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Abstract
We address the problem of computing semantic differ-
ences between a program and a patched version of the
program. Our goal is to obtain a precise characterization
of the difference between program versions, or establish
their equivalence. We focus on infinite-state numerical pro-
grams, and use abstract interpretation to compute an over-
approximation of program differences.

Computing differences and establishing equivalence un-
der abstraction requires abstracting relationships between
variables in the two programs. Towards that end, we use a
correlating abstract domain to compute a sound approxima-
tion of these relationships which captures semantic differ-
ence. This approximation can be computed over any inter-
leaving of the two programs. However, the choice of inter-
leaving can significantly affect precision. We present a spec-
ulative search algorithm that aims to find an interleaving of
the two programs with minimal abstract semantic difference.
This method is unique as it allows the analysis to dynami-
cally alternate between several interleavings.

We have implemented our approach and applied it to real-
world examples including patches from Git, GNU Coreutils,
as well as a few handpicked patches from the Linux kernel
and the Mozilla Firefox web browser. Our evaluation shows
that we compute precise approximations of semantic differ-
ences, and report few false differences.

1. Introduction
Understanding the semantic difference between two ver-
sions of a program is invaluable in the process of soft-
ware development [24]. A developer applying a patch is
often interested in understanding the effect of the patch in
terms of added/removed program behaviors. In particular,
proving that a patch does not change observable behav-
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ior (i.e., equivalence checking), has numerous applications.
These include translation validation [33], verifying super-
optimization [36], finding protocol bugs [34], etc.

Semantic differencing is a fundamental problem [17], that
has recently seen growing interest [16, 24–26, 30, 36], with
applications including testing of concurrent programs [8],
understanding software upgrades [22], differential asser-
tion checking [26], and automatic generation of security
exploits [6].
Problem Definition We define the problem of semantic dif-
ferencing as follows: Given a pair of programs (P, P ′) that
agree on the number and type of input and output variables,
for every execution π of P and a corresponding execution
π′ of P ′ that both originate from the same input our goal
is: (i) check whether π and π′ have the same output i.e.
are output-equivalent, and (ii) in case of difference in output
variables, provide a description of the difference.
Existing Techniques The current state of the art applies only
to small code and work at the granularity of a single func-
tion. We advance the state of the art as we are able to stati-
cally produce sound results over complex looping functions
with vast syntactic difference - a contribution unmatched
in related work. Existing techniques to semantic differenc-
ing mostly offer solutions based on under approximation,
the most prominent of which is regression testing which
provides limited assurance of behavior equivalence while
consuming significant time and compute resources. Other
approaches for computing semantics differences [32, 34]
rely on symbolic execution techniques, may miss differ-
ences, and are generally unable to prove equivalence. Pre-
vious work for equivalence checking [15] rely on unsound
bounded model checking techniques to prove (input-output)
equivalence of two closely related numerical programs, un-
der certain conditions (see Section 6 for more details).
Our Approach We present an approach based on abstract
interpretation [11] for computing a sound representation of
changed program behaviors and proving equivalence be-
tween a program and a patched version of the program. Our
method focuses on abstracting relationships between vari-
ables in both versions allowing us to achieve a precise de-
scription of the difference and prove equivalence. We pro-
duce a characterization of difference in the form of linear



equations over program variables. Our approach computes
an over approximation of the difference between the two
versions, therefore guaranteeing equivalence when no dif-
ference is found.
Equivalence under Abstraction In contrast to techniques
that limit loop iterations or the range of inputs [21, 25,
32, 34], our approach uses abstraction to handle infinite-
state programs. The main challenge is to abstract program
executions in a way that enables capturing difference. In
particular, to establish equivalence under abstraction, the
states of the two programs have to be abstracted together
such that the relationship between them is preserved.

This leads to the notion of a correlating semantics in
which P and P ′ are executed together and share a joint pro-
gram state (in which we can track relationships between their
values). Given the correlating semantics, there are many pos-
sible (joint) executions of P and P ′, depending on how their
steps interleave. Because the programs manipulate disjoint
parts of the shared state, the result of each of these different
interleavings is exactly the same.

However, under abstraction, these different interleavings
may have dramatically different results. Intuitively, the rea-
son is that the abstraction of relationships between variables
is only able to capture small (or structured) differences. Once
the execution of one program goes too far beyond the other
program, the abstraction loses precision, and would not be
able to observe equivalence even if it is restored. This is true
even without loops, but is of critical importance when loops
are present.

The challenge of keeping precise differences under ab-
straction therefore becomes one of — what interleaving of
the executions of P and P ′ should we pick such that the ab-
straction is able to precisely capture the difference?

The interleaving problem is cardinal in equivalence check-
ing and other approaches include establishing a simula-
tion relation using execution traces [36], program com-
position using syntactic similarity [30], relying on recur-
sion rules [15] and brute-force searching (for non-looping
code) [32, 34].

One trivial solution is to try all possible interleavings,
which is similar to analyzing a concurrent program P ||P ′.
However, this incurs an exponential cost, and severely limits
the applicability of the technique. Another trivial solution is
to use the sequential composition P ;P ′ (used e.g., in [38]
to reason about information flow). However, this is typically
not feasible under abstraction as the distance between pro-
gram executions becomes too big for the abstraction to cap-
ture with sufficient precision.
Speculative Correlation Instead, we use abstraction-guided
speculative correlation to find an interleaving of P and P ′

that tracks differences with sufficient precision. The basic
idea is to break the abstract interpretation into short seg-
ments in which we speculatively try all interleavings, fol-

lowed by a greedy choice of the segment that produced the
minimal abstract difference as the one to be extended further.
Main Contributions The contributions of this paper are:

• We present a novel framework for computing abstract se-
mantic differences between a program and a patched ver-
sion of the program. The main idea is to use a speculative
abstract semantics that attempts to find the right correla-
tion between programs such that their equivalence can be
captured under a given abstract domain.

• We present an abstract correlating semantics that exe-
cutes a program P and its patched version P ′ within
some bounded window of divergence, and capture rela-
tionships between variables in the two programs.

• We provide a speculative search algorithm that aims to
find an interleaving of the executions of P and P ′ with
the minimal abstract difference. This method is unique
as it allows the analysis to dynamically alternate be-
tween several interleavings. This is fundamentally dif-
ferent from previous methods, which compute a single
interleaving and use it.

• We have implemented our approach in a tool called
SCORE and applied it to a number of real-world examples.
Our evaluation shows that we compute precise approx-
imations of semantic differences, and report only a few
false differences.

2. Overview
We now informally describe our approach using an example.

2.1 Motivating Example

Fig. 1 shows two versions of the print_numbers func-
tion taken from the GNU Coreutils seq.c program. We use
primes (’) to denote functions, variables, and program points
belonging to the newer version of the program. The func-
tions print out a sequence of numbers, starting from first

and ending with last, in intervals of STEP size (the func-
tions have been slightly adapted to an integer-only version,
and STEP has been factored out as a constant). Although
the syntactic difference between versions is significant, these
functions only differ in cases where in print_numbers’

(v6.10), the last element in the sequence is equal (in string
form, due to formating) to the next-to-last element. In this
case, the print_extra_number’ flag will be set to true
(line 15’) and the last print would be skipped (by the condi-
tion in line 16’). Our goal is to automatically compute some
characterization of this difference, while proving that other-
wise the functions are semantically equivalent. To the best
of our knowledge, none of the existing techniques [15, 30,
32, 34, 36] are able to do so.

To precisely characterize the difference for the example
of Fig. 1, it is sufficient to show that at the points of out-
put (line 9 and line 10’), the variable x is equivalent in
both versions, in every iteration other than possibly the last



1 static void
2 print_numbers (long first, long last, ...)
3 {
4 long i;
5 for (i = 0; /* empty */; i++) {
6 long x = first + i * STEP;
7 if (last < x) break;
8 if (i) fputs (separator, stdout);
9 printf (fmt, x);

10 }
11 if (i)
12 fputs (terminator, stdout);
13 }

Coreutils seq.c v6.9

1’ static void
2’ print_numbers‘(long first, long last, ...)
3’ {
4’ bool out_of_range = (last < first);
5’ if (!out_of_range) {
6’ long x = first;
7’ long i;
8’ for (i = 1; /* empty */ ; i++) {
9’ long x0 = x;

10’ printf (fmt, x);
11’ if (out_of_range) break;
12’ x = first + i * STEP;
13’ out_of_range = (last < x);
14’ if (out_of_range){
15’ bool print_extra_number = !STREQ(STR(x0),STR(x));
16’ if (!print_extra_number) break;
17’ }
18’ fputs (separator, stdout);
19’ }
20’ fputs (terminator, stdout);
21’ }
22’ }

Coreutils seq.c v6.10

Figure 1: Original (top) and patched (bottom) version of
Coreutils seq.c’s print_numbers procedure

iteration, and that the last iteration differs only when the
print_extra_number’ flag is set (we focus on a single
point of output to simplify the explanation).
Equivalence Check Using Separate Analysis is Unsound
As a naïve attempt to achieve this, one could analyze each
version of the program separately and compare the (abstract)
results. However, this is unsound, as equivalence under ab-
straction does not entail concrete equivalence. For instance,
if we use a standard relational abstraction to track the values
of i and i’ in the following code fragments separately:

for (i=0; i<2*n; i++){
printf("\%d",i);

}

for (i=0; i<2*n; i+=2){
printf("\%d",i);

}

we will arrive at {0 ≤ i ≤ 2n} and {0 ≤ i′ ≤ 2n′}which
would falsely suggest equivalence, since the left version
prints all values in the range, and the right version prints
only the even ones. Thus, under abstraction, anything short
of explicit equality of variables cannot be used to soundly
prove equivalence.
Abstracting Relationships to Prove Equivalence To estab-
lish equivalence under abstraction, we need to abstract re-
lationships between the values of correlating variables in
print_numbers and print_numbers’. Specifically, we

4

5

9

8

7

6

4’ 5’ 6’ 7’ 8’ 9’ 10’

≡{x}

Area of 
Equivalence

Precise interleaving

Imprecise interleaving

Equivalent state

Differing state
≡{v}

≡{i}

pc

pc’

Figure 2: (Partial) Graphic description of an iteration
of the speculative algorithm over print_numbers and
print_numbers’

need to track the relationship between the values of x and
x’. This requires a joint representation in which these rela-
tionships can be tracked.

To address these challenges, we use a correlating seman-
tics [[P, P ′]]./ that maintains a joint shared state for the two
programs, and where executions of P and P ′ are interleaved.
We use the ./ notation for correlating semantics, states, etc.
reflecting the correlation of variables from P and P ′. The
correlating semantics can be then abstracted using numer-
ical domains [12, 27] to obtain shared abstract state. Such
abstraction allows us, for instance, to show that when in the
previous iteration print_extra_number′ = true, the re-
lationship between values of x,x’ at the point (9, 10’) of
joint execution can be described by σ]./ = {≡{first,x,last}
, first ≤ x ≤ last}. We use the ] superscript to denote
abstract entities and ≡{first,x,last} to denote explicit equal-
ity between versions of variables i.e. first = first′,x = x′

and last = last′. This abstraction proves equivalence (under
said clause), even though explicit values of x and x’ were
abstracted away through widening to overcome the loop (see
Sec. 3.4).
Interleaving Determines Precision A key aspect of our tech-
nique is determining the interleaving in which the programs’
instructions are analyzed. Looking at Fig. 1 we observe that
to produce a precise result, our algorithm needs to analyze
the programs together, carefully interleaving instructions
of print_numbers and print_numbers’. We present a
speculative algorithm, which performs a correlation-based
search for an interleaving that will produce a minimal ab-
stract difference (described in Sec. 4).

The abstraction drives the algorithm: The algorithm
chooses an interleaving that minimizes abstract difference.



The algorithm speculatively performs analyses in all possi-
ble interleavings, and chooses an interleaving that leads to
the minimal difference in its abstract state. Fig. 2 provides
some intuition to how interleaving affects equivalence, and
we elaborate on it later on as we describe speculative explo-
ration.

This shows a key feature of our technique: interleaving of
programs is not static, but is instead computed dynamically
in a speculative manner during the analysis. In every iter-
ation, the algorithm re-evaluates equivalence over all inter-
leavings, and chooses a (possibly new) interleaving accord-
ingly. This novel method is fundamentally different from
previous methods where a single interleaving is chosen (as
a simulation relation for instance) and analyzed. We instead
allow for a dynamic interleaving, that may change through-
out the analysis. We will first show how the choice of inter-
leaving affects the precision of the resulting abstract differ-
ence and then present the algorithm that finds such interleav-
ing.

2.2 Running Example

Tab. 1 depicts an analysis over an interleaving that is suc-
cessful in forming a precise abstraction of equivalence and
difference. This interleaving is shown as the solid line in
Fig. 2. Tab. 1 also shows the abstract states throughout the
analysis of this interleaving (column 3).

The table is comprised of print_numbers instructions
(column 1), print_numbers’ instructions (column 2) and
the dual-program correlating state computed so far (col-
umn 3). The correlating state in column 3 is mapped to
a pair of program counters, denoting values and equiva-
lence of both programs’ variables, at the specified locations.
For instance, the correlating state appearing at the bottom
of the second row: (8, ENTRY′) 7→ {≡{STEP,first,last}
, i = 0, x = first, x ≤ last} expresses that after ana-
lyzing up to line 8 in print_numbers, without advancing
over print_numbers’, the resulting correlating state holds
equivalence for the STEP, first, last variables, alongside
other constraints for i, x, first and last. Nothing is known
yet for i′, x′, first′ and last′ as none of print_numbers’
lines were analyzed. We omitted most states for brevity, and
noted only significant ones, for instance where equivalence
was restored for a certain variable.

The analysis starts at the entry points of the two func-
tions (ENTRY , ENTRY′), assuming equivalence over input. It
then advances towards the line preceding the printing point
of print_numbers at locations (ENTRY, 8′) and computes
an abstract state where x = first. At this point, the analy-
sis alternates to print_numbers’, interpreting instructions
up to the printing point in line 10’, where equivalence is re-
stored (x = x′ = first). It is now “safe” to advance towards
the output points, as described by the subsequent row in the
table.

As mentioned, the choice of interleaving affects preci-
sion: had the interleaving instead included further instruc-

tions from print_numbers, the analysis would report the
loss of equivalence for variable x at line 9. This demonstrates
how interleaving affects precision, as also observed by other
approaches [30, 36].

The analysis continues from the output locations at
(9, 10′) to analyze the rest of print_numbers’ loop body
and iteratively alternates between the versions’, keeping
a one-to-one loop iteration ratio, reflecting that analyz-
ing both loops in a controlled manner is key for main-
taining precision. Paths that break from the loop, when
print_extra_number′ is true, are abstracted by states
mapped to (9, 19′) (as they break from the loop). These paths
are added to paths where print_extra_number′ = true at
the end of the analysis, as one can see from the abstract state
mapped to (13, 22′). We discuss partial disjunction later in
this section.

We emphasize that our algorithm does not rely on ad-
vancing towards output locations (as one may suspect from
Tab. 1). It searches for an optimal interleaving based on min-
imizing difference alone. The interleaving in Tab. 1 was cho-
sen as it simplifies the explanation. Interleavings that do not
alternate on output locations are equally valid (as long as
they minimize difference).
Speculative Exploration in Search of Equivalence We now
describe our speculative exploration algorithm which iter-
atively computes interleavings. We present an algorithm
which computes analyses over all possible interleavings,
within a given speculation window. It then proceeds to
greedily select the interleaving that results in an abstract
state with minimal abstract difference. Because our analy-
sis is sound, and can never miss a difference, picking the
minimal abstract difference necessarily means better preci-
sion. This process iteratively continues, until a fixed-point is
reached.

The exploration process is essentially performing all pos-
sible analyses, in all possible interleavings, and comparing
them to pick the one with minimal abstract difference. Each
analysis advances an overall k number of steps over both
programs, in a different interleaving from all other analysis,
where k is the parameterized speculative windows size. We
note that interleaving need not be balanced, i.e. one analy-
sis can perform all k steps of P and zero steps over P ′. We
show that this novel dynamic method is superior to previous
methods as it does not rely on the syntactic structure of the
program [30] nor does it require any concrete data [36] to
help establish a matching of program points.

Fig. 2 shows a (partial) graphical representation of an
iteration of the speculative algorithm, running from the
start of the programs (4, 4′) up to the first printing point
(9, 10′) (this is in fact the first iteration of the algorithm).
The vertical and horizontal axes correspond to instruc-
tions of print_numbers and print_numbers’ respec-
tively, i.e. moving up means advancing over a line from
print_numbers and moving right means advancing over



print_numbers(...) print_numbers’(...) Correlating State σ]./ adhering to a program counters
in print_numbers and print_numbers’

ENTRY ENTRY’ (ENTRY,ENTRY’) 7→ {≡{STEP,first,last}}
4 long i;

// loop iteration #0
5 for (i=0;/* empty */;i++){

6 long x = first + i*STEP;

7 if (last<x) break;

8 if (i) fputs(separator,stdout); (8,ENTRY’) 7→ {≡{STEP,first,last},
i = 0, x = first, x ≤ last}

4’ bool out_of_range’ = (last’<x’);

5’ if (!out_of_range’) {

6’ long x’=first’; (8,6’) 7→ {≡{STEP,first,last,x},
i = 0, x = first, x ≤ last}

7’ long i’;

// loop’ iteration #0
8’ for (i’=1;/* empty */;i’++){

9’ long x0’=x’; (8,9’) 7→ {≡{STEP,first,last,x}, i = 0, i′ = 1,
x = first, x ≤ last, x′0 = x′}

9 printf(fmt,x); 10’ printf(fmt’,x’); (9,10’) 7→ {≡{STEP,first,last,x}, i = 0, i′ = 1,
x = first, x ≤ last, x′0 = x′}

11’ if (out_of_range’) break;

12’ x’ = first’ + i’ * STEP’;

13’ out_of_range’ = (last’ < x’);

14’ if (out_of_range’) {

15’ bool print_extra_number’=!STREQ(...);

16’ if (!print_extra_number) break; (9,19’) 7→ {≡{STEP,first,last}, i = 0, i′ = 1,
¬print_extra_number′, x′0 = x′,
x = first, x′ = x+ STEP, x ≤ last}

17’ fputs(separator’, stdout’); (9,17’) 7→ {≡{STEP,first,last}, i = 0, i′ = 1,
print_extra_number′, x′0 = x′,
x = first, x′ = x+ STEP, x ≤ last}

(i++;) // loop iteration #1
6 long x = first + i * STEP;

7 if (last<x) break;

8 if (i) fputs(separator,stdout);

9 printf(fmt,x); (9,17’) 7→ {≡{STEP,first,last,x,i}, i = 1
print_extra_number′, x′0 = x′,
x = first+ STEP, x ≤ last}

(i’++;) // loop’ iteration #1
9’ long x0’=x’;

10’ printf(fmt’,x’); (9,10’) 7→ {≡{STEP,first,last,x}, i = 1, i′ = 2
x = first+ STEP, x ≤ last}

11’ if (out_of_range’) break;

12’ x’ = first’ + i’ * STEP’;

13’ out_of_range’ = (last’ < x’);

14’ if (out_of_range’) {

15’ bool print_extra_number’=!STREQ(...);

16’ if (!print_extra_number’) break; (9,19’) 7→ {≡{STEP,first,last}, i = 1, i′ = 2,
¬print_extra_number′, x ≤ last,
x = first+ STEP, x′ = x+ STEP}

17’ fputs(separator’, stdout’); (9,17’) 7→ {≡{STEP,first,last}, i = 1, i′ = 2,
print_extra_number′, x ≤ last,
x = first+ STEP, x′ = x+ STEP}

... ...
// loop iteration #i: // loop’ iteration #i:
... ...

9 printf(fmt,x); 10’ printf(fmt’,x’); (9,10’) 7→ {≡{STEP,first,last,x},
print_extra_number′, i′ = i+ 1,

... ... x′ = x+ STEP, x ≤ last}
// loop exit // loop’ exit

10 } 19’ }

12 fputs (terminator, stdout); 20’ if (i’) fputs(terminator’, stdout’);

13 } 22 } (13,22’) 7→ {≡{STEP,first,last,x}, i′ = i+ 1,
// function exit // function’ exit print_extra_number′, x ≤ last}

∨
{≡{STEP,first,last}, i′ = i+ 1,
¬print_extra_number′,
x′ = x+ STEP, x ≤ last}

Table 1: Analysis order (interleaving) and resulting correlating state for functions taken from Fig. 1



print_numbers’. The circles in the graph denote abstract
states computed by the analysis, which correspond to pro-
gram locations according to the numbering on the axis.
Equivalent and differing states are colored differently. Areas
in the graph marked by ≡{v} denote states where v is equiv-
alent (v = v′). Lastly, the arrows in the graph represent an
advancement over a line of either program, interpreting that
line and reaching a new abstract state at the new location. A
path from (4, 4′) to (9, 10′) represents an interleaving of the
two programs and the states over that path are the result of
analyzing the programs in that interleaving.

Fig. 2 features two interleavings: a less precise one,
marked by the dotted line, as it travels through more non-
equivalent states and will falsely report difference at line 9
(as it reaches (5, 9′), equivalence for x has yet to be re-
stored). The second interleaving, marked by a solid line, is a
more precise one, and in fact corresponds to the interleaving
shown in Tab. 1, up to the first printing points.

During an iteration of the speculative algorithm, it ad-
vances over all possible interleavings, up to the speculation
window, effectively analyzing the two programs in all or-
ders. It then assigns values to each interleaving according to
equivalence criteria. Graphically, this would show as having
all the possible paths of length k = 12, originating from
(4, 4′) in Fig. 2. Some paths will reach beyond the bound-
aries of the graph since an interleaving can perform all steps
over just one of the programs. Paths will also be limited by
the programs structure (if P reached an exit point, the path
will no longer advance over it).

The value assigning metric mainly relies on equivalence,
but also contains a weighing element as certain program
points (like labels containing back-edges) receive a higher
score for equivalence (see Sec. 4). When equivalence is bro-
ken, the size of the difference is used, where the interleav-
ing(s) with the minimal diff are scored.

Finally, once an interleaving is selected, the iteration
completes and another speculative phase of the algorithm
starts. For example, after the iteration of Fig. 2 is completed
and the precise interleaving is chosen, the abstract state com-
puted by the analysis will include all of the states along the
chosen interleaving, and the next iteration will begin from
(9, 10′), i.e., where the last iteration left off.
Partial Order Reduction Speculatively exploring for all pos-
sible program interleavings up to k steps results in perform-
ing 2k analyses. To allow scalability, we employed a partial
order reduction [31, 39, 40]. Given a speculative window
value k, instead of exploring all interleavings, we choose a
single representative adhering to the number of steps taken in
each program. For example, if k = 3 then instead of explor-
ing all 8 interleavings, only 4 will be analyzed: (i) 0 steps
over P and 3 steps over P ′, (ii) 1 step over P and 2 steps
over P ′, (iii) 2 steps over P and 1 step over P ′ and (iv) 0
steps over P and 3 steps over P ′. This reduces the number
of analyses in each speculative step to k + 1 resulting in

a more scalable analysis. The reduction allows experiment-
ing with larger values for k with minor loss of precision,
since the (precision losing) partition operation is performed
only in between speculative steps (Algorithm 1). The reduc-
tion is implemented in Function Speculate. Another means
of achieving scalability is advancement over program blocks
instead of lines. A block is a subsequent, non-branching
group of instructions in the program. Thus, advancing over
a speculative window of k means advancing over k blocks
which translates to approximately 4k lines of code, in our
experiments.
Separating Equivalent Paths From Differing Paths As one
can see from the last row in Tab. 1, we use a partially disjunc-
tive abstract domain that maintains a set of abstract numeri-
cal sub-states. This allows us to maintain several sub-states
based on the set of equivalences they maintain. The ability
to hold separate states for equivalent and differing paths is
crucial for precision. Maintaining a fully disjunctive domain
with complete path sensitivity does not scale, especially in
the face of loops. Therefore we use a partitioning technique
to abstract together sub-states according to an equivalence
criteria. Sub-states that prove equivalence for the same set of
variables will be abstracted (joined and widened) together.

The benefits of using equivalence-based partitioning can
be seen in Tab. 1 (row 5 onwards) where in the computed
abstract state, differing paths are separated from equivalent
paths. States where print_extra_number’ is false are
gathered at the loop exit (as they cause a break in the loop)
alongside equivalent states where print_extra_number’
is true. As described earlier, we use an equivalence criteria
to partition and widen sub-states together, thus all the loop-
ing differing states are widened together, separately from the
equivalent states, producing a precise result as seen in the
last row of the table. Details of our partially disjunctive do-
main are discussed in Section 3.

Note that relying on syntactic methods to find such in-
terleaving can prove to be challenging as print_numbers’
includes refactoring as well as the actual patch that changes
behavior, thus previous approaches [30] will fail in reaching
this result.



2.3 Uninterpreted Functions

1 static int
2 get_sha1_basic(const char *str, int len,
3 unsigned char *sha1,
4 int warn_ambiguous_refs) {
5 ...
6 if (len > 0 && str[len-1] == ’}’) {
7 for (at = len - 2; at >= 0; at--) {
8 if (str[at] == ’@’ && str[at+1] == ’{’) {
9 if (upstream_mark(str + at, len - at) > 0) {

10 reflog_len = (len-1) - (at+2);
11 len = at;
12 }
13 break;
14 }
15 }
16 }
17 ...
18 }

Figure 3: get_sha1_basic procedure code fragment taken
from Git’s sha1_name.c

Fig. 3 depicts a code fragment, taken from the Git project
sha1_name.c file. This fragment features a challenging set
of operations, including array access by index and function
calls. In order to successfully reason over such rich and com-
plex code features, SCORE uses an uninterpreted functions
modeling technique [15, 25].

Any operation that is not supported by the underlying
APRON domain, including operations on non-integer data,
is modeled by the analysis as an uninterpreted function. For
example, Fig. 3 code fragment’s array indexing and function
call operations will be modeled as external functions and the
following equivalence deduction rule will be applied during
the analysis:

ARRAY INDEXING
≡array ≡idx
≡array[idx]

FUNCTION CALL
≡upstream_mark ≡{v1,v2}
≡upstream_mark(v1,v2)

We assume initial equivalence for arrays by denoting explicit
equality on the array variable (this satisfies the ≡array pred-
icate in the rule). Once equivalence is broken for a certain
index, for instance by assigning non equal values to it, equiv-
alence is broken for the entire array. In case of actual func-
tions, like upstream_mark, equivalence is assumed only if
the function did not (syntactically) change over versions, or
if equivalence was proven for it.

2.4 Path Boundedness

Analyzing Unbounded Paths with k-Bounded Syntactic Di-
vergence We emphasize that k (our notation for speculative
window size) bounds only the size of syntactic divergence
explored throughout the analysis. It is in no way a bound for
the length of paths analyzed by out approach. The analysis
depicted in Tab. 1 shows an analysis for unbounded paths
in looping code. The speculative window only determines
how far can the analysis advance over one program before
advancing over the other. For instance, in Fig. 2 the precise

interleaving advanced four lines of code over the first pro-
gram and only then turns to analyze five lines of the second
program, etc. Furthermore, k only bounds the size of local
syntactic change.

Consider the two procedures in Fig. 4 exhibiting several
syntactic differences, each localized to a few consecutive
lines of code. In this example, all lines hidden by ellipses
are equal, while differing lines remain. The semantic effect
of these lines was also omitted for brevity. The speculative
analysis will produce a precise description of difference with
k that is bounded only by the largest consecutive syntactic
change. The local speculative exploration at each of the
changed code fragments will result in a precise description
of the change, as depicted by the linear equations in the
third column. These are produced throughout the speculative
analysis, as further described in Section 4. Therefore even
though there are overall many syntactic changes on paths
longer than k, the speculative analysis produces a precise
result.

3. Speculative Correlating Semantics
In this section, we introduce our speculative correlating se-
mantics which allows bounded representation of program
difference through correlation of variables, within some di-
vergence window. In Sec. 3.2, we define a concrete correlat-
ing semantics that tracks relationships between variables of
both programs. Then, in Sec. 3.3, we show how to abstract
this semantics using numerical domains. This sets the scene
for the algorithm we present in Sec. 4.

3.1 Preliminaries

We use the following standard definitions for a program:
V ar, V al, Loc denote the set of program variable identifiers,
variable values and program locations respectively.

A concrete program state σ is a pair l 7→ values, map-
ping the set of program variables to their concrete value
values : V ar → V al, at a certain program location l ∈
Loc. The set of all possible states of a program P is denoted
by ΣP . We also define loc : ΣP → Loc which returns the
program location of a state.

A program trace π ∈ Σ∗P , is a sequence of states
〈σ0, ..., σn〉 describing a single execution of the program.
The set of all possible traces for a program is denoted by
[[P ]]. We also define last : Σ∗P → ΣP which returns the last
state in a trace.

3.2 Concrete Correlating Semantics

We define a concrete semantics that (i) maintains direct rela-
tionships between variables in P and P ′, using a correlating
concrete state and (ii) define a notion of dual execution of
P and P ′ within a restricted window of divergence, using
k-diverging correlating concrete traces (by k-diverging we
mean that one program may be at most k-steps ahead of the
other).



int foo(int x, int y) {
int z = 0,w,o;
z++;

...

for (x = 0; x < 2*y ; ++x)
w += 2;

...

if (y > 42) {
z -= 13;
o = z + zoo(3);
x--;

}

...

}

int foo‘(int x‘, int y‘) {
int z‘ = 1,w‘,o‘;
z‘--;

...

for (x‘ = 0; x‘ < y‘ ; ++x‘)
w‘ += 4;

...

if (y‘ > 47) {
z‘ -= 12;
o‘ = zoo(3);
x‘++;

}

...

}

{≡x,y,w,o, z′ = z − 1}

{≡y,w,o, z′ = z − 1, x = 2x′}

{≡y,w,o, y ≤ 42, z′ = z − 1, x = 2x′}∨
{≡y,w, 47 ≥ y > 42, z′ = z − 14, o′ = z′ + zoo(3), ...}∨
{≡y,z,w, y > 47, o = o′ + z, x = 2x′ − 2}

Figure 4: Procedures featuring several (overall changes > k) local syntactic changes (each change < k), along with correlating
abstract state (column 3) adhering to executing the blocks from both programs

Correlating Concrete State A correlating concrete state σ./
is a pair (l, l′) 7→ values./, where values./ : (V ar ∪
V ar′)→ V al is a joint mapping of variables, from both pro-
grams (P, P ′) to their values at program locations (l, l′) ∈
Loc × Loc′. The set of all correlating states is denoted by
ΣP./P ′ .
k-Diverging Correlating Concrete TraceA k-diverging cor-
relating concrete trace πk./ ∈ Πk

./, is a sequence of corre-
lating concrete states 〈σ./0 , ..., σ./n〉 describing a bounded
dual execution of P and P ′ where at any given point in the
trace, the number of P instructions performed cannot exceed
those of P ′ by more than k. We denote the set of k-diverging
correlating traces of P and P ′ as [[P, P ′]]k./. Informally, this
can be thought of as a trace of a parallel execution P ||P ′
where one thread cannot go more than k steps ahead of the
other.
Concrete Semantic Difference We define concrete seman-
tic difference of a correlating state ∆σ(varcor, σ./) ⊆ σ./
to be all the mapped variables in values./ that do not agree
on a value with their correlated variable under a matching
varcor : V ar × V ar′. We assume varcor to be either a
matching by variable name, or supplied by the user. Next, we
define concrete trace semantic difference. We further restrict
our semantics and only consider traces that originate from
equivalent input states, as we are interested in comparing
executions of P and P ′ which originate from the same input
values. Concrete semantic difference of a k-diverging corre-
lating concrete trace ∆π(labels, varcor, πk./) is defined by
the semantic difference of states along the trace of which the
pair of labels (l, l′) are in labels. ∆π produces a sub-trace
of πk./ according to matched labels. labels usually holds the
pair of exit labels, along with pairs of labels where output is
emitted. We assume P, P ′ have the same number of output
locations and thus can be matched by order, as this was the
case in our experiments.

The semantics [[P, P ′]]k./ is non-computable. In the next
section, we define an abstract semantics that over-approximates
it.

3.3 Abstract Correlating Semantics

In this section, we introduce our correlating abstract domain
which allows bounded representation of program state while
maintaining equivalence between correlated variables. We
use a disjunctive domain to allow separate representation of
different paths. Therefore, an abstract state in our domain is
a set of abstract sub-states. This abstraction is similar to the
trace partitioning domain [35].

We use relational abstract domains to hold variable in-
formation in the sub-states. In the following we assume an
abstract relational domain (D],vD) equipped with join tD,
meet uD and widening ∇D operations, for abstracting sets
of concrete correlating states. We assume the abstract values
in D] are constraints over the P and P ′ variables, and do
not go into further details regarding the particular abstract
domain as it is a parameter of the analysis. In our experi-
ments, we use the polyhedra abstract domain [12] and the
octagon abstract domain [27].
Correlating Abstract State A correlating abstract program
state σ]./ ∈ (Loc × Loc′) → 2D

]

, is a mapping from a pair
of program locations to a set of sub-domain factoids, each
representing a relational abstraction of the variables.
Abstract Transformers Our domain’s abstract transformers,
which define how each program statement affects an abstract
state, are based on the abstract transformers of the underly-
ing domain. Applying a statement s on an abstract corre-
lating state σ]./ = (l, l′) 7→ {d1 ∨ ... ∨ dn} will result in
the application of the statement on each of the sub-states us-
ing the sub-domains’s transformer i.e. [[s]]](σ]./) = (l, l′) 7→
{[[s]]]

D](d1) ∨ ... ∨ [[s]]]
D](dn)}

Abstraction Function Finally, we define the abstraction
function αk : 2Πk

./ → 2D
]

that abstracts sets of k-diverging



concrete correlating traces. We want our domain to abstract
together traces that share the same path, such that each path
is represented by a single sub-state in the disjunction. To
achieve this, we first define an operation path : Σ∗P./P ′ →
(Loc × Loc)∗ which returns the path (sequence of labels)
taken by that trace. We also allow applying path on a set
of traces to denote the set of paths resulting by applying the
function of each of the traces. We define the trace abstraction
as follows (T is the set of traces to be abstracted):

αk(T ) , { (l, l′) 7→∨
(l,l′) =

loc(last(πk
./))

D⊔
path(πk

./)∈path(T )

αD]( last( πk./ ) ) }

where αD] is the abstraction function of the sub-domain.
We break down the definition as follows:

1. αk groups together all trace prefixes πk./ from T that
share the same path, as denoted by path(πk./) ∈ path(T ).

2. It then abstracts together (using the underlying join op-
eration

⊔D
path(πk

./)) the concrete states at the end of the
grouped traces as denoted by αD](last(πk./))).

3. Finally, it disjuncts all paths that arrive at the same end lo-
cations (l, l′) denoted by (l, l′) 7→

∨
(l,l′) = loc(last(πk

./)).

Every pair of paths in P and P ′, will be represented by
a single factoid of the sub-domain (denoted di), and all path
pairs that arrive at locations (l, l′) will be represented by the
abstract state (l, l′) 7→ {d1 ∨ ... ∨ dn}. The run of Algo-
rithm 1 (Section 4) with parameters (P, P ′, k) effectively re-
turns αk(T(P,P ′)) where T(P,P ′) is the set of traces of a dual
execution of P and P ′. Next, we address the fact that our ab-
stract state may still be potentially unbounded as the number
of paths in the program may be exponential and even infinite
(due to loops).
Abstract Semantic Difference Given the abstrac-
tion, we define the abstract semantic difference
∆(labels, varcor, αk(T )) ⊆ αk(T ) as the maplets
(l, l′) 7→ {d1 ∨ ... ∨ dn} ∈ αk(T ) such that:

(i) (l, l′) ∈ labels
(ii) ∃di, (v, v′) ∈ varcor.di 0 (v = v′)

This singles out abstract states where some factoids di can-
not prove explicit equivalence v = v′ for matched variables
under varcor. Note that using di ` v 6= v′ as the crite-
ria is insufficient since as mentioned, anything short of ex-
plicit equality under the abstraction is unsound for proving
equivalence. We assume the underlying domain D provides
a means for performing this checks.

We note that in terms of fixed-point analysis, this means
that our join operation t, that abstracts together states of
converging paths is simply a disjunction operation, and the
only application of the sub-domains tD operation will occur
during partitioning, as we will next describe.

3.4 Dynamic Partitioning and Widening

As a first means of reducing state size, we define a spe-
cial operation t./ that dynamically partitions the abstract
state according to the set of equivalences maintained in each
sub-state and joins all sub-states in the same partition class
together (using the sub-domain join operation). This join
criteria allows separation of equivalence preserving paths
from differing ones, thus achieving better precision. Sec-
ond, to allow a feasible bounded abstraction for programs
with infinite number of paths, we define a widening operator
∇./ which utilizes the sub-domain’s widening operator but
chooses which sub-states are to be widened, according to the
same equivalence criteria.
State Size Reduction Using Equivalence-Based Partition-
ing As mentioned, we must allow for reduction of state
σ]./ = (l, l′) 7→

∨
di with acceptable loss of precision. This

reduction is achieved by joining the abstract sub-states in∨
di (using the standard join of the sub-domain). However

this can only be accomplished after first deciding which of
the sub-states should be joined and then choosing the pro-
gram locations for the partitioning to occur. Our partitioning
strategy abstracts together sub-states according to the set of
variables which they preserve equivalence for. This bounds
the state size at 2|varcor|, where varcor is the set of corre-
lating variables we wish to track.

In order for our analysis to handle loops we require
a means for abstracting an infinite number of paths in a
bounded way. As our analysis iterates over a loop, sub-states
may be added or transformed continuously, never converg-
ing. We therefore need to define a widening operator for
our new domain. This problem has been addressed in other
settings [3], and our approach can be viewed as a special-
ized form of widening that is tailored for tracking equiva-
lences. We found that our partitioning strategy works well
for widening, as it allows separation of equivalent looping
paths from differing paths. Given two subsequent abstract
states σ]./0 = (l, l′) 7→

∨
d0
i and σ]./1 = (l, l′) 7→

∨
d1
j cor-

responding to two subsequent iteration of a loop, the result
of applying widening will be as follows:

∇(σ]./0 , σ
]
./1) , (l, l′) 7→ ∇D

≡(d0i )=≡(d1j )
(d0
i , d

1
j )

Where ≡ (d) returns the set of variables (from varcor) that
are equivalent in d.

4. Speculative Search Algorithm
In this section, we present our speculative search algorithm.
Given a speculation window size k, the algorithm explores
all possible interleavings of the two programs up to k steps,
and then employs an equivalence-based scoring heuristic to
greedily select the abstract state with the minimal abstract
difference. This abstract state is used as a basis for the next
iteration of the speculative algorithm, which proceeds until
reaching a fixed point. This novel dynamic approach allows



to dynamically explore different interleavings on each step
of the analysis, instead of deciding on a fixed interleaving a
priori.

Algorithm 1: Compute abstract difference
Input: Two programs P, P ′, Speculation window size

k, Partition interval p, A matching
varcor : V ar ↔ V ar′ of the correlating
variables in both programs.

Output: A mapping statespace : Loc× Loc′ 7→ σ]./
from pairs of prog. locations to correlating
abstract state.

1 num_speculations← 0;
2 workset← {(entry, entry′)};
3 statespace← {(entry, entry′) 7→ {v ≡ v′|(v, v′) ∈

(varcor
⋂

(In× In′))}};
4 while workset 6= ∅ do
5 solutions←

Speculate(P, P ′, workset, statespace, k);
6 num_speculations += 1;
7 (workset, statespace)←

FindMinDiffSolution(P, P ′, varcor, solutions);
8 if num_speculations mod p = 0 then
9 statespace← Partition (statespace);

10 statespace← Widening(statespace);

11 return statespace;

4.1 Iterative Speculative Correlation

Algorithm 1 produces an abstraction of program difference
in a form of a mapping from pairs of program locations of
P, P ′ to correlating abstract states.

The input to the algorithm is: (i) two programs P and
P ′, (ii) a speculation window k which determines how many
speculative steps the algorithm may take, (iii) a mapping
varcor, matching variable names between variables of P
and P ′, describing which variables should be correlated. In
our experiments, we show that matching variables that have
the same name and appear in both programs is sufficient for
producing precise results. However, in general, this mapping
can be provided by the user or by other methods such as
using data traces [36].

The algorithm operation is similar to standard abstract in-
terpretation fixed-point algorithms [11]. It starts by adding
the entry point of the two programs, denoted by entry and
entry′, to the emptyworkset, and initializes the statespace
by mapping these locations to correlating state that as-
sume equivalence over input variables, denoted by In and
In′. The algorithm iteration then starts, as it interprets pro-
gram lines from the workset, creating and updating the
statespace with abstract states mapped to pairs of pro-
gram locations, while adding lines where state has changed
back to the workset, until a fixed-point is reached. Note

Function Speculate(P, P ′, workset, statespace, k)
Input: As specified in Algorithm 1.
Output: A set

solutions : {(workset1, statespace1), ...,
(worksetn, statespacen)} specifying the work-set
and state-space generated from advancing k steps over
P, P ′ in all possible interleavings, under a partial order
reduction

1 (workset0, statespace0)← (workset, statespace);
2 for ((i, j)← (0, k); i ≤ k; i++, j- -) do
3 for (t = 0; t < i; t++) do
4 (workset, statespace)←

Step(P,workset, statespace);
5 for (t = 0; t < j; t++) do
6 (workset, statespace)←

Step(P ′, workset, statespace);
7 solutions←

solutions ∪ {(workset, statespace)};
8 (workset, statespace)←

(workset0, statespace0);
9 return solutions;

Function Step(P,workset, statespace)
Input: As specified in Algorithm 1.
Output: A solution (workset, statespace) adhering to

advancing a step over P
1 worksetres ← ∅;
2 foreach (loc, loc′) ∈ workset do
3 if loc ∈ P then
4 // advancing over first graph
5 foreach succ ∈ successors(loc) do
6 σ ← statespace(loc, loc′);
7 block ← blocks(P, loc, succ);
8 statespace(succ, loc′)←

statespace(succ, loc′) ∨ [[block]]](σ);
9 worksetres ←

worksetres ∪ {(succ, loc′)};

10 else if loc′ ∈ P then
11 // advancing over second graph
12 // the symmetrical case
13 ...

14 return (worksetres, statespace);

that Algorithm 1 differs from standard algorithms as it:
(i) Operates over two programs instead of one. (ii) Per-
forms k steps of the analysis instead of just one, i.e. it
interprets (0, k), (1, k − 1), ...(k, 0) lines of the programs
through Speculate resulting in k + 1 solutions (pairs
of workset and statespace). (iii) Dynamically chooses the



Function FindMinDiffSolution(P, P ′, vc, solutions)
Input: As specified in Algorithm 1.
Output: A pair (workset, statespace) containing the

work-set and state-space of the most precise
solution

1 factor ← |Loc| · |Loc′|;
2 foreach (l, l′) ∈ P × P ′ do
3 equivalence(l, l′)← false;
4 min_delta←∞;
5 min_delta_solutions← ∅;
6 foreach (workset, statespace) ∈ solutions do
7 score← 0;
8 if ≡{varcor} (statespace(l, l′)) then
9 equivalence(l, l′)← true;

10 if has_backedge(l) ∨ has_backedge(l′)
then

11 score(workset, statespace) +=

factor2;
12 else
13 score(workset, statespace) +=

factor;

14 if ¬equivalence(l, l′) then
15 foreach (workset, statespace) ∈ solutions

do
16 if |∆(statespace(l, l′))| = min_delta

then
17 min_delta_solutions←

min_delta_solutions
⋃

{(workset, statespace)};
18 else if |∆(statespace(l, l′))| < min_delta

then
19 min_delta← |∆(statespace(l, l′))|;
20 min_delta_solutions←

{(workset, statespace)};

21 foreach
(workset, statespace) ∈ min_delta_solutions
do

22 score(workset, statespace) += 1;

23 max←Max(Range(score));
24 return (workset, statespace) ∈ score−1(max);

solution with the minimal abstract difference by applying
FindMinDiffSolution which surveys the statespace of
each solution and assigns a score to it according to an equiv-
alence based weighed metric. (iv) Partitions statspace ac-
cording to partition interval p (v) Applies widening to states
mapped to blocks with back-edges.
Greedy Dynamic Selection of Interleaving We again em-
phasize an important dynamic feature of our speculative

run: picking an interleaving over a range of program lo-
cations in one stage, does not determine the interleaving
over these locations for the rest of the analyses. Speculate
will always return the analysis of k + 1 interleavings,
and the one with minimal difference will be picked by
FindMinDiffSolution. Therefore, the decision could
vary in different stages of the run, based on the size of dif-
ference in the candidate solutions. The importance of this
is exemplified in Tab. 1, where the order in which we ana-
lyze lines 4 through 9 in print_number and lines 4’ to 11’
in print_number’ changes between iterations of the algo-
rithm and the rows of the table. Next, we will describe the
Speculate function and explain how an interleaving is ex-
plored and how all interleavings are returned in the forms of
solutions.
State Size Reduction With Partitioning The number of spec-
ulative steps taken is kept in the num_speculations vari-
able which is used to determine when to partition. Parti-
tioning is crucial for performance as it reduces the size of
the disjunction. We found that partitioning at parameterized
constant intervals, is sufficient in producing scalable precise
results. We experimented with different values for p to refine
the result and achieve better precision. More complicated
strategies for picking partition location include using the
syntactic structures of the programs to find locations where
these “converge” [30] however we did not find the need to
apply other methods as precision was satisfactory.
Widening We maintain the number of visits to each pair of
program locations and perform widening once a predeter-
mined threshold has been reached. Widening is performed
only if one of the lines in the pair (at least) has a back-edge
reaching it, this is sufficient for reaching a fixed point as fur-
ther discussed in Section 3.

4.2 Speculative Advancement Over All Interleavings

The Speculate function produces k + 1 solutions, rep-
resenting the result of analyzing P, P ′ in by advancing k
steps over both programs, in different distributions of steps.
The functions receives the two programs P, P ′, a speculative
window size k and the state of the analysis so far captured by
(workset, statespace). It then proceeds to extend the solu-
tion by performing k steps over both programs, starting with
0 steps over the first and k over the second, continuing to
perform (1, k − 1) steps, and so on as can be seen by the
procedure’s main loop.

Advancing a step over either program P (′) is performed
by taking all location pairs in the workset and advanc-
ing over P (′) locations as captured by the Step proce-
dure. Step employs the abstract transformer described in
Section 3.3 over the locations successors. For instance, if
(l, l′) ∈ workset and lsucc is a successor of l (in P ), then
the effects of advancing from l to lsucc will be interpreted by:
(i) Retrieving the state adhering to (l, l′) from statspace.
(ii) Retrieving the basic block (i.e. the edge) between l and



lsucc by applying blocks(P, l, lsucc). (iii) Applying the ab-
stract transformer of the block on the retrieved state and
joining with the state at statspace(lsucc, l′) (if such ex-
ists, otherwise statspace(lsucc, l′) will only hold the result).
(iv) Adding (lsucc, l

′) to the resulting worksetres. The case
of advancing from (l, l′) to l′succ in P ′ is symmetrical.

4.3 Comparing Abstractions to Find Minimal Differ-
ence

The final stage of the speculative iteration is the selection
of a single solution out of the set of solutions, as per-
formed by the function FindMinDiffSolution. Our goal
is to find a solution, whose states differ minimally, since it
necessarily means a more precise result (due to the sound-
ness of the analysis). FindMinDiffSolution defines a
scoring heuristic which ranks abstractions based on equiv-
alence and minimal difference. It surveys all the possible
pairs (l, l′) ∈ Loc × Loc′ and compares the abstract state
mapped to that pair in statespace(l, l′) against all other
states, awarding points according to the size of the differ-
ence.

For each pair of program locations (l, l′), the algorithm
tries to find a solution which “proves equivalence” i.e. for all
matched variables in (v, v′) ∈ varcor, statespace(l, l′) `
v = v′. This means that in all sub-states in the disjunctive ab-
stract state statespace(l, l′), v is equal to v′. In the algorithm
this is denoted by ≡varcors (statespace(l, l′)). In case such
a solution is found, (l, l′) is flagged using the equivalent
flag and other solutions will be given points there only if
they also prove equivalence. This reflects the fact that the
existence of equivalence for a pair of lines in one interleav-
ing invalidates differences for that pair in other interleav-
ings. Also, this is a design choice aimed at improving per-
formance, as the computation and comparison of difference
can be costly and will be omitted once equivalence is found.

In case no such solution is found for (l, l′), the func-
tion continues on to compare the size of difference. We
experimented with different ways of comparing difference
and arrived at using the number and (textual) size of the
offending states in the disjunction as criteria, denoted by
|∆(statespace(l, l′))|. We found this heuristic to be efficient
yet accurate enough to produce precise results in reasonable
analysis time. We also experimented with a formal method
for comparing difference, via an algorithm for manipulating
abstract states σ]./ to extract disjunctive states that describe
difference and can be compared over a lattice using the v
operation. However, since this algorithm is computationally
expensive and does not improve precision dramatically, we
refrained from using it.

The existence of equivalence awards the solution score a
factor = |Loc| · |Loc′| amount of points, while the solution
with minimal difference (in case equivalence was not found)
is given a single point. This reflects that a solution with
one equivalent state is preferred over a solution where all

states have minimal difference. Solutions that did not arrive
at (l′, l) are not considered and do not get points for it.

We added a weighing component to our metric,
where locations with entering back-edges (denoted by the
has_backedge(l) predicate), receive factor2 points, in case
they prove equivalence. This change in order of magnitude
was added to help direct the search towards lines with enter-
ing back-edges, that prove equivalence. Equivalence at these
locations is important as widening is performed there. Since
widening over-approximates specific numeric data, widen-
ing correlating states that do not already prove equivalence,
will likely result in a non-restorable loss of equivalence.
Thus, we will prefer solutions where abstract states at back-
edge locations prove equivalence. This lowers the risk of los-
ing equivalence once widening occurs.

5. Evaluation
In this section, we evaluate SCORE using a number of real
world programs, and compare it to the state of the art in
equivalence checking and semantic differencing. Our goal is
to asses how SCORE measures against challenges presented
by each method, and whether it can be applied to produce
useful results. As benchmarks, we used several programs
drawn from the Git source code [1], GNU Coreutils, as well
as a few patches from the Linux kernel and the Mozilla
Firefox web browser. We also collected benchmarks used as
motivating examples in state of the art work, applied SCORE

to them and present the comparison here.

5.1 Prototype Implementation

We implemented speculative correlation, as described in Al-
gorithm 1, based on the LLVM and CLANG compiler infras-
tructure. We chose to analyze C code directly as it is more
structured, has type information and keeps a low number
of variables, as opposed to intermediate representation. Our
analysis is intra-procedural and handles function calls, as
well as operations not modeled by the numerical domain, as
uninterpreted functions (Section 2.3). We used the APRON
abstract numerical domain library and conducted our exper-
iments using the Polyhedra domain [12]. We ran our experi-
ments on an Intel(R) Core(TM) i7-2620M CPU @ 2.70 Ghz
machine with 4GB installed RAM.

5.2 Benchmark Results

Tab. 2 summarizes the results of our analysis. The columns
indicate the function name, length in lines of code, the num-
ber of lines added and/or removed by the patch, total number
of loops, and the run time in minutes along with the mini-
mal speculative window k and partition interval p values that
produced minimal difference. The results are separated (by a
horizontal line) according to project the function was taken
from, as follows: GNU Coreutils, Linux kernel, Firefox, Git
and related work representatives.

Results produced by SCORE are abstractions of the data
dependencies and equivalence of variables in the program.



Table 2: Experimental Results

Function #LOC #Patch #Loops Time(k,p)
print_numbers 23 7-,13+ 1 0:11 (k = 2, p = 1)
cache_fstatat 17 2-,4+ 0 0:03 (k = 1, p = 2)
set_owner 51 2-,4+ 0 0:02 (k = 2, p = 1)
fmt 42 5-,5+ 1 0:22 (k = 2, p = 2)
md5sum 40 0-,3+ 3 13:31 (k = 2, p = 3)
char_to_clump 111 2-,12+ 3 19:09 (k = 2, p = 4)
savewd 86 0-,1+ 0 0:46 (k = 1, p = 2)
addr 77 1-,2+ 0 0:17 (k = 1, p = 1)
SetTextInternal 47 0-,3+ 1 11:28 (k = 3, p = 3)
get_sha1_basic v1 145 3-,10+ 2 118:01 (k = 4, p = 2)
get_sha1_basic v2 149 2-,20+ 2 TO
get_path_prefix 22 2-,3+ 1 29:12 (k = 3, p = 4)
boot_attr v1 77 7-,4+ 0 8:08 (k = 4, p = 2)
boot_attr v2 74 5-,7+ 0 6:04 (k = 4, p = 2)
read_attr 32 1-,4+ 1 5:42 (k = 2, p = 4)
ll_binary_merge 37 8-,24+ 1 0:53 (k = 1, p = 1)
write_zip_entry 340 1-,4+ 3 7:32 (k = 2, p = 1)
DDEC 10 3-,3+ 1 0:13 (k = 1, p = 4)
DSE 7 2-,3+ 1 0:09 (k = 1, p = 1)
RegVer 10 4-,4+ 1 0:07 (k = 1, p = 1
SymDiff 32 5-,4+ 0 0:04 (k = 1, p = 4)

SCORE supplies the resulting state space, as a mapping from
all pairs of program locations to correlating state for those
pairs (as described if Section 4). SCORE further reports
whether differences were found in observable program lo-
cations (output and exit points) and prints out such states
holding difference in textual form.

We experimented with a speculative window k of up to 4.
We chose increasing partition interval sizes p as well, up to
a maximum of 5. We capped run time at two hours for each
SCORE run and reported the minimal p and k which resulted
in the smallest difference (∆) at output and exit locations.
The size of speculation window k could usually be predicted
by the size of the biggest addition or deletion of subsequent
lines to the code. In some cases, like the get_sha1_basic
v2 benchmark, vast semantic differences required a large
speculation window, and reported differences for smaller k
sizes were unusable. The benchmark was therefore reported
to time out with no acceptable precision output given.

Another interesting case is the 340-line long
write_zip_entry benchmark depicted in Fig. 5. The
patch here involves changing a few lines of code where the
memory allocation to zip_dir is hoisted out of the loop
(line marked with - in Fig. 5) and instead performed only
after zip_dir_size has been determined (lines marked
with + in Fig. 5). The appropriate lookahead window here
is k = 2, to overcome additions by the patch. Running
SCORE while partitioning at p = 1 (after each speculation)
yields equivalence. Interestingly enough, SCORE was able
to maintain equivalence for zip_dir, although the value
for it was widened to overcome the loop. This is due to
partitioning and widening both operating by equivalence: at
the loops end, the analysis accumulates states holding the
zip_dir = xrealloc(...), f lag = true predicates, along-
side states withholding these predicates but instead hold
equivalence for zip_dir (states that did not enter the loop).

static int write_zip_entry(int zip_dir,
int zip_dir_size,
int zip_dir_offset,
int pathlen, ...) {

...
/* make sure we have enough

free space in the dictionary */
int direntsize = ZIP_DIR_HEADER_SIZE +

pathlen + ZIP_EXTRA_MTIME_SIZE;
+ bool flag = false;
while (zip_dir_size < zip_dir_offset + direntsize) {
zip_dir_size += ZIP_DIRECTORY_MIN_SIZE;

- zip_dir = xrealloc(zip_dir,zip_dir_size);
+ flag = true;
}

+ if (flag)
+ zip_dir = xrealloc(zip_dir,zip_dir_size);
...

}

Figure 5: Patch for git archive-zip.c’s
write_zip_entry procedure

These two categories of states were partitioned and widened
separately due to equivalence criteria and equivalence was
restored for zip_dir once the patched lines were reached.
This demonstrates one of SCORE ’s strong points: the ability
to restore equivalence from equivalence classes.

Our experiments included other numerical domains such
as Octagon [27], however we did not include the results as
they exhibit poor precision and performance. Moving from
Octagon to Polyhedra domain, a notable increase in preci-
sion was shown as the Polyhedra domain is able to capture
more complex data relationships. Surprisingly, runs using
the Octagon domain presented poor performance (run time)
compared to the more expensive Polyhedra domain, with
less precision. This is due to the domain’s being less success-
ful in capturing equivalences as it is built upon simpler linear
inequalities. This means that more constraints were needed
to represent variable equality, resulting in bigger states and
a slower analysis.

SCORE produced results with high precision where only
variables that indeed differ between versions were reported,
and the description of the difference was useful for pro-
ducing actual values for the differing variables. In cases
where equivalence holds, no difference was reported. The
addr and SetTextInternal benchmarks were taken from
the net/sunrpc/addr.c module in the Linux kernel SUNRPC
implementation v2.6.32-rc6 and Firefox 3.6 security advi-
sory CVE-2010-1196 (adapted to C from C++) respectively.
The results produced by SCORE can be directly used to-
wards exploiting known security flaws mentioned in advi-
sories from which these patches originate. Fig. 6 shows the
patch made in the CVE-2010-1196 advisory, fixing a heap
buffer overflow in the Firefox browser. Running SCORE on
the SetTextInternal function yields the following out-
put:

∆[EXIT,EXIT ] =



nsresult SetTextInternal (int textLength, int aCount,
int aLength, int aOffset,
PRUnichar * aBuffer) {

PRInt32 newLength = textLength - aCount + aLength ;
PRUnichar * to;
...

+ if ((unsigned)newLength > (1 << 29))}
+ return NS_ERROR_DOM_DOMSTRING_SIZE_ERR;
memcpy (to + aOffset , aBuffer ,

aLength * sizeof ( PRUnichar ));
...

}

Figure 6: Patched version of vulnerable SetTextInternal
Firefox function

{Ret = 0, Ret′ = 1, newLength > 536870912}∨

{Ret = 0, Ret′ = 1, 0 > newLength > −3758096384}

The Ret variable, was added by SCORE to instrument func-
tion return. Also, special handling was added for interpreting
integer casting. The produced result is useful to the program-
mer, to ensure that vulnerable ranges have been covered and
that the function ends for these ranges. The results could also
be used by an attacker to deduce the vulnerability fixed by
the patch.

5.3 State of The Art Comparison

Syntactic Correlation Based Techniques The approach de-
scribed in [30] aims at proving C-code function equiva-
lence and producing a textual representation of difference
for equivalence checking, patch debugging etc. We evalu-
ated SCORE on several benchmarks taken from [30]. Results
show that SCORE yields results at similar or higher precision.
One downside of this previous work, is illustrated by our mo-
tivating example from Fig. 1. The seq.c benchmark intro-
duces considerable amounts of textual change which defeats
the syntactic reliant method suggested in [30]. An integral
part of this method involves creating a unification program,
containing both versions, to be used by the analysis. The
precision of the analysis relies on this unified program and
its ability to bring together (syntactically) instructions that
are “equivalent” in both programs. However, for the seq.c
benchmark, this correlating program will be poorly formed,
unable to syntactically match the versions, which will result
in an imprecise result. Another shortcoming of this method
is the addition of guards and the need to syntactically trans-
form C code to guarded command form, a process proved to
be challenging and erroneous. These guard variables are also
incorporated into the domain, resulting in a more expensive
analysis.
Data Driven Techniques Fig. 7 depicts the worked example
from [36], describing a semantic preserving compiler opti-
mization. This work aims to prove equivalence for looping
assembly code segments for translation validation purposes.
This dynamic method uses data traces in order to estab-
lish a simulation relation between code segments and then

int f(int x, int n){
int i, z = 0;
for (i=0; i!=n; ++i){

x += z*5;
z += 1;
if (i >= 5)

z += 3;
}
return x;

}

int f‘(int x, int n){
int i, z = 0;
for (i=0; i!=n; ++i){
x += z;
z += 5;
if (i >= 5)

z += 15;
}
return x;

}

Figure 7: Original and patched version of [36] worked ex-
ample

attempts to prove this relation by using off-the-shelf SAT
solvers.

We ran SCORE on Fig. 7 to see whether equivalence can
be established. SCORE reported the following result as the
abstract state at the exit point of both programs, within 13.3
seconds (k = 1, p = 8) : {≡{x,i}, i = n, z = 5z‘, i ≤
z}. SCORE was able to prove equivalence for x and capture
the exact relationship of z and it’s patched counterpart z’:
z = 5z‘. The strongpoint of [36] is the ability to produce
this result on machine code, where syntactic differences are
bigger.
Recursion Rule Based Techniques [15] applies a recursion
rule to verify equivalence of recursive functions. This work
uses recursive calls within candidate functions and assumes
their equivalence as the basis of the recursive verification
rule. It then tries to inductively prove equivalence by show-
ing that all paths to the recursive call in both versions are
equivalent, using bounded model checkers [10]. Although
this technique is able to deal with recursion, it requires the
recursive call to be nested under the exact same conditions
in both programs, disallowing the use of the recursive rule in
many cases. Our motivating example requires complex man-
ual rewrite to adhere to such form, as well as many other
benchmarks. As mentioned, SCORE assumes modular equiv-
alence of function calls it encounters, thus, we were able to
adapt it to implement the recursion rule from [15], by simply
assuming equivalence on recursive calls and proving equiv-
alence by showing equivalence over the recursive call pa-
rameters. The benchmark appears as RegVer in Tab. 2. [25]
applies a similar path-proving technique, however they do
not use the recursive rules as they do not handle loops. The
strong point of this method, is that it handles input programs
written in the Boogie verification language [4]. Boogie has
translations from C,C# and x86 assembly, making [25] lan-
guage agnostic. The benchmark appears under SymDiff in
Tab. 2.
Directed Symbolic Execution Based Techniques Work such
as [32] and [34] uses symbolic execution testing tools, such
as KLEE [7] and DART [14], to find equivalence bugs.
To prove equivalence between P and P ′, these techniques
sequentially compose the programs (while assuring the same
input) and then add an assertion checking if return values
of both versions are equal. The new program is then fed



to an automatic test generation tool which in turn tries to
explore all paths in the program, effectively exploring all
path compositions of P and P ′ and checks if any of these
paths break the assertion. This technique heavily relies on
the effectiveness of the test generation tool and benefits from
its features, as such the ability to reason over pointer and
heap data. In addition to this method being dynamic, it is
fundamentally unable to reason over looping programs, and
loops are mitigated by a simple unrolling to some constant
number of iterations which is of course un-sound. We drew
one benchmark from [32], which appears as DSE, containing
a loop. [34] benchmarks were omitted as they focused on
pointer and heap data.

5.4 Quality of Semantic Diff

Next we examine the quality and usefulness of SCORE output.
We compare the semantic diff produced by SCORE to several
other methods, focusing on the most prominent tool for
comparing programs– syntactic diff.

5.4.1 Equivalence of Refactored Looping Code

1 static void
2 print_numbers (long first, long last, ...)
3 {
4 long i;
5 for (i = 0; /* empty */; i++) {
6 long x = first + i * STEP;
7 if (last < x) break;
8 if (i) fputs (separator, stdout);
9 printf (fmt, x);

10 }
11 if (i)
12 fputs (terminator, stdout);
13 }

Coreutils seq.c original

1’ static void
2’ print_numbers‘(long first, long last, ...)
3’ {
4’ bool out_of_range = (last < first);
5’ if (!out_of_range) {
6’ long x = first;
7’ long i;
8’ for (i = 1; /* empty */ ; i++) {
9’ long x0 = x;

10’ printf (fmt, x);
11’ if (out_of_range) break;
12’ x = first + i * STEP;
13’ out_of_range = (last < x);
14’ fputs (separator, stdout);
15’ }
16’ fputs (terminator, stdout);
17’ }
18’ }

Coreutils seq.c refactored

Figure 8: Output-equivalent versions of Coreutils seq.c’s
print_numbers procedure

Fig. 8 depicts a modified version our motivation example
(Fig. 1) where only the refactoring was applied to change
code structure, while the semantic changing part was re-
moved. The two versions of the print_numbers procedure
are output equivalent as the printed variable x is equivalent at
the print location. Running diff on the two versions would

Table 3: SCORE Output for Fig. 8

At Location (9,10’):
Equivalent: first,last,x
Non-Equivalent: i,x0,out_of_range
State = {first′ − x0′ + 2i− 2 = 0, first′ + 2i− x = 0,

first′ − x′ + 2i = 0,−first′ − 2i+ last ≥ 0, i− 1 ≥ 0}

static int input_position = 0;
static int
char_to_clump (int chars_per_c,

int width,
bool untabify_input, ...) {

int chars = 0, i;
char * s;
...
if (untabify_input) {

i = width;
while (i > 0) {

*s++ = ’ ’;
--i;

}
chars = width;

}
...

+ if (width < 0 && input_position == 0) {
+ chars = 0;
+ input_position = 0;
+ } else if (width < 0 && input_position <= -width) {
+ input_position = 0;
+ } else

input_position += width;

return chars;
}

Figure 9: Original and patched (+) version of Coreutils
pr.c’s char_to_clump procedure

produce the entire text of the programs. This provides no
insight into change semantics. SCORE output consists of: (i)
an abstract description of versions state, in the form of lin-
ear equations, at all joint program locations and specifically
at the output location (ii) for each variable in said state, the
equivalence status is reported (all equivalent variables is ex-
plicitly reported as program equivalence). Thus, the output
of SCORE for Fig. 8 is shown in Tab. 3. The output correctly
describes the change in the programs, emphasizing the fact
that x is equivalent at the output location. The state further
holds the loop invariant for x value which is useful for pro-
gram understanding. Previous techniques (described in Sec-
tion 5.3) are unable to provide a useful description of the
change since they are either inherently incapable of handling
loops [32, 34]; rely on specific loop structure [15, 25]; rely
on syntactic similarity [30] or work on smaller lower-level
code [36].

5.4.2 Previous Path Knowledge

In many cases, a locally applied patch could be affected by
previously executed code as shown in Fig. 9 depicting the
pr benchmark code taken from Coreutils. The lines added by
the patch are marked by a boldface plus sign (+). Most of the
benchmark code was omitted for brevity, except for the patch



Table 4: SCORE Output for Fig. 9

At Location (EXIT,EXIT’):
Equivalent: width,chars_per_c,untabify_input,...
Non-Equivalent: input_position,chars
State = {width = width′ = −1, chars = 1, chars′ = 0,

input_position = −1, input_position′ = 0, ...}
∨

{width = width′ = −1, chars = chars′ = 1,
input_position ≤ 0, input_position′ = 0, ...}

and a preceding loop involving values affected by the patch.
Here, the semantics of the patch are related to previously ex-
ecuted code over many execution paths. Referring locally to
the patch itself, as the result of a diff would, provides no
information towards the change in variable values affected
by the patch. SCORE instead provides a useful description of
the change in variable values due to patching (Tab. 4). The
output features variable values adhering to the two paths af-
fected by the change. This result is more conducive towards
helping the programmer understand and verify their patch.

6. Related Work
Equivalence checking and semantic differencing has re-
ceived much attention lately where more and more works
have been applied towards advancing the state of the art
in some aspect. Similar to many verification problems, this
problem has been presented nearly sixty years ago, with few
mentions in the years following [17–20] as it is considered
undecidable. Recently, work identifying program differenc-
ing as having vast security implications [6, 37] has surfaced,
bringing the problem back to mainstream. Also, the con-
siderable advancements made in the field of SAT solvers
and it application to various verification problems, lead to
a plethora of work leveraging off-the-shelf SAT solvers to-
wards program equivalence [15, 25, 32, 34, 36]. Several
works on the problem of equivalence of combinatorial cir-
cuits [9, 23, 28] made important contributions in establishing
the problem of equivalence as feasible, producing practical
solutions for hardware verification.

The idea of a correlating semantics and reasoning about
correlated execution has been investigated in many contexts
before (e.g., [2, 38]). In fact, our approach can be seen as an
invariant generation technique for relational logics such as
Relational Hoare Logic (RHL) [5].

An early work presenting a usable tool for semantic diff
is [21]. They present a tool for computing data dependen-
cies between input and output variables and comparing these
dependencies along versions of a program for discovering
difference. This method may falsely report difference as se-
mantic difference may occur even if data dependencies have
not changed. Furthermore, data dependencies offer little in-
sight as to the meaning of difference i.e. input and output
values. Nevertheless, this was an important first step in em-

ploying program analysis as a means for semantic differenc-
ing.

Aiken et. al. [36] present a data driven approach for trans-
lation validation. This approach requires the running of the
program and data traces to help establish a simulation rela-
tion to later be proved by SMT solvers. Also, as far as we
could discern, they are limited to small segments of assem-
bly code, unable to handle bigger, higher language code. We
compare to this work in our evaluation.

David et. al. [13] address equivalence of short non-
branching sections of binary code (i.e. ‘tracelets’) in the con-
text of binary code search. They define a notion of equiva-
lence for binary code sections and apply rewriting and con-
straint solving techniques for finding equivalence as a ba-
sis for whole function similarity. These techniques can be
further extended using speculative exploration to overcome
syntactic obstacles and to apply to looping code. This can
help find similarly even for highly re-factored, optimized or
patched code.

Other work regarding translation validation [29, 33, 41],
require establishing a simulation relation between the basic
blocks of the translated code is found. This method is limited
in the context of semantic differencing as, for instance, a
simulation relation for examples such as Fig. 1 cannot be
automatically established (it needs to be crafted manually as
this is not one of the classic transformations).

Symbolic execution based methods [32, 34] offer prac-
tical equivalence verification techniques for loop and re-
cursion free programs with small state space. These works
complement each other in regards to reporting difference as
one [32] presents an over approximating description of dif-
ference and the other [34] presents an under approximating
description including concrete inputs for test cases demon-
strating difference in behavior. These cannot be applied to-
wards our setting as they handle loop free, finite state pro-
grams only.

[15] presents the notion of partial equivalence which al-
lows checking for equivalence under specific conditions, us-
ing a recursive rule. They employ a technique based on the-
orem provers for proving an equivalence formula which em-
beds program logic (in SSA form) alongside the require-
ment for input and output equivalence and user provided
constraints. As mentioned in Section 5, this work requires
the rewrite of programs and loops recursive constructs, and
applies only when the path conditions leading to the recur-
sive call are the same in both candidate version, making it
limited and inapplicable to our setting.

7. Conclusions
We presented a new abstract interpretation approach for pro-
gram equivalence and differencing. Our approach is purely
static, can prove equivalence and characterize differences for
program with loops, and does not rely heavily on syntactic
similarity to establish program correlation. The main idea



is to use a speculative correlation algorithm that guides the
interleaving of the two programs based on the abstract dif-
ference between them. This algorithm is instantiated over a
correlating numerical abstract domain. Our correlating do-
main uses a powerful numerical abstract domain to capture
abstract program states (and differences) as linear inequali-
ties between variables. We show that this approach is feasi-
ble and can be applied successfully to challenging real world
patches.
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