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Abstract. We present Universal Property Directed Reachability (PDR∀), a
property-directed procedure for automatic inference of invariants in a univer-
sal fragment of first-order logic. PDR∀ is an extension of Bradley’s PDR/IC3
algorithm for inference of propositional invariants. PDR∀ terminates when it
either discovers a concrete counterexample, infers an inductive universal invariant
strong enough to establish the desired safety property, or finds a proof that such
an invariant does not exist. We implemented an analyzer based on PDR∀, and
applied it to a collection of list-manipulating programs. Our analyzer was able to
automatically infer universal invariants strong enough to establish memory safety
and certain functional correctness properties, show the absence of such invariants
for certain natural programs and specifications, and detect bugs. All this, without
the need for user-supplied abstraction predicates.

1 Introduction

We present Universal Property Directed Reachability (PDR∀), a procedure for automatic
inference of quantified inductive invariants, and its application for the analysis of pro-
grams that manipulate unbounded data structures such as singly-linked and doubly-linked
list data structures. For a correct program, the inductive invariant generated ensures that
the program satisfies its specification. For an erroneous program, PDR∀ produces a
concrete counterexample. Historically, this has been addressed by abstract interpreta-
tion [17] algorithms, which automatically infer sound inductive invariants, and bounded
model checking algorithms, which explore a limited number of loop iterations in order
to systematically look for bugs [6, 13]. We continue the line of recent works [2, 32]
which simultaneously search for invariants and counterexamples. We follow Bradley’s
PDR/IC3 algorithm [9] by repeatedly strengthening a candidate invariant until it either
becomes inductive, or a counterexample is found.

In our experience, the correctness of many programs can be proven using universal
invariants. Hence, we simplify matters by focusing on inferring universal first-order
invariants. When PDR∀ terminates, it yields one of the following outcomes: (i) a uni-
versal inductive invariant strong enough to show that the program respects the property,
(ii) a concrete counterexample which shows that the program violates the desired safety
property, or (iii) a proof that the program cannot be proven correct using a universal
invariant in a given vocabulary.



void split(h, g){
i:=h; j:=null; k:=null;
while (i 6= null){
if ¬C (i) then {
if i = h then h:=i.n
else j.n:=i.n;
if g = null then g:=i
else k.n:=i;
k:=i; i:=i.n;
k.n:=null;}

else {j:=i; i:=i.n}
}}

requires :
g = null ∧H = h ∧ (∀x , y .n∗(x , y)↔ L(x , y))
ensures :
(∀z . h 6= null ∧ n∗(h, z )→ C (z )) ∧
(∀z . g 6= null ∧ n∗(g , z )→ ¬C (z )) ∧
(∀z . z 6= null → (L(H , z )↔ n∗(h, z ) ∨ n∗(g , z ))) ∧
(∀x , y .L(H , x ) ∧ L(x , y) ∧ C (x ) ∧ C (y)→ n∗(x , y)) ∧
(∀x , y .L(H , x ) ∧ L(x , y) ∧ ¬C (x ) ∧ ¬C (y)→ n∗(x , y))

(a) A procedure that moves all the elements not satisfying C (·) from list h to list g and its specification.
The ghost variables H and L record the head and the order of elements, respectively, of the original list.

void filter(h){
i:=h; j:=null;
while (i 6= null){
if ¬C (i) then
if i = h then h:=i.n
else j.n:=i.n;

else j:=i;
i:=i.n

}}

I = L1 ∧ L2 ∧ L3 ∧ L4 ∧ L5 ∧ L6 ∧ L7, where
L1 = i 6= h ∧ i 6= null → n∗(j , i)
L2 = i 6= h → C (h)
L3 = n∗(h, j ) ∨ i 6= j
L4 = ∀x1. i 6= h ∧ n∗(j , x1) ∧ x1 6= j → n∗(i , x1)
L5 = i 6= h → C (j )
L6 = ∀x2. z = h ∨ j = null ∨

¬n∗(h, x2) ∨ n∗(h, j ) ∨ ¬C (j )
L7 = ∀x3. j 6= null ∧ n∗(h, x3) ∧

x3 6= h ∧ ¬C (x3)→ n∗(j , x3)

(b) A procedure that deletes all the elements not satisfying C (·) from list h and its inferred loop invariant.

Fig. 1. Motivating examples. n∗(x , y) means a (possibly empty) path of n-fields from x to y .

Diagram Based Abstraction. Unlike previous work [2, 32], we neither assume that the
predicates which constitute the invariants are known, nor apriori bound the number of
universal quantifiers. Instead, we rely on first-order theories with a finite model property:
for such theories, SMT-based tools are able to either return UNSAT, indicating that the
negation of a formula ϕ is valid, or construct a finite model σ of ϕ. We then translate σ
into a diagram [10]—a formula describing the set of models that extend σ—and use the
diagram to construct a universal clause to strengthen a candidate invariant.

Property-Directed Invariant Inference. Similarly to IC3, PDR∀ iteratively constructs
an increasing sequence of candidate inductive invariants F0, . . . ,FN . Every Fi over-
approximates the setRi of states that can be reached by up to i execution steps from a
given set of initial states. In every iteration, PDR∀ uses SMT to check whether one of
the candidate invariants became inductive. If so, then the program respects the desired
property. If not, PDR∀ iteratively strengthens the candidate invariants and adds new ones,
guided by the considered property. Specifically, it checks if there exists a bad state σ
which satisfies FN but not the property. If so, we use SMT again to check whether there
is a state σa in FN−1 that can lead to a state in the diagram ϕ of σ in one execution step.
If no such state exists, the candidate invariant FN can be strengthened by conjoining
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it with the negation of ϕ. Otherwise, we recursively strengthen Fi−1 to exclude σa
from its over-approximation ofRi−1. If the recursive process tries to strengthen F0, we
stop and use a bounded model checker to look for a counterexample of length N . If no
counterexample is found, PDR∀ determines that no universal invariant strong enough
to prove the desired property exists (see Lem.1). We note that PDR∀ is not guaranteed
to terminate, although in our experience it often does.

Example 1. Procedure split(), shown in Fig.1(a), moves the elements not satisfying
the condition C from the list pointed to by h to the list pointed by g. PDR∀ can
infer tricky inductive invariants strong enough to prove several interesting properties:
(i) memory safety, i.e., no null dereference and no memory leaks; (ii) all the elements
satisfying C are kept in h; (iii) all the elements which do not satisfy C are moved to g ;
(iv) no new elements are introduced; and (v) stability, i.e., the order between the element
satisfying C is not changed. Our implementation verified that split() satisfies all the
above properties fully automatically by inferring an inductive loop invariant consisting
of 44 clauses (among them 27 are universal formulae) in 838 sec.

Example 2. Procedure filter(), shown in Fig. 1(b), removes and deallocates the
elements not satisfying the condition C from the list pointed to by h. The figure also
shows the loop invariant inferred by PDR∀ when it was asked to verify property (iii),
shown above. The invariant highlights certain interesting properties of filter(). For
example, clause L4 says that if the head element of the list was processed and kept in the
list (this is the only way i 6= h can hold), then j becomes an immediate predecessor of
i . Clause L7 says that all the elements x3 reachable from h and not satisfying C must
occur after j .

Experimental Evaluation. We implemented PDR∀ on top of the decision procedure
of [32], and applied it to a collection of procedures that manipulate (possibly sorted)
singly linked lists, doubly-linked lists, and multi-linked lists. Our analysis successfully
verified interesting specifications, detected bugs in incorrect programs, and established
the absence of universal invariants for certain correct programs.
Main Contributions. The main contributions of this work can be summarized as follows.
• We present PDR∀, a pleasantly simple, yet surprisingly powerful, combination of

PDR [9] with a strengthening technique based on diagrams [10]. PDR∀ enjoys a high-
degree of automation because it does not require pre-defined abstraction predicates.
• The diagram-based abstraction is particularly interesting as it is determined “on-

the-fly” according to the structural properties of the bad states discovered in PDR’s
traversal of the state space.
• We prove that the diagram-based abstraction is precise in the sense that if PDR∀

finds a spurious counterexample then the program cannot be proven correct using a
universal invariant. We believe that this is a unique feature of our approach.
• We implemented PDR∀ on top of a decision procedure for logic AER [31], and applied

it successfully to verify a collection of list-manipulating programs, detect bug, and
prove the absence of universal invariants. We show that our technique outperforms an
existing state-of-the-art less-automatic PDR-based verification technique [32] which
uses the same decision procedure.
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2 Preliminaries

This section formalizes the verification problem of programs and sets terminology and
notation used in the rest of the paper.

Programs. We assume that the input is a program comprised of a single loop, i.e., it
has the form while Cond do Cmd , where Cmd is loop-free. We handle programs
with a more complicated control structures, e.g., nested or multiple loops, by explicitly
encoding the program counter.

From Programs to Transition Systems. The semantics of a program is described by a
transition system, which consists of a set of states and transitions between states.
Program States. We consider the states of the program at the beginning of each iteration
of the loop. A program state is represented by a first-order model σ = (U , I) over a
vocabulary V which consists of constants and relation symbols, where U is the universe
of the model, and I is the interpretation function of the symbols in V . For example, to
represent memory states of list manipulating programs, we use a vocabulary V which
associates every program variable x with a constant x , every boolean field C with a
unary predicate C (·), and every pointer field n with a binary predicate n∗(·, ·) which
represents its reflexive transitive closure.5 We use a special constant null to denote the
null value. We depict memory states σ = (U , I) as directed graphs (see Figure 2).
Individuals in U , representing heap locations, are depicted as circles labeled by their
name. We draw an edge from the name of constant x and of a unary predicate C to an
individual v if σ |= x = v or σ |= C (v), respectively. We draw an n∗-annotated edge
between v and u if σ |= n∗(v , u). For clarity, we do not show the edge from v to u if
the edges from v to w and from w to u are drawn.
Transition Relation. The set of transitions of a program is defined using a transition
relation. A transition relation is a set of models of a double vocabulary V̂ = V ] V ′,
where vocabulary V is used to describe the source state of the transition and vocabulary
V ′ = {v ′ | v ∈ V} is used to describe its target state: A model σ′ = (U , I ′) over V ′
describes a program state σ = (U , I), where I(v) = I ′(v ′) for every symbol v ∈ V .

Definition 1 (Reduct). Let σ̂ = (U , I) be a model of V̂ , and let Σ ⊆ V̂ . The reduct
of σ̂ to Σ, denoted by σ̂[Σ], is the model (U , Ii) of Σ where for every symbol v ∈ Σ,
Ii(v) = I(v).

We often write a transition σ̂ as a pair of states (σ1, σ2), such that σ1 is the reduct of σ̂ to
vocabulary V , and σ2 is the state described by the reduct to V ′. Each transition (σ1, σ2)
describes one possible execution of the loop body, Cmd , i.e., it relates the state σ1 at the
beginning of an iteration of the loop to the state σ2 at the end of the iteration. We say
that σ2 is a successor of σ1, and σ1 is a predecessor of σ2.

Properties and Assertions. Properties are sets of states. We express properties using
logical formulae over V . For example, we express properties of list-manipulation pro-
grams, e.g., their pre- and post-conditions, Pre and Post, respectively, using assertions
written in a fragment of first-order logic with transitive closure. In our analysis, these

5 We reason about list-manipulating programs using logic EAR [32]. Hence, values of pointer
fields n are defined indirectly by a formula over n∗, but n is not included in the vocabulary.
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assertions are translated into equisatisfiable first-order logic formulae [31]. We use
(ϕ)′ to denote the formula obtained by replacing every constant and relation symbol in
formula ϕ with its primed version.

Verification Problem. The transition system of a program is represented by a pair
TS = (Init , ρ), where Init is a first-order formula over V used to denote the initial
states of the program, and ρ is a formula over V̂ used to denote its transition relation. A
state σ is initial if σ |= Init , and a pair of states (σ1, σ2) is a transition if (σ1, σ2) |= ρ.
We say that a state is reachable by at most i steps of ρ (or i -reachable for short, when
ρ is clear from the context) if it can be reached by at most i applications of ρ starting
from some initial state. We denote the set of i -reachable states byRi . We say that a state
is reachable if it is i-reachable for some i . We say that TS satisfies a safety property
P if all reachable states satisfy P . We often define Bad def

= ¬P , and refer to states
satisfying Bad as bad states. We define ρ def

= Cond ∧wlp(Cmd , Id), where wlp(Cmd, Id)
denotes the weakest liberal precondition of the loop body and Id is a conjunction of
equalities between V and V ′ (see [31] for more details). We define Init and Bad using
the programs pre- and post- conditions: Init def

= Pre and Bad def
= ¬Cond ∧¬Post. That is,

a state is initial if it satisfies the pre-condition, and it is bad if it satisfies the negation
of the loop condition (which indicates termination of the loop) but does not satisfy
the post-condition. This captures the requirement that when the loop terminates the
post-condition needs to hold.

Example 3. In Exa.2, Init def
= (i = h) ∧ (j = null) and Bad

def
= (i = null) ∧ ¬((h 6=

null)→ (∀v .n∗(h, v)→ C (v))). Note that these refer to the pre- and post-conditions
that should hold right before the loop begins and right after it terminates, respectively.
Here, a state is bad if i = null (i.e., it occurs when the loop terminates) and h points to
a non-empty list that contains an element not having the property C .

Invariants. An invariant of a program is a property that should hold for all reachable
states. It is inductive if it is closed under application of ρ.

Definition 2 (Invariants). Let TS = (Init, ρ) be a transition system and P a safety
property over V . A formula I is a safety inductive invariant (invariant, in short) for TS
and P if (i) Init⇒ I, and (ii) I ∧ ρ⇒ (I)′, and (iii) I ⇒ P .

If there exists an invariant for TS and P , then TS satisfies P . An invariant is universal if
it is equivalent to a universal formula in prenex normal form. We note that the invariants
inferred by PDR∀ are conjunctions of universal clauses, where a universal clause is a
universally quantified disjunction of literals (positive or negative atomic formulae).

3 Universal-Property-Directed Reachability

In this section, we present Universal Property Directed Reachability (PDR∀), an algo-
rithm for checking if a transition system TS satisfies a safety property P . PDR∀ is an
adaptation of Bradley’s property-directed reachability (IC3) algorithm [9] that uses uni-
versal formulae instead of propositional predicates [9,22,29] or predicate abstraction [32].
We use Exa.2 as a running example throughout this section.
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Fig. 2. Graphical depiction of models found during the analysis of the running example

Requirements. We require that the transition relation ρ, as well as the Init and Bad
conditions, are expressible in a first-order logic L (We can partly handle transitive
closure using the approach of [31]. See Section 5.) We require that every satisfiable
formula in L has a finite model, and assume to have a decision procedure SAT (ψ),
which checks if a formula ψ in L is satisfiable, and a function model(ψ), which returns
a finite model σ of ψ if such a model exists and None otherwise.

3.1 Diagrams as Structural Abstractions

PDR∀ iteratively strengthens a candidate invariant by retrieving program states that
lead to bad states and checking whether the retrieved states are reachable. In that sense,
PDR∀ is similar to IC3. The novel aspect of our approach is the use of diagrams [10] to
generalize individual states into sets of states before checking for reachability. Diagrams
provide a structural abstraction of states by existential formulae: The diagram of a
finite model σ, denoted by Diag(σ), is an existential cube which describes explicitly the
relations between all the elements of the model.6

Definition 3 (Diagrams). Given a finite model σ = (U , I) over alphabet V , the diagram
of σ, denoted by Diag(σ), is a formula over alphabet V which denotes the set of models
in which σ can be isomorphically embedded. Diag(σ) is constructed as follows.

– For every element ei ∈ U , a fresh variable xei is introduced.
– ϕdistinct is a conjunction of inequalities of the form xei 6= xej for every pair of

distinct elements ei 6= ej in the model.
– ϕconstants is a conjunction of equalities of the form c = xe for every constant

symbol c such that σ |= c = e .
– ϕatomic is a conjunction of atomic formulae which include for every predicate p ∈ V

the atomic formula p(x̄e) if σ |= p(ē), and ¬p(x̄e) otherwise.

Then: Diag(σ)
def
= ∃xe1 . . . xe|U| .ϕdistinct ∧ ϕconstants ∧ ϕatomic .

Intuitively, one can think of Diag(σ) as the formula produced by treating individuals in
σ as existentially quantified variables and explicitly encoding the interpretation of every

6 Def.3, as well as the property formulated by Lem.1, are an adaptation of the standard model-
theoretic notion of a diagram [10].
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constant and every predicate using a conjunction of equalities, inequalities, and atomic
formulae. For example, the diagram of σb , depicted in Figure 2(σb), is

Diag(σb)
def
= ∃x0, x1, x2. x0 6= x1 ∧ x0 6= x2 ∧ x1 6= x2 ∧

h = x0 ∧ j = x1 ∧ i = x2 ∧ null = x2 ∧
¬C (x0) ∧ ¬C (x1) ∧ ¬C (x2) ∧
n∗(x0, x0) ∧ n∗(x1, x1) ∧ n∗(x2, x2) ∧ n∗(x0, x1) ∧
¬n∗(x0, x2) ∧ ¬n∗(x1, x0) ∧ ¬n∗(x1, x2) ∧ ¬n∗(x2, x0) ∧ ¬n∗(x2, x1)

The first line records the fact that the universe of σb consists of three elements. The
second line characterizes the interpretations of all the constant symbols in σb . The other
lines capture precisely the interpretation of predicates C and n∗ in σb .

Lemma 1. Let σ be a model over V , and let ϕ be a closed existential first-order formula
over V . If σ |= ϕ then Diag(σ)⇒ ϕ.

Semantically, Lem.1 means that for any models σ and σi such that σi |= Diag(σ) if
σ |= ϕ then σi |= ϕ. This implies that if a bad state is reachable from σ and the program
can be proven correct using an inductive universal invariant I then all the states in σ’s
diagram are unreachable too: I is an inductive invariant, thus any state σ leading to a
bad state must satisfy (closed existential) formula ¬I. Hence, Diag(σ) ⇒ ¬I, which
means that all states satisfying Diag(σ) are unreachable. In this sense, the abstraction
based on diagrams is precise for programs with universal invariants.

3.2 Data Structures and Frames

PDR∀ is shown in Algorithm 1. It uses procedures block() and analyzeCEX(), shown
in Algorithm 2 and Algorithm 3, respectively, as subroutines. The algorithm uses an
array F of frames, where a frame is a conjunction of universal clauses. For clarity,
we refer to the i th entry of the array using subscript notation, i.e., Fi instead of F [i ].
Intuitively, frame Fi over-approximatesRi , the set of i -reachable states. The algorithm
also maintains a frame counter N which records the number of frames it developed.
We refer to F0 as the initial frame, to FN as the frontier frame, and to any Fi , where
0 ≤ i < N , as a back frame.

PDR∀ maintains several invariants which ensure that every frame Fi is an over
approximation of Ri , and hence that the sequence of developed frames is an over
approximation of all the traces of the program of length N + 1 or less. Technically, this
means that the algorithm constructs an approximate reachability sequence.

Definition 4. Let TS = (Init, ρ) be a transition system and P a safety property. A
sequence 〈F0,F1, . . . ,FN 〉 is an approximate reachability sequence for TS and P if:

(i) Init⇒ F0.
(ii) Fi ⇒ Fi+1, for all 0 ≤ i < N , i.e., for every state σ, if σ |= Fi then σ |= Fi+1.

(iii) Fi ∧ ρ ⇒ (Fi+1)′, for all 0 ≤ i < N , i.e., for every transition (σ1, σ2) |= ρ, if
σ1 |= Fi then σ2 |= Fi+1.

(iv) Fi ⇒ P , for all 0 ≤ i ≤ N .
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Algorithm 1: PDR∀ (Init, ρ,Bad)

1 if SAT (Init ∧ Bad) then
2 exit invalid : model(Init ∧ Bad)
3 F0 := Init
4 F1 := true
5 N := 1
6 while true do
7 if there exists 0 ≤ j < N

such that Fj+1 ⇒ Fj then
8 return valid
9 if ¬SAT (Fi ∧ Bad) then

10 FN+1 := true
11 N := N + 1

12 else
13 σb := model(FN ∧ Bad)
14 block(N , σb)

Algorithm 2: block(j , σ)

21 ϕ = Diag(σ)
22 while SAT (Fj−1 ∧ ρ ∧ (ϕ)′) do
23 if 1 < j then
24 σa = reduct(model(Fj−1 ∧ ρ ∧ (ϕ)′))
25 block(j − 1, σa)

26 else
27 analyzeCEX(N )

28 for i = 0 . . . j do
29 Fi := Fi ∧ ¬ϕ

Algorithm 3: analyzeCEX(N )

31 if there exists σ0, . . . , σN such that
32 σ0 |= Init
33 (σi , σi+1) |= ρ for every 0 ≤ i < N , and
34 σN |= Bad
35 then exit invalid : σ0, . . . , σN

36 else exit No Universal Invariant Exists

Items (ii) and (iii) ensure that every frame includes the states of the previous frame and
their successors, respectively. Together with item (i), it follows by induction that for
every 0 < i ≤ N the set of states (models) that satisfy Fi is a superset of the set Ri .
Furthermore, by item (iv) no frame includes a bad state.

3.3 Iterative Construction of an Approximate Reachability Sequence

PDR∀ is an iterative algorithm. At every iteration, the algorithm either strengthens the
N th frame, if it contains a bad state, or starts to develop the N +1th frame, otherwise.
In addition, in every iteration, it might also strengthen some of the back frames. Each
strengthening of frame Fi is performed by determining a universal clause ϕi which
holds for any i -reachable state, and then conjoining Fi with ϕi .
Initialization. The algorithm first checks that the initial states and the bad states do
not intersect. If so, it exits and returns the state that satisfies both Init and Bad as a
counterexample (line 2). Otherwise, it sets F0 to represent the set of initial states (line 3),
F1 to represent all possible states (line 4), and the frame counter to 1. Note that at this
point, F1 is a trivial over-approximation of the set of initial states and their successors,
but it might contain bad states.
Iterative Construction. The algorithm then starts its iterative search for an inductive
invariant (line 6). Recall that when the algorithm develops the N th frame, it has already
managed to determine an approximate reachability sequence 〈F0, . . . ,FN−1〉. Hence,
every iteration starts by checking whether a fixpoint has been reached (line 7). If true,
then an inductive invariant proving unreachability of Bad has been found, and the
algorithm returns valid (line 8). Otherwise, the algorithm keeps on strengthening the
frontier frame FN by searching for a bad witness, a bad state in the frontier frame
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(line 9). If no such state exists, it means that no bad state is N -reachable. Moreover, at
this point 〈F0, . . . ,FN 〉 is an approximate reachability sequence. Therefore, the iterative
strengthening of FN terminates and the algorithm initializes a new frontier frame to true
(lines 10 and 11).

If the frontier frame contains a bad witness, i.e. FN ∧ Bad is satisfiable, then there
might be an N -reachable bad state. Due to our requirement for finite satisfiability of the
logic, the bad witness is a finite model. Given a bad witness σb (line 13), the algorithm
tries to determine whether it is indeed reachable, and thus the program does not satisfy
its specification, or whether σb was discovered due to some over-approximation in one of
the back frames. This check is done by invoking procedure block() with the index of the
frontier frame and σb as parameters (line 14). The latter either returns a counterexample,
determines that it is impossible to prove the specification using a universal invariant (in
the given logic and vocabulary), or strengthens the frontier frame to exclude the set of
states in the diagram of σb , and possibly strengthens some back frames too (see below).
The iterative construction and strengthening of the frames continues until reaching a
fixpoint, finding a counterexample, or determining the absence of a universal invariant.7

Example 4. When analyzing the running example, our algorithm discovers that state σb ,
shown in Fig.2, is a bad witness when F1 = true, and thus it invokes block(1, σb). In
this example, block() succeeds to block σb . Unfortunately, the strengthened frame F 1

1

(see below) still has bad models. Therefore the iterative strengthening continues and
the next iterations find σ′b , depicted in Figure 2, as a bad witness model for F 1

1 , σ′′b as a
bad witness model of F 2

1 and σ′′′b as a bad witness model of F 3
1 . At that point, however,

the algorithm determines that the strengthened frame F 4
1 does not have a bad witness.

〈F0,F
4
1 〉 is now an approximate reachability sequence and PDR∀ goes on and initializes

a new frame, F2, to true , and the search for an inductive invariant continues.
Diagram-Based Abstract Blocking. Procedure block(j , σ), shown in Algorithm 2, gets
an index of a frame j = 0, . . . ,N and a state σ which is included in the j th frame,
i.e., σ |= Fj , and tries to determine whether σ is j -reachable. The unique aspect of our
approach is the way in which it abstracts σ to a set of states in order to accelerate the
strengthening routine. Namely, the use of diagrams. More specifically, PDR∀ computes
the diagram ϕ of σ (line 21) and then checks whether there is a j -reachable state satisfy-
ing ϕ. Importantly, due to Lem.1, if a universal invariant exists then the generalization
of σ to its diagram will not include any reachable state, hence the abstraction is precise
in the sense that it maintains unreachability. In this case the strengthening of Fj is also
guaranteed to succeed, excluding not only σ, but its entire diagram.

The check if the diagram ϕ of σ includes a j -reachable state is done conservatively
by determining whether some state of ϕ has a predecessor in Fj−1. (Recall that Fj−1
over-approximates Rj−1.) Technically, this is done by checking whether the formula
δ = Fj−1 ∧ ρ ∧ (ϕ)′ is satisfiable (line 22).8

Case I. If δ is unsatisfiable, no state represented by ϕ is j -reachable. Hence, Fj remains
an over-approximation ofRj even if any state of ϕ is excluded. The exclusion is done

7 To accelerate the iterative strengthening of frames, any clause ϕ in Fi that is inductive in Fi , i.e.,
Fi ∧ ρ⇒ (ϕ)′ is also propagated forward to Fi+1. In particular, this allows to initialize a new
frontier frame FN , for 1 < N , to a tighter over-approximation ofRN than true (line 10) [22].

8 Recall that (ϕ)′ is the primed version of ϕ and hence represents the post state of the transition.
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by conjoining the j th frame with the universal formula ¬ϕ (line 29), and results in a
strengthening of Fj . In fact, ¬ϕ is conjoined to any back frame (line 28). Strengthening
all the back frames is not strictly necessary, it is done to make the fixpoint computation
in line 7 cheap: We represent each frame as a set of clauses (with the meaning of
conjunction) and check implication by checking inclusion of these sets. We refer to the
exclusion of the states of ϕ as the blocking of (the diagram of) σ from frame Fj .

Example 5. In our running example, in the first iteration block(1, σb) updates F 0
1 to

F 1
1 = true ∧ ¬Diag(σb), and in later iterations it updates F 2

1 = F 1
1 ∧ ¬Diag(σ′b),

F 3
1 = F 2

1 ∧ ¬Diag(σ′′b ), and F 4
1 = F 3

1 ∧ ¬Diag(σ′′′b ).

Case II. If δ is satisfiable, then there exists an adverse state σa in frame Fj−1, a state
which is the predecessor of some state of the diagram of σ that we try to block at frame
Fj . Note that σa is not necessarily a predecessor of σ itself. The adverse state σa is found
by taking the reduct of a (finite) model of δ (line 24). If an adverse model σa exists then
the algorithm recursively tries to block it from Fj−1 (line 25). The recursive procedure
continues until the adverse state is either blocked or the algorithm finds an adverse
state in the initial frame. Note that blocking an adverse state during the development
of the N th frame leads to a strengthening of some back frame Fi , and thus tightens its
over-approximation of Ri . If the algorithm finds an adverse state in the initial frame,
then it invokes procedure analyzeCEX() to determine whether a bad state can be reached
by N applications of the transition relation.

Finding concrete counterexamples and proving the absence of universal invariants.
Procedure analyzeCEX(), shown in Algorithm 3, looks for a counterexample.

Definition 5 (Abstract and Spurious Counterexamples). A sequence of formulae
〈ϕ0, . . . , ϕN 〉 is an abstract counterexample if the formulas ϕ0 ∧ Init, ϕN ∧ Bad, and
ϕi ∧ ρ∧ (ϕi+1)′, for every i = 0, . . . ,N − 1, are all satisfiable. The abstract counterex-
ample is spurious if there exists no sequence of states 〈σ0, . . . , σN 〉 such that σ0 |= Init,
σN 6|= Bad , and for every 0 ≤ i < N , (σi , σi+1) |= ρ.

An abstract counterexample does not necessarily describe a real counterexample: In
order to check if the abstract counterexample is real or spurious, the algorithm checks
whether there is an N -reachable bad state (line 31). Technically, analyzeCEX() can be
implemented using a symbolic bounded model checker [5]. If a real counterexample
is found, the algorithm reports it (line 35). Otherwise, the obtained counterexample is
spurious. Technically, this means that the property is neither verified nor falsified. In our
case, the algorithm can determine that the verification effort is doomed: The spurious
counterexample is in fact a proof for the absence of a universal invariant (see Prop.1).

Generalization of blocked diagrams. Rather than blocking a diagram ϕ from frames
0, . . . , j by conjoining them with the clause ¬ϕ (line 29), our implementation uses a
minimal UNSAT core of Fj−1 ∧ ρ ∧ (ϕ)′ to define a clause L which implies ¬ϕ, and is
also unreachable from Fj−1. Blocking is done by conjoining L with Fi for every i ≤ j .
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4 Correctness

In this section we formalize the correctness guarantees of PDR∀. We recall that if PDR∀

terminates it reports that either the program is safe, the program is not safe, providing a
counterexample, or the program cannot be verified using a universal inductive invariant.

Lemma 2. Let TS = (Init, ρ) be a transition system and let P be a safety property. If
PDR∀ returns valid then TS satisfies P . Further, if PDR∀ returns a counterexample,
then TS does not satisfy P .

Proof. PDR∀ returns valid if there exists i such that Fi+1 ⇒ Fi . Therefore, Fi ∧ ρ⇒
(Fi+1)′ ⇒ (Fi)

′. Recall that, by the properties of an approximate reachability sequence,
Init ⇒ F0 ⇒ Fi and Fi ⇒ P . Therefore, Fi is an inductive invariant, which ensures
that TS satisfies P . The second part of the claim follows immediately from the definition
of a counterexample. ut

Proposition 1. Let TS = (Init, ρ) be a transition system and let P be a safety property.
If PDR∀ obtains a spurious counterexample 〈ϕ0, . . . , ϕN 〉 then there exists no universal
safety inductive invariant I for TS and P .

Proof. Assume that there exists a universal safety inductive invariant I over V . We
show by induction on the distance i = 0, . . . ,N , of FN−i from FN that every state
σi generated by PDR∀ at frame Fi is such that σi |= ¬I. Because F0 ≡ Init and
by definition Init ⇒ I, this implies that no such state is obtained for frame F0, in
contradiction to the existence of a spurious counterexample.

The base case of the induction pertains to FN . It follows immediately from the
property that a state σN generated at frame FN is a model of the formula FN ∧Bad, and
in particular is a model of Bad = ¬P , i.e., σN |= ¬P . Since I ⇒ P , or equivalently
¬P ⇒ ¬I, we conclude that σN |= ¬I.

Consider a state generated at frame Fi . Then σi = σ[V] is the reduct of a model of
the formula Fi ∧ρ∧ (Diag(σi+1))′. Moreover, by the induction hypothesis, σi+1 |= ¬I .
Since ¬I is an existential formula, this means by Lem.1 that Diag(σi+1) ⇒ ¬I. We
conclude that Fi ∧ ρ∧ (Diag(σi+1))′ ⇒ Fi ∧ ρ∧ (¬I)′. Therefore, σi is also (a reduct
of) a model of the formula Fi ∧ ρ∧¬(I)′. If we assume that σi |= I , we would get that
I ∧ ρ ∧ ¬(I)′ is satisfiable, in contradiction I being inductive. Hence, σi |= ¬I. ut

Example 6. Procedure traverseTwo(), presented in Figure 3 together with its pre-
and post-condition, traverses two lists until it finds their last elements. If the lists have a
shared tail then p and q should point to the same element when the traversal terminates.
The program indeed satisfies this property. However, this cannot be proven correct using
an inductive universal invariant: Take, as usual, Init to be the procedure’s precondition
and P to be the safety property whose negation is Bad = (i = null∧ j = null)∧¬post ,
where post is the procedure’s postcondition. Consider the state σ0 depicted in Figure 4.
Clearly, this model satisfies Init. Therefore, if I exists, σ0 |= I . σ0 is a predecessor of σt

1

and hence it should be the case that σt
1 |= I. Now consider σ1, which is a submodel of

σt
1 and interprets all constants as in σ1. If I is universal, then σ1 |= I as well. However,
σ1 6|= P , in contradiction to the property of a safety invariant. Indeed, when using
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pre : p = null ∧ q = null ∧ i = g ∧ g 6= null ∧ j = h ∧ h 6= null ∧
∃v .n∗(g , v) ∧ n∗(h, v) ∧ v 6= null

post : p = q ∧ p 6= null ∧ i = null ∧ j = null
void traverseTwo(List g, List h) {

while (i 6= null ∨ j 6= null){
if i 6= null then p := i; i := i.n;
if j 6= null then q := j; j := j.n}}

Fig. 3. A procedure that finds the last elements of two non-empty acyclic lists.
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Fig. 4. A spurious counterexample found for procedure traverseTwo(), shown in Fig.3.

PDR∀, the spurious counterexample 〈σ0, σ1, σ2〉 presented in Figure 4 is obtained. This
indicates that no universal invariant for P exists. Note that state σ1 is a predecessor of
σ2 and recall that σ0 is a predecessor of σt

1. The spurious counterexample was obtained
because σt

1 satisfies the diagram of state σ1.

5 Implementation and Empirical Evaluation
PDR∀ is parametric in the vocabulary, and can be implemented on top of any decision
procedure for finite satisfiability of first order logic formulas. The language of these
formulas should be expressive enough to capture the assertions, transition system, and
space of candidate invariants. Our algorithm is not guaranteed to terminate, thus the
underlying logic does not have to be decidable. Our implementation, however, uses EAR

which is a decidable logic [32].
EAR allows for relational first-order formulas with a quantifier prefix of the form

∃∗∀∗ and a deterministic transitive-closure operator ∗. The latter is used to construct
reachability constraints over pointer fields such as n in Examples1 and 2. This logic
allows formulas such as ∀α.C (α)→ n∗(h, α) but forbids, e.g. ∀α∃β.n∗(α, β)∧C (β)
(due to the nesting of an existential quantifier inside a universal one) and ∃α∀β. f (α) = β
(due to the use of a function symbol f ). EAR satisfiability is reducible to effectively-
propositional (EPR) satisfiability, also known as the Bernays-Schönfinkel-Ramsey class,
which is in turn reducible to Boolean SAT, hence decidable [31, 32]. Moreover, theories
in this fragment enjoy the small model property, meaning that a satisfiable formula is
guaranteed to have a finite model of a size proportional to the depth of quantifier nesting.
Benchmarks. We implemented PDR∀ and applied it to a collection of procedures
that manipulate singly-linked lists, doubly-linked lists, multi-linked lists, and imple-
mentations an insertion-sort algorithm [16], and a union-find algorithm [16]. Table 1
summarizes our experimental results.
(a) Verification. Our analyzer successfully verified memory safety, i.e., the absence of
null-dereferences and of memory leaks, preservation of data-structure integrity, meaning
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Table 1. Experimental results. Running time is measured in seconds. N denotes the highest index
for a generated element F [i ]. “# Z3” denotes the number of calls to Z3. AF denotes “Abstraction
Failure” of [32]. TO means timeout (> 1 hr). (a) Corrent programs; “# Cl. (∀)” = number of
(∀-)clauses in the inferred invariant. (b) Correct programs for which there is no universal inductive
invariant. (c) Incorrect program; “C.e. size” = size (|domain|) of a model in the counterexample
trace. To verify the absence of memory leaks, we either used a unary predicate alloc(·) to record
whether a node is allocated, or a ghost variable that keeps the original list. We used a 3.6GHz Intel
Core i7 machine with 32GB of RAM, running Ubuntu 14.04 and the 64bit version of Z3 4.4 [19].

Full Memory safety Memory safety [32]
(a) Verification Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀)
Singly-linked lists
concat 2.2 3 64 8 (4) 0.9 3 39 4 (1) AF
delete 17 5 295 24 (11) 1.3 3 55 5 9.7 4 108 11
delete-all 7.9 4 172 16 (9) 0.6 3 34 3 (1) 2.7 3 60 6
filter 45 5 438 26 (18) 1.5 4 56 6 (1) 6.6 5 144 9
insert-at 2.5 3 79 9 (2) 1.5 3 55 8 (1) 7.8 5 157 10
insert 3.5 3 73 9 (2) 1.4 3 54 7 (1) 2.1 3 48 7
merge 431 8 1910 30 (19) 14 6 275 15 (4) AF
reverse 18 6 255 13 (7) 1.9 4 78 4 (1) 8.4 6 266 5
split 276 8 1245 32 (17) 5.2 5 129 11 24 6 186 10
uf-find 52 9 664 21 (13) 5.4 9 203 7 (2) 8.3 11 309 10
uf-union 117 7 821 30 (13) 64 8 696 21 (6) TO
Sorted singly-linked lists
sorted-insert 8.0 3 101 13 (5) 1.8 3 56 8 (1) 26 3 63 10
sorted-merge 454 7 1379 34 (24) 36 6 430 12 (2) AF
bubble-sort 122 11 980 21 (7) 2.1 5 54 5 (1) 3.5 6 54 2
insertion-sort 2195 13 4829 44 (23) 186 13 1724 30 (5) TO
Doubly-linked lists
create 16 7 225 10 (6) 3.6 4 89 7 (2) 47 3 43 6
delete 6.3 4 97 12 (5) 1.5 3 36 5 (2) 403 6 98 8
insert-at 6.2 4 95 14 (6) 3.2 3 64 10 (3) 439 5 208 16
Composite linked-list structures
nested-flatten 675 17 2849 42 (28) 474 21 2937 22 (7) AF
nested-split 341 9 960 26 (18) 6.8 4 135 11 (2) AF
overlaid-delete 294 6 1282 31 (6) 93 7 698 23 (2) TO
ladder 188 7 793 25 (16) 9.2 6 148 8 (3) 25 3 84 13

(b) Absence of universal invariant Description Time N Z3
shared-tail See Exa.6 3.6 2 42
comb See Sec.5(b) 2 3 52

(c) Bug finding Bug description Time N Z3 C.e. size
insert-at Precondition is too weak (omitted e 6= null) 0.4 1 11 4
filter Forgot a corner case where ¬C (h) 3 1 21 4
insertion-sort Typo: typed j instead of i 5 4 68 4
sorted-merge Forgot to link the two segments 7.5 1 49 4

that the procedure never creates cycles in the list, and functional correctness of several
singly- and doubly-linked list manipulating procedures. The precondition says that
the expected input is a (possibly empty) acyclic list, and the post-condition is the one
expected from the procedure’s name. For example, the post-condition of reverse() is
that it returns a list comprised of the same elements as in its input, but in reversed order.

We also verified the correctness of several procedures that manipulate sorted lists:
sorted-insert() inserts an element into its appropriate place in the sorted list,
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sorted-merge() creates a sorted list by merging together two sorted ones, and
bubble-sort() and insertion-sort() return sorted permutations of their inputs.

In addition, we verified several procedures that manipulate multi-linked lists. Proce-
dure overlaid-delete() takes an overlaid list and deletes a given element. (Overlaid
lists use multiple pointer fields to index the same set of elements in different orders.)
Procedure nested-filter() moves all the elements not satisfying C into a sublist.
Procedure flat() takes a nested list and flattens it by concatenating its sublists. Proce-
dure ladder() creates a copy t of a list h and places a pointer p from every element in
h to its counterpart in list t. We then verify that the p field of every element in h points
to a distinct element in list t. This property indicates, indirectly, that both lists have the
same length. Finally, we verify the union-find algorithm. E.g., for compressing find()

operation, we prove the it maintains the reachability between every node and its root and
preserves the elements.

We compared our results to [32], where EAR was used to verify properties of
list-manipulating programs with PDR, using human-supplied (universally-quantified)
abstraction predicates as templates. We note that [32] can also establish certain functional
correctness properties, but theirs are strictly weaker than ours. For example, they do not
verify that a reversed list does not contain more elements than in its input list.
(b) Verifying the Absence of Universal Invariants. Our tool was also able to show that
certain properties cannot be verified with a universal invariant. It proved that procedure
shared-tail(), described in Exa.6, does not have a universal invariant. We applied
our tool to procedure comb(), which is a simplified version of ladder() where the
newly allocated elements are not linked together, hence resulting in a heap shaped like a
comb. The tool discovered that it is not possible to use a universal invariant to prove that
when comb() terminates there is no null-valued p-field in the input list.
(c) Bug Finding. We also ran our analysis on programs containing deliberate bugs. In
all of the cases, the method was able to detect the bug and generate a concrete trace in
which the safety or correctness properties are violated.

Remark 1. In our experiments, we noticed that sometimes the tool had to work harder
to verify simple properties than when it was asked to verify complicated ones. In
particular, verifying partial correctness properties was done faster when verified together
with memory safety than without. In hindsight, this might not be surprising due to the
property guided nature of the analysis.

6 Related Work

In this section, we briefly summarize the extensive volume of related work.
Synthesizing quantified invariants has received significant attention. Several works

have considered discovery of quantified predicates, e.g., based on counterexamples [18]
or by extension of predicate abstraction to support free variables [24, 33]. Our inferred
invariants are comprised of universally quantified predicates, but unlike these approaches,
our computation of the predicates is property directed and does not employ predicate
abstraction. Additional works for generation of quantified invariants include using
abstract domains of quantified data automata [25, 26] or ones tailored to Presburger
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arithmetic with arrays [20], instantiating quantifier templates [8, 38], applying symbolic
proof techniques [30], or using abstractions based on separation logic [4, 21].

Other works aim to identify loop invariants given a set of predicates as candidate
ingredients. Houdini [23] is the first such algorithm of which we are aware. Santini
[39, 40] is a recent algorithm which is based on full predicate abstraction. In the context
of IC3, predicate abstraction was used in [7, 12, 32], the last of which specifically
targeting shape analysis. In contrast to previous work, our algorithm does not require a
pre-defined set of predicates, and is therefore more automatic: The diagrams provide an
“on-the-fly” abstraction mechanism.

PDR has been shown to work extremely well in other domains, such as hardware
verification [9, 22]. Subsequently, it was generalized to software model checking for
program models that use linear real arithmetic [29] and linear rational arithmetic [11].
The latter employs a quantifier-elimination procedure for linear rational arithmetic to
provide an approximate pre-image operation. In contrast, our use of diagrams allows
us to obtain a natural approximation which is precise for programs that can be verified
using universal invariants.

The reduction we use into EPR creates a parametrized array-based system (where the
range of the arrays are Booleans). A number of tools have been developed for general
array-based systems. The SAFARI [3] system is relevant. It is related to MCMT and
Cubicle [14, 15, 27, 28], SAFARI uses symbolic pre-conditions to propagate symbolic
states in the form of cubes that are conjunctions of literals over array constraints, and
uses interpolants to synthesize universal invariants. Our method for propagating and
inductively generalizing diagrams differs by being based on PDR.

The logic used by our implementation has limited capabilities to express properties
of list segments that that are not pointed to by variables [32]. This is similar to the self-
imposed limitations on expressibility used in a number of shape analysis algorithms [4,21,
34–37, 41]. Past experience, as well as our own, has shown that despite these limitations
it is still possible to successfully analyze a rich set of programs and properties.

7 Conclusions
PDR∀ is a combination of PDR/IC3 [9] with the model-theoretic notion of diagrams [10].
The latter provide PDR an aggressive strengthening scheme in which the structural
properties of a bad state are abstracted “on-the-fly” by a formula describing all of its
possible extensions, which are then blocked together within the same iteration of PDR’s
main refinement loop. This obviates the need for user-supplied abstraction predicates.
This form of automation is particularly important when one tries to verify tricky programs,
e.g., programs that manipulate unbounded data structures, against a variety (of possibly
changing) specifications. Indeed, our implementation successfully analyzed multiple
specifications of tricky list-manipulating programs, discovered counterexamples, and,
uniquely to our approach, showed that certain programs cannot be proven correct using a
universal invariant. We are very pleased with the simplicity of our approach and believe
that the notion of diagram-based abstractions is particularly useful for the verification
of programs that manipulate unbounded state. In the future, we plan to apply it in other
contexts too, e.g., for the verification of network programs [1].
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