between two k-

Figure 4. A successful rewriting attempt with cost calculation

tracelets by the number of rewrite operations required to edit one
of them into the other (an edit distance). Note that a lower grade
means greater similarity, where 0 is a perfect match. To do this we
define the following rewrite rules:
• Delete an instruction [instDelete].
• Add an instruction [instAdd].
• Substitute one operand for another operand of the same type

[Opr-for-Opr] (the possible types are register, immediate and
memory offset). Substituting a register with another register is
one example of a replace rule.
• Substitute one operand for another operand of a different type

[Opr-for-DiffOpr].
Given a pair of k-tracelets, finding the best match using these rules
is a rewriting problem requiring an exhaustive search solution.
Following code patches or compilation in a different context, some
syntactic deviations in the function are expected and we want our
method to accommodate them. For example, a register used in an
operation can be swapped for another depending on the compiler’s
register allocation. We therefore redefine the cost in our rewriting
rules such that if an operand is swapped with another operand
throughout the tracelet, this would be counted at most once.

Fig. 4 shows an example of a score calculation performed during
rewriting. In this example, the patched block on the left is rewrit-
ten into the original block on the right, using the aforementioned
rewrite rules and assuming some cost function Cost used to cal-
culate the cost for each rewrite operation. We present a way to ap-
proximate the results of this process, using 2 co-dependent heuristic
steps: tracelet alignment and constraint-based rewriting.
Tracelet alignment: To compare tracelets we use a tracelet align-
ment algorithm, a variation on the longest common subsequence al-
gorithm adapted for our purpose. The alignment algorithm matches
similar operations and ignores operations added as a result of a
patch. In our example, most of the original paths exist in the
patched code (excluding (1, 2, 5), which was “lost” in the code
change), and so most of the tracelets could also be found using
patch-tolerant methods to compare basic blocks.
Constraint-based matching: To overcome differences in symbols
(registers and memory locations), we use a tracelet from the orig-
inal code as a “template” and try to rewrite a tracelet from the
patched code to match it. This is done by addressing this rewrite
problem as a constraint satisfaction problem (CSP), using the
tracelets’ symbols as variables and its internal dataflow and the
matched instruction alignment as constraints. Fig. 5 shows an ex-
ample of the full process, alignment and rewriting, performed on
the basic blocks 3 and 3’. It is important to note that this process is

instr ::= nullary | unary op | binary op op | trenary op op op
op ::= [OffsetCalc] | arg
arg ::= reg | imm
OffsetCalc ::= arg | arg aop OffsetCalc
aop ::= + | - | *
reg ::= eax | ebx | ecx | edx | ...
nullary ::= aad | aam | aas | cbw | cdq | ...
unary ::= dec | inc | neg | not | ...
binary ::= adc | add | and | cmp | mov | ...
trenary ::= imul | ...

Figure 6. Simplified grammar for x86 assembly

meant to be used on whole tracelets; we use only one basic block
for readability. As we can see, the system correctly identifies the
added instruction (mov esi,4) and ignores it. In the next step, the
patched tracelet’s symbols are abstracted according to the symbol
type, and later successfully assigned to the correct value for a per-
fect match with the original tracelet. Note that function calls alone
(or any other group of special symbols) could not have been used
instead of this full matching process. For example, “printf” is
very common in our code example, but it is only visible by name
because it is imported; if it were an internal function, its name
would have been stripped away.

3. Preliminaries
In this section, we provide basic definitions and background that
we use throughout the paper.
Assembly Instructions An assembly instruction consists of a
mnemonic, and up to 3 operands. Each operand can be one ar-
gument (register or immediate value) or a group of arguments used
to address a certain memory offset. Fig. 6 provides a simplified
grammar of x86 instructions. Note that in the case of OffsetCalc
a group of arguments will be used to determine a single offset, and
the value at this memory offset will serve as the operand for the
instruction (see examples in the following table.)

We denote the set of all assembly instructions by Instr. We
define a set Reg of general purpose registers, allowing explicit
read and write, a set Imm of all immediate values, and a set
Arg = Reg ∪ Imm containing both sets. Given an assembly
instruction, we define the following:
• read(inst) : Instr → 2Reg , the set of registers being read by

the instruction inst. A register r is considered as being read
in an instruction inst when it appears as the right-hand-side
argument, or if it appears as a component in the computation of

Figure 5. A full alignment and rewrite for the basic blocks 3 and 3’ of Fig. 1(b) and Fig. 2(b)

an memory address offset (in this case, its value is read as part
of the computation).
• write(inst) : Instr → 2Reg , the set of registers being written

by the instruction inst.
• args(inst) : Instr → 2Arg , given an instruction returns the set

of arguments that appear in the instruction.
• SameKind(inst,inst): Instr × Instr → Boolean, given two

instructions returns true if both instructions have the same struc-
ture, meaning that they have the same mnemonic, the same
number of arguments, and all arguments are the same up to re-
naming of arguments of the same type.
Following are some examples of running these functions:

Instruction Args Read Write

inst1 add eax, ebx {eax,ebx} {eax,ebx} {eax}
inst2 mov eax,[ebp+4] {eax,ebp,4} {ebp} {eax}
inst3 mov ebx,[esp+8] {ebx,esp,8} {esp} {ebx}
inst4 mov eax,[ebp+ecx] {eax,ebp,ecx} {ebp,ecx} {eax}

Also, SameKind(inst2,inst3)=true, but SameKind(inst3,inst4)=false,
as the last argument used in the offset calculation has different types
in the two instructions (immediate and register respectively.)
Control Flow Graphs and Basic Blocks We use the standard no-
tions of basic blocks and control-flow graphs. A basic block is a
sequence of instructions with a single entry point, and at most one
exit point (jump) at the end of the sequence. A control flow graph
is a graph where the nodes are basic blocks and directed edges rep-
resent program control flow.

4. Tracelet-Based Matching
In this section, we describe the technical details of tracelet-based
function similarity. In Section 4.1 we present a preprocessing phase
applied before our tracelet-based similarity algorithm, the goal of
this phase is to reverse some compilation side-effects. In Sec-
tion 4.2 we present the main algorithm, an algorithm for comparing
functions. The main algorithm uses tracelet similarity, the details of
which are presented in Section 4.3, and a rewrite engine which is
presented in Section 4.4.

4.1 Preprocessing: Dealing with Compilation Side-Effects
When the code is compiled into assembly, a lot of data is lost, or
intentionally stripped, especially memory addresses.

One of the fundamental choices made in the process of con-
structing our similarity measure was the use of disassembly “sym-
bols” (registers, memory offsets, etc.) to represent the code. This
approach coincides with our need for flexibility, as we want to be
able to detect the expected deviations that might be caused by opti-
mizations and patching.

Some data can be easily and safely recovered by abstracting any
location-dependent argument values, while making sure that these
changes will not introduce false matches. More generally, we
perform the following substitutions (all examples are taken from
Fig. 2{ii}):
• Replace function offsets of imported functions with the func-

tion name. For example, call 0x00401FF0 was replaced with
call _printf.
• Replace each offset pointing to initialized global memory with a

designated token denoting its content. For example, the address
0x00404002, containing the string "DONE", was replaced with
aCmdDDDone

• If the called function can be detected using the import table,
replace variable offsets (stack or global memory) with the vari-
able’s name, retrieved from the function’s documentation. For
example, var_24 should be replaced with format (this was not
done in this case to demonstrate the common case in which the
called function is not imported and as such its argument are not
known).
This leaves us with two challenges:

1. Inter-procedural jumps (function calls): As our executables are
stripped from function names and any other debug information,
unless the function was imported (e.g., as fprintf), we have
no way of identifying and marking identical functions in differ-
ent executables. In Section 4.4 we show how our rewrite engine
addresses this problem.

2. Intra-procedural jumps: The use of the real address will cause
a mismatch (e.g. loc_40132f in Fig. 1(b) and loc_401339 in
Fig. 2(b) point to corresponding basic blocks). In Section 4.2.1,
we show how to extract tracelets that follow intra-procedural
jumps.

4.2 Comparing Functions in Binary Code

Using the CFG to measure similarity When comparing functions
in binary form, it is important to realize that the linear layout of
the binary code is arbitrary and as such provides a poor basis
for comparison. In the simple case of an if-then-else statement
(splitting execution for the true and false clauses), the choice made
by the compiler as to which clause will come first in the binary is
determined by parameters such as basic block size or the likelihood
of a block being used. Another common example is the layout
of switch-case statements, which, aside from affecting a larger
portion of the code, also allows for multiple code structures to be
employed: a balanced tree structure can be used to perform a binary
search on the cases, or a different structure such as a jump (lookup)
table can be used instead.

To obtain a reasonable similarity metric, one must, at least,
use the function’s control flow (alternatively, one can follow data

and control dependencies as captured in a program dependence
graph [10]). Following this notion, we find it natural to define the
“function similarity” between two functions by extracting tracelets
from each function’s CFGs and measuring the coverage rate of
the matching tracelets. This coincides with our goal to create an
accountable measure of similarity for assembly functions, in which
the matched tracelets retrieved during the process will be clearly
presented, allowing further analysis or verification.

Function Similarity by Decomposition Algorithm 1 provides
the high-level structure of our comparison algorithm. We first de-
scribe this algorithm at a high-level and then present the details for
each of its steps.

Algorithm 1: Similarity score between two functions
Input: T,R - target and reference functions,

NM - normalizing method: ratio or containment
k - tracelet size, α, β - threshold values

Output: IsMatch - true if the functions are a match,
SimilarityScore - the normalized similarity score

1 Algorithm FunctionsMatchScore(T,R,NM,k,α, β)
2 RefTracelets = ExtractTracelets(R,k)
3 TargetTracelets = ExtractTracelets(T,k)
4 MatchCount = 0
5 foreach r ∈ RefTracelets do
6 foreach t ∈ TargetTracelets do
7 AlignedInsts = AlignTracelets(r,t)
8 t’ = RewriteTracelet(AlignedInsts,r,t)
9 S = CalcScore(r,t’)

10 RIdent = CalcScore(r,r)
11 TIdent = CalcScore(t’,t’)
12 if Norm(S,RIdent,TIdent,NM) > β then
13 MatchCount+ +
14 end
15 end
16 SimilarityScore = MatchCount /|RefTracelets|
17 isMatch = SimilarityScore > α

The algorithm starts by decomposing each of the two functions
into a set of k-tracelets (lines 2-3). We define the exact notion of a
tracelet later in this section; for now it suffices to view each tracelet
as a bounded sequence of instructions without intermediate jumps.
The extractTracelets operation is explained in Sec. 4.2.1. Af-
ter each function has been decomposed into a set of tracelets, the al-
gorithm proceeds by pairwise comparison of tracelets. This is done
by first aligning each pair (Line 7, see Sec. 4.3), and then trying to
rewrite the target tracelet using the reference tracelet (Line 8, see
Sec. 4.4). We will later see that CalcScore and AlignTracelets
actually perform the same operation and are separated for readabil-
ity (see Sec. 4.3).The tracelet similarity score is calculated using
the identity similarity scores (the similarity score of a tracelet with
itself) for the target and reference tracelets (computed in lines 10-
11), and one of two normalization methods (ratio or containment,
Sec. 4.3). Two tracelets are considered similar, or a “match” for
each other, if their similarity score is above threshold β. After all
tracelets were processed, the resulting number of similar tracelets
is used to calculate the cover rate, which acts as the similarity score
for the two functions. Finally, two functions are considered similar
if their similarity score is above the threshold α.

4.2.1 Extracting tracelets
Following this, we formally define our working unit, the k-tracelet,
and show how k-tracelets are extracted from the CFG. A k-tracelet

is an ordered tuple of k sequences, each representing one of the ba-
sic blocks in a directed acyclic sub-path in the CFG, and containing
all of the basic block’s assembly instructions excluding the jump
instruction. Note that as all control-flow information is stripped,
the out-degree of the last basic block (or any other basic block) in
the tracelet is not used in the comparison process. This choice was
made to allow greater robustness with regard to code changes and
optimization side-effects, as exit nodes can be added and removed.
Also note that the same k basic blocks can appear in a different or-
der (in a different tracelet), if such sub-paths exist in the CFG. We
only use small values of k (1 to 4), and because most basic blocks
have 1 or 2 out-edges, and a few of which are back-edges, such
duplicate tracelets (up to order) are not very common. Algorithm 2
shows the algorithm for extracting k-tracelets from a CFG. The
tracelets are extracted recursively from the nodes in the CFG. To
extract all the k-traclets from a certain node in the CFG, we com-
pute all (k-1)-tracelets from any of its “sons”, and use a Cartesian
product (×) between the node and the collected tracelets.

Algorithm 2 uses a helper function, StripJumps. This function
takes a sequence of assembly instructions in which a jump may
appear as the last instruction, and returns the sequence without the
jump instruction.

Algorithm 2: Extract all k-tracelets from a CFG.

Input: G=〈B,E〉 - control flow graph, k - tracelet size
Output: T - a list of all the tracelets in the CFG
Algorithm ExtractTracelets(G,k)

result = ∅
foreach b ∈ B do

result ∪= Extract(b,k)
end
return result

Function Extract(b,k)
bCode = {stripJumps(b)}
if k = 1 then

return bCode
else

return
⋃
{b′|(b,b′)∈E} bCode × Extract(b’,k-1)

end

4.3 Calculating Tracelet Match Score

Aligning tracelets with an LCS variation As assembly instructions
can be viewed as a text string, one way to compare them is using a
textual diff. This simulates the way a human might detect similari-
ties between tracelets. Comparing them in this way might work to
some extent. However, a textual diff might decompose an assem-
bly instruction and match each decomposed part to a different in-
struction. This may cause very undesirable matches such as “rorx
edx,esi” with “inc rdi” (shown in bold, rorx is a rotate in-
struction, and rdi is a 64-bit register).

A common variation of LCS is the edit distance calculation
algorithm, which allows additions and deletions by using dynamic
programming and a “match value table” to determine the “best”
match between two strings. The match value table is required, for
example, when replacing a space because doing so will be costlier
than other replacement operations due to the introduction of a new
“word” into the sentence. By declaring one of the strings as a
reference and the other as the target, the output of the algorithm
can be extended to include matched, deleted, and inserted letters.
The matched letters will be consecutive substrings from each string,
whereas the deleted and inserted letters must be deleted from or

inserted to the target, in order to match it to the reference string. A
thorough explanation about edit-distance is presented in [25].

We present a specially crafted variation on the edit distance.
We will treat each instruction as a letter (e.g., pop eax; is a
letter) and use a specialized match value table, which is really a
similarity measure between assembly instructions, to perform the
tracelet alignment. It is important to note that in our method we
give a high grade to perfect matches (instead of a 0 edit distance
in the original method). For example, the score of comparing push
ebp;with itself is 3, whereas the score of add ebp,eax;with add
esp,ebx; is only 2. We compute the similarity between assembly
instructions as follows:

Sim(c, c′)=

{
2 + |{i|args(c)[i] = args(c′)[i]}| SameKind(c, c′)
−1 otherwise.

Here, c and c′ are the assembly instructions we would like to
compare. As defined in Section 3, we say that both instructions
(our letters) are the same “kind” if their mnemonic is the same,
and all of their argument are of the same kind (this will prove
even more valuable in our rewrite process). We then calculate the
grade by counting the number of matching arguments, also giving
2 “points” for the fact that the “kinds” match. If the instructions are
not the same kind, the match is given a negative score and won’t
be favored for selection. This process enables us to accommodate
code changes; for example, we can “jump over” instructions which
were heavily changed or added, and match the instructions that
stayed mostly similar but one register was substituted for another.
Note that this metric gives a high value to instructions with a lot of
arguments in common, and that some of these arguments were pre-
processed to allow for better matches (Section 4.1), while others,
such as registers, are architecture dependent.

Algorithm 3: Calculate similarity score between two tracelets
Input: T,R - target and reference tracelets

Output: Score - tracelet similarity score
1 Algorithm CalcScore(T,R)
2 A = InitMatrix(|T |, |R|)
3 // Access outside the array returns a large negative value

for i = |T |; i > 0; i−− do
4 for j = |R|; j > 0; j −− do
5 A[i, j] =Max(
6 Sim(T [i],R[j])+A[i+1, j +1], // match
7 A[i+ 1, j], // insert
8 A[i, j + 1] // delete
9)

10 end
11 end
12 Score = A[0, 0]

Using LCS based alignment Given a reference and a target tracelet,
an algorithm for calculating the similarity score for the two tracelets
is described in Algorithm 3. This specialized edit distance calcula-
tion process results in:
1. A set of aligned instruction pairs, one instruction from the

reference tracelet and one from the target tracelet.

2. The similarity score for the two tracelets, which is the sum of
Sim(c, c′) for every aligned instruction pair c and c′.

3. A list of deleted and inserted instructions.
Note that the first two outputs were denoted AlignTracelets

and CalcScore, respectively, in Algorithm 1.
Despite not being used directly in the algorithm, inserted and

deleted data (for a “successful” match) give us important infor-

mation. Examining the inserted instructions will uncover changes
made from the reference to the target, such as new variables or
changes to data structures. On the other hand, deleted instructions
show us what was removed from the target, such as support for
legacy protocols. Identifying these changes might prove very valu-
able for a human researcher, assisting with the identification of
global data structure changes, or with determining that an under-
lying library was changed from one provider to another.
Normalizing tracelet similarity scores We used two different ways
to normalize the tracelet similarity score (“Norm” in Algorithm 1):
1. Containment: requiring that one of the tracelets be contained in

the other. Calculation: S/min(RIdent, T Ident).

2. Ratio: taking into consideration the proportional size of the
unmatched instructions in both tracelets.
Calculation: (S ∗ 2)/(RIdent+ TIdent).
Note that in both methods the normalized score is calculated

using the similarity score for the reference and target tracelets, and
the identity scores for the two tracelets.

Each method is better suited for different scenarios, some of
which are discussed in Section 8, but, as our experiments show, for
the common cases they provide the same accuracy.

Next we present a supplementary step that improves our match-
ing process even further by performing argument “de-allocation”
and rewrite.

4.4 Using the Rewrite Engine to Bridge the Gap
We first provide an intuitive description of the rewrite process, and
then follow with a full algorithm accompanied by explanations.
Using aligned tracelets for argument de-allocation To further
improve our matching process, and in particular to tackle the ripple
effects of compiler optimizations, we employ an “argument de-
allocation” and rewrite technique.

First, we abstract away each argument of the target tracelet to
an unknown variable. These variables are divided into three groups:
registers, memory locations, and function names. Next, we intro-
duce the constraints representing the relations between the vari-
ables, using data flow analysis, and the relations between the vari-
ables and the matched arguments. Arguments are matched using
their linear position in matched instructions. Because reference and
target tracelets were extracted from real code, we will use them as
“hints” for the assignment by generating two sets of constraints:
in-tracelet constraints and cross-tracelet constraints. The in-tracelet
constraints preserve the relation between the data and arguments
inside the target tracelet. The second stage will introduce the cross-
tracelet constraints, inducing argument equality for every argument
in the aligned instructions. Finally, combining these constraints and
attempting to solve them by finding an assignment with minimum
conflicts is the equivalent of attempting to rewrite the target tracelet
into the reference tracelet, while respecting the target’s data flow
and memory layout. Note that if all constraints are broken, the as-
signment is useless as the score will not improve, but this means
that the tracelets are not similar and reducing their similarity score
improves our method’s precision.

Returning to the example of Section 2, the full process of the
tracelet alignment and rewrite is shown in Fig. 5. As we can see, in
this example the target tracelet achieved a near perfect score for the
new match (only “losing points” for the missing instruction if ratio
calculation was used).
Algorithm details Our rewriting method is shown in Algorithm 4.
First, we iterate over the aligned instruction pairs from T and R.
For every pair of instructions, |args(r)| = |args(t)| holds (this is
required for aligned instructions; see Section 4.3). For every pair of
aligned arguments (aligned with regard to their linear position, eg.,
eax ←→ ebx, ecx ←→ edx, in add eax,ecx;add ebx,edx),

we abstract the argument in the target tracelet. This is done using
newVarName, which generates unique temporary variable names
according to the type of the argument (such as the ones shown in
Fig. 5). Then, a cross-tracelet constraint between the new variable
and the value of the argument from the reference instruction is
create and added to the constraint ϕ (line 7).

Then, read(t) is used to determine whether the argument st
is read in t. Next, the algorithm uses the helper data structure
lastWrite(st) to determine the last temporary variable name in
which the argument st was written into. It then creates a dataflow
constraint from the last write to the read (line 9). Otherwise the
algorithm checks whether t is a write instruction on st , using
write(t) , and updates lastWrite(st) accordingly.

Finally, after creating all variables and constraints, we call the
constraint solver (using solve, line 14), obtain a minimal conflict
solution, and use it to rewrite the target tracelet.

Algorithm 4: Rewrite target code to match reference.
Input: AlignedInsts - a set of tuples with aligned

reference and target assembly instructions (Note that
aligned instructions have the same number of
arguments), T,R - target and reference tracelets

Output: T’ - rewritten target code
1 Algorithm RewriteTracelet(T,R)
2 foreach (t, r) ∈ AlignedInsts do
3 for i = 1; i < |args(t)|; i++ do
4 st = args(t)[i]
5 sr = args(r)[i]
6 nv = newV arName(st)
7 ϕ = ϕ ∧ (nv = sr)
8 if st ∈ read(t) and lastWrite(st) 6= ⊥ then
9 ϕ = ϕ ∧ (nv = lastWrite(st))

10 else if st ∈ write(t) then
11 lastWrite(st) = nv
12 end
13 end
14 vmap = solve(ϕ, symbols(R))
15 foreach t ∈ T do
16 t’ = t
17 foreach st ∈ t do
18 if (st) ∈ vmap then
19 t′ = t′[st 7→ vmap(st)])
20 end
21 end
22 T ′.append(t′)
23 end

Constraint solver details In our representation, we identify regis-
ters and allow them to be replaced by other registers. Our domain
for the register assignment only contains registers found in the ref-
erence tracelet. Generally, two operations that involve memory ac-
cess may be considered similar when they perform the same access
to the same variable. However, the problem of identifying variables
in stripped binaries is known to be extremely challenging [4]. We
therefore choose to consider operations as similar under the more
strict condition that all the components involved in the computation
of the memory address are syntactically identical. Our rewrite en-
gine therefore adds constraints that try to match the components of
memory-address computation across tracelets.

The domains for the global offsets in memory and function call
arguments again contain exactly the arguments of the reference
tracelet. Note that each constraint is a conjunction (lines 7,9), and

Figure 7. A’s members are dissimilar to B’s. We will measure
precision and recall on R=A.

when solving the constraint we are willing to drop conjuncts if the
full constraint is not satisfiable. The constraint solving process uses
a backtracking solver. This process is bounded to 1000 backtrack-
ing attempts and returns the best assignment found, with minimal
conflicts. The assignment is then used to rewrite the abstracted ar-
guments in all of the matched instructions and, for completeness,
a cache of the argument swaps is used to replace the values in the
deleted instructions. When this process is complete, the tracelets’s
match score will be recalculated (using the same algorithm) to get
the final match score. Arguably, after this process, the alignment
of instructions might change, and repeating this process iteratively
might help improve the score, but experiments show that subse-
quent attempts after the first run are not cost effective.

5. Evaluation
5.1 Test-bed Structure

Test-bed design We built our testbed to cover all of the previously
discussed cases in which we attempt to detect similarity: when a
code is compiled in a different context, or after a patch. Accord-
ingly, we divided the executables into two groups:
• Context group: This group is comprised of several executables

containing the same library function. We used Coreutils exe-
cutables and focused on library functions which perform the
common task of parsing command line parameters.
• Code Change group: This group includes functions originat-

ing from several executables which are different versions of
the same application. For example, we used wget versions
1.10,1.12,1.14.

In the first step of our evaluation process we performed controlled
tests: we built all the samples from the source code, used the same
machines, and the same default configurations. This allowed us to
perform extensive testing using different test configurations (i.e.,
using different values of k and with different values of β). During
this stage, as we had access to the source code, we could perform
tests on edge conditions, such as deliberately switching the similar
functions between the executables (“functions implants”) and mea-
suring code change at the source level to make sure the changes
are reasonable. We should note that when building the initial test
set, the only requirement from our functions was that they be “big”
enough, that is, that they have more than 100 basic blocks. This

K # Tracelets # Compares #Tracelets
Function

#Instructions
Tracelet

k=1 229, 250 1.586 ∗ 108 12.839[39.622] 5.738[21.926]
k=2 211, 395 1.456 ∗ 108 11.839[39.622] 11.091[23.768]
k=3 188, 133 1.284 ∗ 108 10.536[39.445] 16.518[39.445]
k=4 166, 867 1.139 ∗ 108 9.345[39.096] 22.072[29.965]
k=5 147, 634 1.008 ∗ 108 8.268[38.484] 27.618[31.021]

Table 1. Test-bed statistics. For average values standard deviation
is presented in square brackets.

was done to avoid over matching of too-small functions in the con-
tainment calculation.

Our general testing process is shown in Fig. 7. From each
group of similar functions we chose a random representative and
then tested it against the entire testbed. We required our similarity
classifier to find all similar functions (the other functions from its
original similarity group) with high precision and recall.

In the second stage we expanded each test group with executa-
bles downloaded from different internet repositories (known to con-
tain true matches, i.e., functions similar to the ones in the group),
and added a new “noise” group containing randomly downloaded
functions from the internet. At this stage we also implicitly added
executables containing functions that are both in a different context
and had undergone code change (different version). An example
for such samples is shown in Sec. 6.2.
Test-bed statistics In the final compositions of our testbed (at the
beginning of the second stage described above), we had a total of
over a million functions in our database. At that point we gathered
some statistics about the collected functions. The gathered infor-
mation gives an interesting insight into the way modern compilers
perform code layout and the number of computations that were per-
formed. These statistics are shown in Table 1. A slightly confusing
statistic in this table is the number of tracelets as a function of k.
The number of tracelets is expected to grow as a function of their
length (the value of k) in “ordinary” graph structures such as trees,
where nodes might have a high out-degree. This is not the case for
a structure such as a CFG. The average in-degree of a node in a
CFG is 0.9221(STD = 0.2679), and the average out-degree is
0.9221(STD = 1.156). This, in addition to our omitting paths
shorter than k when extracting k tracelets, caused the number of
tracelets to decline for higher values of k. The number of instruc-
tions in a tracelet naturally rises, however. Note the very high num-
ber of compare operations required to test similarity against a rea-
sonable datebase, and that the average size of a basic block (or a
1-tracelet) is 6 instructions. Fortunately, this process can be easily
parallelized (Sec. 5.2).
Evaluating classifiers The challenge in building a classifier is
to discover and maintain a “noise threshold” across experiments,
where samples scoring below it are not classified as similar.

The receiver operating characteristic (ROC) is a standard tool
in evaluation of threshold based classifiers. The classifier is scored
by testing all of the possible thresholds consecutively, enabling us
to treat each method as a binary classifier (outputting 1 if the simi-
larity score is above the threshold). For binary classifiers, accuracy
is determined using the True Positive (TP, the ones we know are
positive), True Negative (TN), Positive (P, the ones classified as
positive) and Negative (N, the ones classified as negative):

Accuracy = (TP + TN)/(P +N).

Plotting the results for the different thresholds on the same graph
yields a curve; the area under this curve (AUC) is regarded as the
accuracy of the proposed classifier.

CROC is a recent improvement of ROC that address the prob-
lem of “early retrieval,” where there is a huge number of potential
matches and the number of real matches is known to be very low.
The CROC metric is described in detail in [24]; the idea behind it is
to better measure the accuracy of a low number of matches. This is
appropriate in our setting because manually verifying that a match
is real is a very costly operation for a human expert. Moreover,
software development is inherently based on re-use, and similar
functions will not naturally appear in the same executable (so each
executable will contain at most one true positive). CROC gives a
stronger grade to methods that provide a low number of candidate
matches for a query (i.e., it penalizes false positives more aggres-
sively than ROC).

5.2 Prototype Implementation

We have implemented a prototype of our approach in a tool called
TRACY. In addition to tracelet-based comparison, we have also
implemented the other aforemention comparison methods, based
on a sliding window of mnemonics (n-grams) and graphlets. This
was done in an attempt to test the different techniques on the same
data, measuring precision and recall (and ignoring performance, as
our implementation of the other techniques is non-optimized).

Our prototype obtains a large number of executables from the
web and stores them in a database. A tracelet extraction component
then disassembles and extracts tracelets from each function in the
executables stored in the database, creating a search index. Finally,
a search engine allows us to use different methods to compare a
query (a function given in binary form, as a part of an executable)
to the disassembled binaries in the index.

The system itself was implemented almost entirely in Python
using IDA Pro [2] for disassembly, iGraph to process graphs, Mon-
goDB for storing and indexing, and yard-plot ([3]) for plotting
ROC and CROC curves. The full source code can be found at
https://github.com/Yanivmd/TRACY.

The prototype was deployed on a server with four quad-core
Intel Xeon CPU E5-2670 (2.60GHz) processors, and 188 GiB of
RAM, running Ubuntu 12.04.2 LTS.
Optimizations and parallel execution As shown in Table 1, the
number of tracelet compare operations is huge, but as similarity
score calculations on pairs of tracelets are independent, they can
be done in parallel. One important optimization is first performing
the instruction alignment (using our LCS algorithm) with respect to
the basic-block boundary. This reduces the calculation’s granularity
and allows for even more parallelism. Namely, when aligning two
tracelets, (1, 2, 3) and (1′, 2′, 3′), instructions from 1 can only be
matched and aligned with instructions from 1’. This allowed us to
use 1-tracelets (namely basic blocks) to cache scores and matches,
and then use these alignments in the k-tracelet’s rewriting process.
This optimization doesn’t affect precision because the rewrite pro-
cess uses all of the k nodes in the tracelet, followed by a full re-
calculation of the score (which doesn’t use any previous data).
Furthermore, to better adapt our method to work on our server’s
NUMA architecture, we statically split the tracelets of the repre-
sentative function (which is compared with the rest of the functions
in the database) across the server’s nodes. This allowed for better
use of the core’s caches and avoided memory overheads.

5.3 Test Configuration

Similarity calculation configuration The following parameters re-
quire configuration.
• k, the number of nodes in a tracelet.
• The “tracelet match barrier” (β in Algo. 1), a threshold param-

eter above which a tracelet will count as a match for another.

β Value 10− 20 30 40 50 60 70− 90 100
AUC[CROC] 0.15 0.23 0.45 0.78 0.95 0.99 0.91

Table 2. Showing the CROC AUC score for the tracelet-based
matching process using different values of β

• The “function coverage rate match barrier” (α in Algo. 1), a
threshold parameter, above which a function will be considered
similar to another one.
Because the ROC (and CROC) methods attempt all values for

α, for every reasonable value of k (1 − 4), we ran 10 experiments
testing all values of β (We checked values from 10 to 100 percent
match, in 10 percent intervals) to discover the best values to use.
The best results for each parameter is reported in the next section.

For our implementation of the other methods, we used the
best parameters as reported in [13], using n-gram windows of 5
instructions with a 1 instruction delta, and k=5 for graphlets.

6. Results
6.1 Comparing Different Configurations

Testing different thresholds for tracelet-to-tracelet matches Ta-
ble 2 shows the results of using different thresholds for 3-tracelet
to 3-tracelet matches. Higher border values (excluding 100) lead
to better accuracy. This makes sense as requiring a higher simi-
larity score between the tracelets means that we only match simi-
lar tracelets. All border values between 70 and 90 percent give the
same accuracy, suggesting that similar tracelets score above 90, and
that dissimilar tracelets score below 70. Our method thus allows for
a big “safety buffer” between the similar and dissimilar spectrums.
It is, therefore, very robust. Finally, we see that for 100 (requiring a
perfect syntactical match), we get a lower grade. This makes sense
as we set out to compare “similar” tracelets knowing (even after
the rewrite) that they still contain code changes which cannot (and
should not) be matched.
Testing different values of k The last parameter in our tests is k
(the number of basic blocks in a tracelet). For each value of k, we
attempted every threshold for tracelet-to-tracelet matching (as done
in the previous paragraph). Using k = 1, we achieved a relatively
low CROC AUC of 0.83. Trying instead k = 2 yielded 0.91, while
k = 3 yielded 0.99. The results for k = 4 are similar to the results
of k = 3 and are only slightly more expensive to compute (the
number of 4-tracelets is similar to that of 3-tracelets; see Table 1).
In summary, using a higher number for k is crucial for accuracy.
The less accurate results for lower k values is due to their leading
to shorter tracelets having fewer instructions to match and fewer
constraints (especially in-tracelet), resulting in lower precision.
Using ratio and containment calculations Our experiments show
that this parameter does not affect accuracy. This might be be-
cause containment or ratio are traits of whole functions and so are
marginal in the scope of the tracelet.
Detecting vulnerable functions After our system’s configuration
was calibrated, we set out to employ it for its main purpose, finding
vulnerable executables. To make this test interesting, we looked for
vulnerabilities in libraries because such vulnerabilities affect multi-
ple applications. One example is CVE-2010-0624 ([1]); this vulner-
ability is an exploitable heap-based buffer overflow affecting GNU
tar (up to 1.22) and GNU cpio(up to 2.10). We compiled a vulner-
able version of tar on our machine and scanned package reposito-
ries, looking for vulnerable versions of cpio and tar. This resulted in
our system successfully pinpointing the vulnerable function in the
tar 1.22 packages, the older tar 1.21 packages, and packages of

cpio 2.10. (older packages of cpio and tar were not found at
all and so could not be tested).

n-grams Graphlets Traclets K=3
Size 5,Delta 1 K=5 Ratio Contain

AUC[ROC] 0.7217 0.5913 1 1
AUC[CROC] 0.2451 0.1218 0.99 0.99

Table 3. Accuracy for tracelet-based function similarity vs
graphlets and n-grams, using ROC and CROC. These results are
based on 6 different experiments.

Table 3 summarizes the results of 6 different, carefully designed
experiments, using the following representatives:
• quotearg_buffer_restyle function from wc v6.12 (a li-

brary function used by multiple Coreutils applications).
• The same function from wc v7.6 “implanted” in wc v8.19.
• getftp from wget v1.10.
• The vulnerable function from tar (described above).
• Two random functions selected from the “noise group”.

Each experiment considers a single query (function) against
the DB of over a million examples drawn from standard Linux
utilities. For each executables group, the true positives (the similar
functions) were manually located and classified as such, while the
rest were assumed to be true negatives. Although the same function
should not appear twice in the same executable, every function
which yielded a high similarity grade was manually checked to
confirm it is a false positive.

The challenge is in picking a single threshold to be used in
all experiments. Changing the threshold between queries is not a
realistic search scenario.

Each entry in the table is the area under the curve, which repre-
sents the best-case match score of the approach. ROC curves (and
their improvement CROC) allow us to compare different classifiers
in a “fair” way, by allowing the classifier to be tested with all pos-
sible thresholds and plotting them on a curve.

For example, the value 0.7217 for ROC with n-grams (size=5,
delta=1) yields the the best accuracy (see definition in Section 5.1)
obtained for any choice of threshold for n-grams. In other words,
the best accuracy achievable with n-grams with these parameters
is 0.7217, in contrast to 0.99 accuracy in our approach. This is
because n-grams and graphlets use a coarse matching criterion not
suited for code changes. This could also be attributed to the fact
that they were targeted for a different classification scenario, where
the goal is to find only one matching function, whereas we strive to
find multiple similar functions. (The former scenario requires that
the matched function be the top or in the top 10 matches.) When
running an experiment in that scenario, the other methods do get
better, though still inferior, results (∼ 90% ROC, ∼ 50% CROC).

6.2 Using the Rewrite Engine to Improve Tracelet Match Rate

Fig. 8 shows executables containing a function which was success-
fully classified as similar to quotearg_buffer_restyled (core-
utils library), compiled locally inside wc during the first stage of our
experiments. Following is a breakdown of the functions detected:
• The exact function compiled locally into different executables

(in the controlled test stage), such as ls,rm and chmod.
• The exact function “implanted” in another version of the exe-

cutable. For example, wc_from_7.6 means that the version of
quotearg_buffer_restyled from the coreutils 7.6 library
was implanted in another version (in this case 8.19).

Figure 8. Matching a function across different contexts and after
code changes

• Different versions of the function found in executables down-
loaded from internet repositories, such as deb wc 8.5 (the wc
executables, Debian repository, coreutils v8.5).
To present the advantages of the rewrite engine, we separated

the percentage of tracelets that were matched before the rewrite
from the ones that could only be matched after the rewrite. Note
that both match scores are obtained using our LCS derived match
scoring algorithm run once before the rewrite, and once after. An
average of 25% of the total number of tracelets were matched as a
result of the rewriting process.

It should be noted that true positive and negative information
was gathered using manual similarity checks and/or using debug-
ging information (comparing function names, as we assume that
if a function changed its name, it will probably have changed its
purpose, since we are dealing with well-maintained code).

6.3 Performance

Our proof-of-concept implementation is written in Python and does
not employ optimizations (not even caching, clustering, or other
common search-engine optimization techniques). As a result, the
following reported running times should only be used to get a grasp
on the amount of work performed in each step of the process, show
an upper limit, and achieve a better understanding of where opti-
mizations should be employed. Analyzing complete matching op-
erations (which may take from milliseconds to a couple of hours)
shows that the fundamental operation in our process, that of com-
paring two tracelets, greatly depends on the composition of the
tracelets being compared. If the tracelets are an exact match or are
not remotely similar, the process is very fast because, during align-
ment, we do not need to check multiple options and the rewrite
engine (which relies on the alignment and as such cannot be mea-
sured independently) does not need to do too much work. When the
tracelets are similar but are not a perfect match, the rewrite engine
has a chance to really assist in the matching process and as such
requires some runtime.

Table 4 summarizes tracelet comparison, with and without the
rewrite operation, showing that almost half of the time is spent
in the rewrite engine (on average). Also presented in the table

Time (secs)
Item Op AVG (STD) Med Min Max

Tracelet
Align

0.0015

(0.0022)
0.00071 0.00024 0.092

Align
& RW

0.0035

(0.0057)
0.0025 0.00052 0.23

Function
Align 3.8(12.2) 1.6 0.076 627

Align
& RW

8.6(25.78) 2.8 0.087 1222

Table 4. Runtimes of tracelet-to-tracelet and function-to-function
comparisons, with and without the rewrite engine.

is the runtime of a complete function-to-function comparison. It
should be noted that the run times greatly depend on the size
of the functions being compared, and the shown run times were
measured on functions containing∼ 200 basic-blocks. Postmortem
analysis of the results of the experiments described earlier shows
that tracelets with a matching score below 50%, which comprised
85% of the cases, will not be improved using the rewrite engine,
and so a simple yet effective optimization will be to skip the
rewriting attempts in such cases.

7. Related Work
We have discussed closely related work throughout the paper. In
this section, we briefly survey additional related work.
n-grams based methods The authors of [12] propose a method for
determining even complex lineage for executables. Nonetheless, at
its core their method uses linear n-grams combined with normal-
ization steps (in this case also normalizing jumps), which, as we
discussed in Sec. 4.2, is inherently flawed due to reliance on the
compiler to make the same layout choices.
Structural methods A method for comparing binary control flow
graphs using graphlet-coloring was presented in [14]. This ap-
proach has been used to identify malware, and for identifying com-
pilers and even authors [19],[18]. This method was designed to
match whole binaries in large groups, and as such it employs a
coarse equivalence criterion between graphlets. [8] is another inter-
esting work in this field; it attempts to detect virus infections inside
executables. This is done by randomly choosing a starting point in
the executable, parsing it as code and attempting to construct an
arbitrary length CFG from there. This work is focused on cleverly
detecting the virus entry point, and presents interesting ideas for
analyzing binary code that we can use in the future.
Similarity measures developed for code synthesis testing The au-
thors of [21] propose an interesting way to compare x86 loop-free
snippets to perform transformation correctness tests. The similarity
is calculated by running the code on selected inputs, and quantify-
ing similarity by comparing outputs and states of the machine at the
end of the execution (for example counting equal bits in the output).
This distance metric does offer a way to compare two code frag-
ments and possibly to compute similarity, but requires dynamic ex-
ecution on multiple inputs, which makes it infeasible for our cause.
Similarity measures for source code There has been a lot of work
on detecting similarities in source code (cf. [7]). As our problem
deals with binary executables, such approaches are inapplicable.
(We discussed an adaptation of these approaches to binaries [20] in
Sec. 1). Using program dependence graphs was shown effective in
comparing functions using their source code [11], but applying this
approach to assembly code is difficult. Assembly code has no type
information, variables are not easily identified [4], and attempting
to create a PDG proves costly and imprecise.
Dynamic methods There are several dynamic methods targeting
malware. For example, [9] uses run-time information to model

executable behavior and detect anomalies which could be attributed
to malware and used to identify it. Employing dynamic measures in
this case enables bypassing malware defences such as packing. We
employ a static approach, and dealing with executable obfuscation
is out of the scope of our work.

8. Limitations
During our experiments, we observed some limitations of our
method, which we now describe.
Different optimization levels: We found that when compiling source
code using O1 optimization level, the resulting binary can be used to
find O1,O2 and O3 versions. However, O0 and Os are very different
and are not found. Nonetheless, when we have the source code
for the instance we want to find, we can compile it with all the
optimization levels and search them one by one.
Cross-domain assignments: A common optimization is replacing
an immediate value with a register already containing that value.
Our method was designed so that each symbol can only be replaced
with another in the same domain. Our system could also search
cross-domain assignments, but this would notably increase the cost
of performing a search. Further, our experiments show very good
precision even when this option is disabled.
Mnemonic substitution: Because our approach requires compared
instructions’ mnemonics to be the same in the alignment stage, if a
compiler were to select a different mnemonic the matching process
would suffer. Our rewrite engine could be extended to allow com-
mon substitutions; however, handling the full range of instruction
selection transformations might require a different approach.
Matching small functions: Our experiments use functions with a
minimum of 100 basic-blocks. Attempting to match smaller func-
tions will often produce bad results. This is because we require
a percent of the tracelets to be covered. Some tracelets are very
common (leading to false positives) while slight changes to others
might result in major differences that cannot be evened out by the
other tracelets. Furthermore, small functions are sometimes inlined.
Dealing with inlined functions: This is a problem in two cases,
when the target function was inlined, and when functions called
inside the reference functions are inlined into it. Some of these
situations could be handled — but only to certain extent — the
containment normalization method.
Optimizations that duplicate code: Code duplication for avoiding
jumps, for example loop unrolling. Similarly to inlined functions,
our method can manage these optimizations when the containment
normalization method is used.

9. Conclusions
We presented a new approach to searching code in executables. To
compute similarity between functions in stripped binary form, we
decompose them into tracelets: continuous, short, partial traces of
an execution. To efficiently compare tracelets (an operation that has
to be applied frequently during search), we encode their matching
as a constraint solving problem. The constraints capture alignment
constraints and data dependencies to match registers and memory
addresses between tracelets. We implemented our approach and
applied it to find matches in over a million binary functions. We
compared tracelet matching to approaches based on n-grams and
graphlets and show that tracelet matching obtains dramatically
better results in terms of precision and recall.

Acknowledgement
We would like to thank David A Padua, Omer Katz, Gilad May-
mon, Nimrod Partush and the anonymous referees for their feed-
back and suggestions on this work, and Mor Shoham for his help

with the system’s implementation. The research leading to these
results has received funding from the European Union’s, Seventh
Framework Programme (FP7) under grant agreement no. 615688.

References
[1] A heap based vulnerability in gnu’s rtapelib.c. http://www.

cvedetails.com/cve/CVE-2010-0624/.
[2] Hex-rays IDAPRO. http://www.hex-rays.com.
[3] Yard-plot. http://pypi.python.org/pypi/yard.
[4] BALAKRISHNAN, G., AND REPS, T. Divine: discovering variables in

executables. In VMCAI’07 (2007), pp. 1–28.
[5] BALL, T., AND LARUS, J. R. Efficient path profiling. In Proceedings

of the 29th Int. Symp. on Microarchitecture (1996), MICRO 29.
[6] BANSAL, S., AND AIKEN, A. Automatic generation of peephole

superoptimizers. In ASPLOS XII (2006).
[7] BELLON, S., KOSCHKE, R., ANTONIOL, G., KRINKE, J., AND

MERLO, E. Comparison and evaluation of clone detection tools. IEEE
TSE 33, 9 (2007), 577–591.

[8] BRUSCHI, D., MARTIGNONI, L., AND MONGA, M. Detecting self-
mutating malware using control-flow graph matching. In DIMVA’06.

[9] COMPARETTI, P., SALVANESCHI, G., KIRDA, E., KOLBITSCH, C.,
KRUEGEL, C., AND ZANERO, S. Identifying dormant functionality
in malware programs. In IEEE Symp. on Security and Privacy (2010).

[10] HORWITZ, S. Identifying the semantic and textual differences be-
tween two versions of a program. In PLDI ’90.

[11] HORWITZ, S., REPS, T., AND BINKLEY, D. Interprocedural slicing
using dependence graphs. In PLDI ’88 (1988).

[12] JANG, J., WOO, M., AND BRUMLEY, D. Towards automatic software
lineage inference. In USENIX Security (2013).

[13] KHOO, W. M., MYCROFT, A., AND ANDERSON, R. Rendezvous: a
search engine for binary code. In MSR ’13.

[14] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND VI-
GNA, G. Polymorphic worm detection using structural information
of executables. In Proc. of int. conf. on Recent Advances in Intrusion
Detection, RAID’05.

[15] MYLES, G., AND COLLBERG, C. K-gram based software birthmarks.
In Proceedings of the 2005 ACM symposium on Applied computing,
SAC ’05, pp. 314–318.

[16] PARTUSH, N., AND YAHAV, E. Abstract semantic differencing for
numerical programs. In SAS (2013).

[17] REPS, T., BALL, T., DAS, M., AND LARUS, J. The use of program
profiling for software maintenance with applications to the year 2000
problem. In ESEC ’97/FSE-5.

[18] ROSENBLUM, N., ZHU, X., AND MILLER, B. P. Who wrote this
code? identifying the authors of program binaries. In ESORICS’11.

[19] ROSENBLUM, N. E., MILLER, B. P., AND ZHU, X. Extracting
compiler provenance from program binaries. In PASTE’10.

[20] SAEBJORNSEN, A., WILLCOCK, J., PANAS, T., QUINLAN, D., AND
SU, Z. Detecting code clones in binary executables. In ISSTA ’09.

[21] SCHKUFZA, E., SHARMA, R., AND AIKEN, A. Stochastic superop-
timization. In ASPLOS ’13.

[22] SHARMA, R., SCHKUFZA, E., CHURCHILL, B., AND AIKEN, A.
Data-driven equivalence checking. In OOPSLA’13.

[23] SINGH, R., GULWANI, S., AND SOLAR-LEZAMA, A. Automated
feedback generation for introductory programming assignments. In
PLDI ’13, pp. 15–26.

[24] SWAMIDASS, S. J., AZENCOTT, C.-A., DAILY, K., AND BALDI, P.
A CROC stronger than ROC. Bioinformatics 26, 10 (May 2010).

[25] WAGNER, R. A., AND FISCHER, M. J. The string-to-string correction
problem. J. ACM 21, 1 (Jan. 1974), 168–173.

