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Abstract

We give a short survey of the local ratio technique for approximation algorithms, focusing
mainly on scheduling and resource allocation problems.

1 Introduction

The local ratio technique is used in the design and analysis of approximation algorithms for NP-hard
optimization problems. Since its first appearance in the early 1980’s it has been used extensively,
and recently, has been fortunate to have a great measure of success in dealing with scheduling prob-
lems. Being simple and elegant, it is easy to understand, yet has surprisingly broad applicability.

At the focus of this chapter are applications of the local ratio technique to scheduling problems,
but we also give an introduction to the technique and touch upon some of the milestones in its
path of development. We present a host of optimization problems and local-ratio approximation
algorithms, some of which were developed using the technique, and others which are local ratio
interpretations of pre-existing algorithms.

The basic concepts relating to optimization and approximation are as follows. (Precise defini-
tions can be found in Section 2.) An optimization problem is a problem in which every possible
solution is associated with a cost, and we seek a solution of minimum (or maximum) cost. For ex-
ample, in the minimum spanning tree problem our objective is to find a minimum cost spanning tree
in a given edge weighted graph. For this problem, the solutions are all spanning trees, and the cost
of each spanning tree is its total edge weight. Although this particular problem is polynomial-time
solvable, many other optimization problems are NP-hard, and for those, computing approximate
solutions (efficiently) is of interest. (In fact, finding approximate solutions is also of interest in
cases where this can be done faster than finding exact solutions.) A solution whose cost is within a
factor of r of the optimum is said to be r-approximate. Thus, for example, a spanning tree whose
weight is at most twice the weight of a minimum spanning tree is said to be 2-approximate. An
r-approximation algorithm is one that is guaranteed to return r-approximate solutions.

Analyzing an r-approximation algorithm consists mainly in showing that it achieves the desired
degree of approximation, namely, r (correctness and efficiency are usually straightforward). To do
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so we need to obtain a lower bound B on the optimum cost and show that cost of the solution
is no more than r · B. The local ratio technique uses a “local” variation of this idea as a design
principle. In essence, the idea is to break down the cost W of the algorithm’s solution into a sum
of “partial costs” W =

∑

k

i=1 Wi, and similarly break down the lower bound B into B =
∑

k

i=1 Bi,
and to show that Wi ≤ r ·Bi for all i. (In the maximization case, B is an upper bound and we need
to show that Wi ≥ Bi/r for all i.) The breakdown of W and B is determined by the way in which
the solution is constructed by the algorithm. In fact, the algorithm constructs the solution in such
a manner as to ensure that such breakdowns exist. Put differently, at the ith step, the algorithm
“pays” Wi ≤ r · Bi and manipulates the problem instance so that the optimum cost drops by at
least Bi.

To see how this works in practice we demonstrate the technique on the vertex cover problem.
Given a graph G = (V,E), a vertex cover is a set of vertices C ⊆ V such that every edge has
at least one endpoint in C. In the vertex cover problem we are given a graph G = (V,E) and a
non-negative cost function w on its vertices, and our goal is to find a vertex cover of minimum
cost. Imagine that we have to actually purchase the vertices we select as our solution. Rather
than somehow deciding on which vertices to buy and then paying for them, we adopt the following
strategy. We repeatedly select a vertex and pay for it. However, the amount we pay need not cover
its entire cost; we may return to the same vertex later and pay some more. In order to keep track
of the payments, whenever we pay ε for a vertex, we lower its marked price by ε. When the marked
price of a vertex drops to zero, we are free to take it, as it has been fully paid for.

The heart of the matter is the rule by which we select the vertex and decide on the amount to pay
for it. Actually, we select two vertices each time and pay ε for each, in the following manner. We se-
lect any edge (u, v) whose two endpoints have non-zero cost, and pay ε = min{price of u,price of v}
for both u and v. As a result, the marked price of at least one of the endpoints drops to zero. After
O(|V |) rounds, prices drop sufficiently so that every edge has an endpoint of zero cost. Hence, the
set of all zero-cost vertices is a vertex cover. We take this zero-cost set as our solution.

We formalize this by the following algorithm. We say that an edge is positive if both its
endpoints have strictly positive cost.

Algorithm VC

1. While there exists a positive edge (u, v):
2. Let ε = min{w(u), w(v)}.
3. w(u)← w(u)− ε.
4. w(v)← w(v) − ε.
5. Return the set C = {v |w(v) = 0}.

To analyze the algorithm, consider the ith iteration. Let (ui, vi) be the edge selected in this
iteration, and let εi be the payment made for each endpoint. Every vertex cover must contain either
ui or vi (in order to cover the edge (ui, vi)), and therefore decreasing the price of these vertices by
εi lowers the cost of every vertex cover by at least εi. It follows that the optimum, denoted OPT,
also decreases by at least εi. Thus, in the ith round we pay 2εi and lower OPT by at least εi, so the
local ratio between our payment and the drop in OPT is at most 2 in any given iteration. Summing
over all iterations, we get that the ratio between our total payment and the total drop in OPT is
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at most 2 as well. Now, we know that the total drop in the optimal cost is OPT , since we end up
with a vertex cover of zero cost, so our total payment is at most 2OPT. Since this payment fully
covers the solution’s cost (in terms of the original cost function), the solution is 2-approximate.

It is interesting to note that the proof that the solution found is 2-approximate does not depend
on the actual value of ε in any given iteration. In fact, any value between 0 and min{w(u), w(v)}
would yield the same result (by the same arguments). We chose min{w(u), w(v)} for the sake of
efficiency. This choice ensures that the number of vertices with positive cost strictly decreases with
each iteration.

We also observe that the analysis of algorithm VC does not seem tight. The analysis bounds
the cost of the solution by the sum of all payments, but some of these payments are made for
vertices that do not end up in the solution. It might seem that trying to “recover” these wasteful
payments could yield a better approximation ratio, but this is not true (in the worst case); it is
easy to construct examples in which all vertices for which payments are made are eventually made
part of the solution.

Finally, there might still seem to be some slack in the analysis, for in the final step of the
algorithm all zero-cost vertices are taken to the solution, without trying to remove unnecessary
ones. One simple idea is to prune the solution and turn it into a minimal (with respect to set
inclusion) subset of C that is still a vertex cover. Unfortunately, it is not difficult to come up with
worst-case scenarios in which C is minimal to begin with. Nevertheless, we shall see that such ideas
are sometimes useful (and, in fact, necessary) in the context of other optimization problems.

1.1 Historical Highlights

The origins of the local ratio technique can be traced back to a paper by Bar-Yehuda and Even on
vertex cover and set cover [16]. In this paper, the authors presented a linear time approximation
algorithm for set cover , that generalizes Algorithm VC, and presented a primal-dual analysis of
it. This algorithm was motivated by a previous algorithm of Hochbaum [42], which was based on
LP duality, and required the solution of a linear program. Even though Bar-Yehuda and Even’s
primal-dual analysis contains an implicit local ratio argument, the debut of the local ratio technique
occurred in a followup paper [17], where the authors gave a local ratio analysis of the same algorithm.

They also designed a specialized (2 − log
2
log

2
n

2 log
2

n
)-approximation algorithm for vertex cover that

contains a local-ratio phase. The technique was dormant until Bafna, Berman, and Fujito [9]
incorporated the idea of minimal solutions into the local ratio technique in order to devised a local
ratio 2-approximation algorithm for the feedback vertex set problem. Subsequently, two generic
algorithms were presented. Fujito [33] gave a unified local ratio approximation algorithm for node-
deletion problems, and Bar-Yehuda [15] developed a local ratio framework that explained most local
ratio (and primal-dual) approximation algorithms known at the time. At this point in time the
local ratio technique had reached a certain level of maturity, but only in the context of minimization
problems. No local ratio algorithms were known for maximization problems. This was changed by
Bar-Noy et al. [11], who presented the first local ratio (and primal-dual) algorithms for maximization
problems. These algorithm are based on the notion of maximal solutions rather than minimal
ones. More recently, Bar-Yehuda and Rawitz [19] developed two approximation frameworks, one
extending the generic local ratio algorithm from [15], and the other extending known primal-dual
frameworks [38, 22], and proved that both frameworks are equivalent, thus merging these two
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seemingly independent lines of research. The most recent local ratio development, due to Bar-
Yehuda et al. [12], is a novel extension of the local ratio technique called fractional local ratio.

1.2 Organization

The remainder of this chapter is organized as follows. In Section 2 we establish some terminology
and notation. In Section 3 we state and prove the Local Ratio Theorem (for minimization problems)
and formulate the local ratio technique as a design and analysis framework based on it. In Section 4
we formally introduce the idea of minimal solutions into the framework, making it powerful enough
to encompass many known approximation algorithms for covering problems. Finally, in Section 5 we
discuss local ratio algorithms for scheduling problems, focusing mainly on maximization problems.
As a first step, we describe a local ratio framework for maximization problems, which is, in a sense,
a mirror image of its minimization counterpart developed in Sections 3 and 4. We then survey a
host of problems to which the local ratio technique has been successfully applied.

In order not to interrupt the flow of text we have removed nearly all citations and references
from the running text, and instead have included at the end of each section a subsection titled
Background, in which we cite sources for the material covered in the section and discuss related
work.

1.3 Background

The vertex cover problem is known to be NP-hard even for planar cubic graphs with unit
weights [36]. H̊astad [41] shows, using PCP arguments1, that vertex cover cannot be approximated
within a factor of 7

6 unless P=NP. Dinur and Safra [29] improve this bound to 10
√

5−21 ≈ 1.36067.
The first 2-approximation algorithm for weighted vertex cover is due to Nemhauser and Trotter [57].
Hochbaum [43] uses this algorithm to obtain an approximation algorithm with performance ratio
2 − 2

dmax
, where dmax is the maximum degree of a vertex. Gavril (see [35]) gives a linear time

2-approximation algorithm for the non-weighted case. (Algorithm VC reduces to this algorithm on
non-weighted instances.) Hochbaum [42] presents two 2-approximation algorithms, both requiring
the solution of a linear program. The first constructs a vertex cover based on the optimal dual
solution, whereas the second is a simple LP rounding algorithm. Bar-Yehuda and Even [16] present
an LP based approximation algorithm for weighted set cover that does not solve a linear program
directly. Instead, it constructs simultaneously a primal integral solution and a dual feasible solu-
tion without solving either the primal or dual programs. It is the first algorithm to operate in this
method, a method which later became known as the primal-dual schema. Their algorithm reduces
to Algorithm VC on instances that are graphs. In a subsequent paper, Bar-Yehuda and Even [17]
provide an alternative local ratio analysis for this algorithm, making it the first local ratio algorithm
as well. They also present a specialized (2 − log

2
log

2
n

2 log
2

n
)-approximation algorithm for vertex cover.

Independently, Monien and Speckenmeyer [56] achieved the same ratio for the unweighted case.
Halperin [40] improved this result to 2− (1− o(1)) 2 ln ln dmax

ln dmax
using semidefinite programming.

1By “PCP arguments” we mean arguments based on the celebrated PCP Theorem and its proof. The PCP
theorem [6, 5] and its variants state that certain suitably defined complexity classes are in fact equal to NP. A rather
surprising consequence of this is a technique for proving lower bounds on the approximation ratio achievable (in
polynomial time) for various problems. For more details see Arora and Lund [4] and Ausiello et el. [7].
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2 Definitions and Notation

An optimization problem is comprised of a family of problem instances. Each instance is associated
with (1) a collection of solutions, each of which is either feasible or infeasible, and (2) a cost
function assigning a cost to each solution. We note that in the sequel we use the terms cost and
weight interchangeably. Each optimization problem can be either a minimization problem or a
maximization problem. For a given problem instance, a feasible solution is referred to as optimal
if it is either minimal or maximal (depending, respectively, on whether the problem is one of
minimization or maximization) among all feasible solutions. The cost of an optimal solution is called
the optimum value, or simply, the optimum. For example, in the well known minimum spanning
tree problem instances are edge-weighted graphs, solutions are subgraphs, feasible solutions are
spanning trees, the cost of a given spanning tree is the total weight of its edges, and optimal
solutions are spanning trees of minimum total edge weight.

Most of the problems we consider in this survey can be formulated as problems of selecting
a subset (satisfying certain constraints) of a given set of objects. For example, in the minimum
spanning tree problem we are required to select a subset of the edges that form a spanning tree. In
such problems we consider the cost function to be defined on the objects, and extend it to subsets
in the natural manner.

An approximation algorithm for an optimization problem takes an input instance and efficiently
computes a feasible solution whose value is “close” to the optimum. The most popular measure of
closeness is the approximation ratio. Recall that for r ≥ 1, a feasible solution is called r-approximate
if its cost is within a factor of r of the optimum. More formally, in the minimization case, a feasible
solution X is said to be r-approximate if w(X) ≤ r ·w(X ∗), where w(X) is the cost of X, and X∗ is
an optimal solution. In the minimization case, X is said to be r-approximate if w(X) ≥ w(X ∗)/r.
(Note that in both cases r is smaller, when X is closer to X ∗.) An r-approximate solution is
also referred to as an r-approximation. An algorithm that computes r-approximate solutions is
said to achieve an approximation factor of r, and it is called an r-approximation algorithm. Also,
r is said to be a performance guarantee for it. The approximation ratio of a given algorithm
is inf {r | r is a performance guarantee for the algorithm}. Nevertheless, the term approximation
ratio is sometimes used instead of performance guarantee.

We assume the following conventions, except where specified otherwise. All weights are non-
negative and denoted by w. We denote by w(x) the weight of element x, and by w(X) the total
weight of set X, i.e., w(X) =

∑

x∈X
w(x). We denote the optimum value of the problem instance

at hand by OPT. All graphs are simple and undirected. A graph is denoted G = (V,E), where
n , |V |, and m , |E|. The degree of vertex v is denoted by deg(v).

3 The Local Ratio Theorem

In Algorithm VC we have paid 2 · ε for lowering OPT by at least ε in each round. Other local
ratio algorithms can be explained similarly—one pays in each round at most r · ε, for some r,
while lowering OPT by at least ε. If the same r is used in all rounds, the solution computed is
r-approximate. This idea works well for several problems. However, it is not hard to see that this
idea works mainly because we make a down payment on several items, and we are able to argue
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that OPT must drop by a proportional amount because every solution must involve some of these
items. This localization of the payments is at the root of the simplicity and elegance of the analysis,
but it is also the source of its weakness: how can we design algorithms for problems in which no
single set of items is necessarily involved in every optimal solution? For example, consider the
feedback vertex set problem, in which we are given a graph and a weight function on the vertices,
and our goal is to remove a minimum weight set of vertices such that the remaining graph contains
no cycles. Clearly, it is not always possible to find two vertices such that at least one of them is part
of every optimal solution! The Local Ratio Theorem, which is given below, allows us to go beyond
localized payments by focusing on the changes in the weight function, and treating these changes
as weight functions in their own right. Indeed, this is essential in the local ratio 2-approximation
algorithm for feedback vertex set that is given in the next section.

The Local Ratio Theorem is deceptively simple. It applies to optimization problems that can
be formulated as follows.

Given a weight vector w ∈ R
n and a set of feasibility constraints F , find a solution

vector x ∈ R
n satisfying the constraints in F that minimizes the inner product w · x.

(This section discusses minimization problems. In Section 5 we deal with maximization problems.)

In this survey we mainly focus on optimization problems in which x ∈ {0, 1}n. In this case the
optimization problem consists of instances in which the input contains a set I of n weighted elements
and a set of feasibility constraints on subsets of I. Feasible solutions are subsets of I satisfying the
feasibility constraints. The cost of a feasible solution is the total weight of the elements it contains.
Such a minimization problem is called a covering problem if any extension of a feasible solution to
any possible instance is always feasible. The family of covering problems contains a broad range of
optimization problems, such as vertex cover , set cover , and feedback vertex set .

Theorem 1 (Local Ratio—Minimization Problems) Let F be a set of feasibility constraints
on vectors in R

n. Let w,w1, w2 ∈ R
n be such that w = w1 + w2. Let x ∈ R

n be a feasible solution
(with respect to F) that is r-approximate with respect to w1 and with respect to w2. Then, x is
r-approximate with respect to w as well.

Proof. Let x∗, x∗
1, and x∗

2 be optimal solutions with respect to w, w1, and w2, respectively.
Clearly, w1 · x∗

1 ≤ w1 · x∗ and w2 · x∗
2 ≤ w2 · x∗. Thus,

w · x = w1 · x + w2 · x ≤ r(w1 · x∗
1) + r(w2 · x∗

2) ≤ r(w1 · x∗) + r(w2 · x∗) = r(w · x∗)

and we are done. �

As we shall see, algorithms that are based on the Local Ratio Theorem are typically recursive
and has the following general structure. If a zero-cost solution can be found, return one. Otherwise,
find a decomposition of w into two weight functions w1 and w2 = w − w1, and solve the problem
recursively on w2. We demonstrate this on the vertex cover problem. (Recall that a positive edge
is an edge whose two endpoints have non-zero cost.)
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Algorithm RecursiveVC(G,w)

1. If all edges are non-positive, return the set C = {v |w(v) = 0}.
2. Let (u, v) be a positive edge, and let ε , min{w(u), w(v)}.

3. Define w1(x) =

{

ε x = u or x = v,

0 otherwise,
and define w2 = w − w1.

4. Return RecursiveVC(G,w2).

Clearly, Algorithm RecursiveVC is merely a recursive version of Algorithm VC. However,
the recursive formulation is amenable to analysis that is based on the Local Ratio Theorem. We
show that the the algorithm computes 2-approximate solutions by induction on the number of
recursive calls (which is clearly finite). In the recursion base, the algorithm returns a zero-weight
vertex cover, which is optimal. For the inductive step, consider the solution C. By the inductive
hypothesis C is 2-approximate with respect to w2. We claim that C is also 2-approximate with
respect to w1. In fact, every feasible solution is 2-approximate with respect to w1. Observe that
the cost (with respect to w1) of every vertex cover is at most 2ε, while the minimum cost of a
vertex cover is at least ε. Thus, by the Local Ratio Theorem C is 2-approximate with respect to w
as well.

We remark that algorithms that follow the general structure outlined above differ from one
another only in the choice of w1. (Actually, the way they search for a zero-cost solution is sometimes
different.) It is not surprising that these algorithms also share most of their analyses. Specifically,
the proof that a given algorithm is an r-approximation is by induction on the number of recursive
calls. In the base case, the solution has zero cost, and hence it is optimal (and also r-approximate).
In the inductive step, the solution returned by the recursive call is r-approximate with respect to
w2 by the inductive hypothesis. And, it is shown that every solution is r-approximate with respect
to w1. This makes the current solution r-approximate with respect to w due to the Local Ratio
Theorem. Thus, different algorithms are different from one another only in the choice of the weight
function w1 in each recursive call, and in the proof that every feasible solution is r-approximate
with respect to w1. We formalizes this notion by the following definition.

Definition 1 Given a set of constraints F on vectors in R
n and a number r ≥ 1, a weight vector

w ∈ R
n is said to be fully r-effective if there exists a number b such that b ≤ w · x ≤ r · b for all

feasible solutions x.

We conclude this section by demonstrating the above framework on the set cover problem.
Since the analysis of algorithms in our framework boils down to proving that w1 is r-effective, for
an appropriately chosen r, we focus solely on w1, and neglect to mention the remaining details
explicitly. We remark that our algorithm for set cover can be formulated just as easily in terms of
localized payments; the true power of the Local Ratio Theorem will become apparent in Section 4.

3.1 Set Cover

In the set cover problem we are given a collection of non-empty sets C = {S1, . . . , Sn} and a weight
function w on the sets. A set cover is a sub-collection of sets that covers all elements. In other
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words, the requirement is that the union of the sets in the set cover be equal to U ,
⋃

n

i=1 Si. The
objective is to find a minimum-cost set cover.

Let deg(x) be the number of sets in C that contain x, i.e., deg(x) = | {S ∈ C |x ∈ S} |. Let
dmax = maxx∈U deg(x). We present a fully dmax-effective weight function w1. Let x be an element
that is not covered by any zero-weight set, and let ε = min{w(S) |x ∈ S}. Define:

w1(S) =

{

ε x ∈ S,

0 otherwise.

w1 is dmax-effective since (1) the cost of every feasible solution is bounded by ε · deg(x) ≤ ε · dmax,
and (2) every set cover must cover x, and therefore must cost at least ε.

Note that vertex cover can be seen as a set cover problem in which the sets are the vertices and
the elements are the edges (and therefore dmax = 2). Indeed, Algorithm RecursiveVC is a special
case of the algorithm that is implied by the discussion above.

3.2 Background

For the unweighted set cover problem, Johnson [46] and Lovász [52] show that the greedy algorithm
is an Hsmax

-approximation algorithm, where Hn the nth harmonic number, i.e., Hn =
∑

n

i=1
1
i
, and

smax is the maximum size of a set. This result was generalize by Chvátal [28] result to the weighted
case. Hochbaum [42] gives two dmax-approximation algorithms, both of which are based on solving
a linear program. Bar-Yehuda and Even [16] suggest a linear time primal-dual dmax-approximation
algorithm. In subsequent work [17], they present the Local Ratio Theorem and provide a local ratio
analysis of the same algorithm. (Their analysis is the one given in this section.) Feige [32] proves
a lower bound of (1− o(1)) ln |U | (unless NP⊆DTIME(nO(log log n))). Raz and Safra [59] show that
set cover cannot be approximated within a factor of c log n for some c > 0 unless P=NP.

4 A Framework for Covering Problems

In the problems we have seen this far, we were always able to identify a small subset of items
(vertices or sets) and argue that every feasible solution must include at least one of them. We
defined a weight function w1 that associated a weight of ε with each of the items in this small
subset and a weight of zero with all others. Thus, we were able to obtain an approximation ratio
bounded by the size of the subset. There are many problems, though, where it is impossible to
identify such a small subset, since no such subset necessarily exists.

An good example is the partial set cover problem (or partial cover problem, for short). This
problem is similar to set cover except that not all elements should be covered. More specifically,
the input consists of a collection of sets, a weight function on the sets, and a number k, and we
want to find a minimum-cost collection of sets that covers at least k of the elements. The crucial
difference between set cover and partial set cover is that in the latter, there is no single element
that must be covered by all feasible solutions. Recall that the algorithm for set cover picked some
element x and defined a weight function w1 that associated a weight of ε with each of the sets that
contains x. The analysis was based on the fact that, with respect to w1, ε is a lower bound, since x
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must be covered, while ε · deg(x) is an upper bound on the cost of every set cover. This approach
fails for partial set cover—an optimal solution need not necessarily cover x, and therefore ε is no
longer a lower bound. Thus if we use w1, we will end up with a solution whose weight is positive,
while OPT (with respect to w1) may be equal to 0.

We cope with such hard situations by extending the same upper-bound/lower-bound idea. Even
if we cannot identify a small subset of items that must contribute to all solutions, we know that the
set of all items must surely do so (since, otherwise, the empty set is an optimal solution). Thus,
to prevent OPT from being equal to 0, we can assign a positive weight to every item (or at least
to many items). This takes care of the lower bound, but raises the question of how to obtain a
non-trivial upper bound. Clearly, we cannot hope that the cost of every feasible solution will always
be within some reasonable factor of the cost of a single item. However, in some cases it is enough
to obtain an upper bound only for minimal solutions. A minimal solution is a feasible solution
that is minimal with respect to set inclusion, i.e., a feasible solution all of whose proper subsets
are not feasible. Minimal solutions arise naturally in the context of covering problems, which are
the problems for which feasible solutions have the property of being monotone inclusion-wise, that
is, the property that adding items to a feasible solution cannot render it infeasible. (For example,
adding a set to a set cover yields a set cover, so set cover is a covering problem. In contrast,
adding an edge to a spanning tree does not yield a tree, so minimum spanning tree is not a covering
problem.) The idea of focusing on minimal solutions leads to the following definition.

Definition 2 Given a set of constraints F on vectors in R
n and a number r ≥ 1, a weight vector

w ∈ R
n is said to be r-effective if there exists a number b such that b ≤ w · x ≤ r · b for all minimal

feasible solutions x.

Note that any fully r-effective weight function is also r-effective, while the opposite direction is
not always true.

If we can prove that our algorithm uses r-effective weight functions and returns minimal so-
lutions, we will have essentially proved that it is an r-approximation algorithm. Designing an
algorithm to output minimal solutions is not hard. Most of the creative effort is therefore concen-
trated in finding an r-effective weight function (for a small r).

In this section we present local ratio algorithms for the partial cover and feedback vertex set
problems. Both algorithms depend on obtaining minimal solutions. We describe and analyze the
algorithm for partial set cover in full detail. We then outline a general local ratio framework for
covering problems, and discuss the algorithm for feedback vertex set informally with reference to
this framework.

4.1 Partial Set Cover

In the partial set cover problem the input consists of a collection of non-empty sets C = {S1, . . . , Sn},
a weight function w on the sets, and a number k. The objective is to find a minimum-cost sub-
collection of C that covers at least k elements in U ,

⋃

n

i=1 Si. We assume that a feasible solution
exists, i.e., that k ≤ |U |. The partial cover problem generalizes set cover since in the set cover
problem k is simply set to |U |.

Next, we present a max {dmax, 2}-approximation algorithm. (Recall that dmax = maxx∈U deg(x),
where deg(x) = | {S ∈ C |x ∈ S} |.)
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Algorithm PSC(U, C, w, k)

1. If k ≤ 0, return ∅.
2. Else, if there exists a set S ∈ C such that w(S) = 0 do:
3. Let U ′, C′ be the instance obtained by removing S.
4. P ′ ← PSC(U ′, C′, w, k − |S|).
5. If P ′ covers at least k elements in U :
6. Return the solution P = P ′.
7. Else:
8. Return the solution P = P ′ ∪ {S}.
9. Else:

10. Let ε be maximal such that ε ·min{|S|, k} ≤ w(S) for all S ∈ C.
11. Define the weight functions w1(x) = ε ·min{|S|, k} and w2 = w − w1.
12. Return PSC(U, C, w2, k).

Note the slight abuse of notation in Line 4. The weight function in the recursive call is not
w itself, but rather the restriction of w to C ′. We will continue to silently abuse notation in this
manner.

Let us analyze the algorithm. We claim that the algorithm finds a minimal solution that is
max {dmax, 2}-approximate. Intuitively, Lines 3–8 ensure that the solution returned is minimal,
while the weight decomposition in Lines 9–12 ensures that every minimal solution is max {dmax, 2}-
approximate. This is done by associating with each set S a weight that is proportional to its
“covering power,” which is the number of elements in S, but not more than k, since covering more
than k elements is no better than covering k elements.

Proposition 2 Algorithm PSC returns a feasible minimal solution.

Proof. The proof is by induction on the recursion. At the recursion basis the solution returned is
the empty set, which is both feasible (since k ≤ 0) and minimal. For the inductive step, k > 0 and
there are two cases to consider. If Lines 9–12 are executed, then the solution returned is feasible
and minimal by the inductive hypothesis. Otherwise, Lines 3–8 are executed. By the inductive
hypothesis P ′ is minimal and feasible with respect to (U ′, C′, k − |S|). If P ′ = ∅ then |S| ≥ k and
P = P ′ ∪ {S} is clearly feasible and minimal. Otherwise, P ′ covers at least k − |S| elements in
U \ S, and by minimality, for all T ∈ P ′, the collection P ′ \ {T} covers less than k − |S| elements
that are not contained in S. (Note that P ′ 6= ∅ implies k > |S|.) Consider the solution P . Either
P = P ′, which is the case if P ′ covers at least k or more elements, or else P = P ′ ∪ {S}, in which
case P covers at least k − |S| elements that are not contained in S and an additional |S| elements
that are contained in S. In either case P covers at least k elements and is therefore feasible. It is
also minimal (in either case), since for all T ∈ P , if T 6= S, then P \ {T} covers less than k − |S|
elements that are not contained in S and at most |S| elements that are contained in S, for a total
of less than k elements, and if T = S, then S ∈ P , which implies P = P ′ ∪ {S}, which is only
possible if P \ {S} = P ′ covers less than k elements. �

Proposition 3 The weight function w1 used in Algorithm PSC is max {dmax, 2}-effective.
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Proof. In terms of w1, every feasible solution costs at least ε · k, since it either contains a set
whose cost is ε · k, or else consists solely of sets whose size is less than k, in which case the cost of
the solution equals ε times the total sizes of the sets in the solution, which must be at least k in
order to cover k elements. To prove that every minimal solution costs at most ε · k ·max {dmax, 2},
consider a non-empty minimal feasible solution P . If P is a singleton, its cost is at most εk̇, and
the claim follows. Otherwise, we prove the claim by showing that

∑

S∈P
|S| ≤ k · max {dmax, 2}.

We say that an element x is covered r times by P if |{S ∈ P |x ∈ S}| = r. We bound the total
number of times elements are covered by P , since this number is equal to

∑

S∈P
|S|. Clearly every

element x may be covered at most deg(x) ≤ dmax times. Thus, if t is the number of elements that
are covered by P twice or more, these elements contribute at most t · dmax to the count. As for the
elements that are covered only once, they contribute exactly

∑

S∈P
|S|1, where |S|1 is the number

of elements covered by S but not by any other member of P . Let S∗ = arg min {|S|1 |S ∈ P}.
Then (by the choice of S∗ and the fact that P is not a singleton) |S∗|1 ≤

∑

S∈P\{S∗} |S|1. In
addition, t +

∑

S∈P\{S∗} |S|1 < k by the minimality of P . Thus the elements that are covered only
once contribute |S∗|1 +

∑

S∈P\{S∗} |S|1 ≤ 2
∑

S∈P\{S∗} |S|1 < 2(k − t), and the total is less than
t · dmax + 2(k − t) ≤ k ·max {dmax, 2}, where the inequality follows from the fact that t ≤ k (which
is implied by the minimality of P ). �

Theorem 4 Algorithm PSC returns max {dmax, 2}-approximate solutions.

Proof. The proof is by induction on the recursion. In the base case the solution returned is
the empty set, which is optimal. For the inductive step, if Lines 3–8 are executed, then P ′ is
max {dmax, 2}-approximate with respect to (U ′, C′, w, k − |S|) by the inductive hypothesis. Since
w(S) = 0, the cost of P equals that of P ′ and the optimum for (U, C, w, k) cannot be smaller than
the optimum value for (U ′, C′, w, k − |S|) because if P ∗ is an optimal solution for (U, C, w, k), then
P ∗ \ {S} is a feasible solution of the same cost for (U ′, C′, w, k − |S|). Hence P is max {dmax, 2}-
approximate with respect to (U, C, w, k). If, on the other hand, Lines 10–12 are executed, then by
the inductive hypothesis the solution returned is max {dmax, 2}-approximate with respect to w2,
and by Proposition 3 it is also max {dmax, 2}-approximate with respect to w1. Thus by the Local
Ratio Theorem it is max {dmax, 2}-approximate with respect to w as well. �

4.2 A Framework

A local ratio algorithm for a covering problem typically consists of a three-way if condition that
directs execution to one of the following three primitives: computation of optimal solution, problem
size reduction, or weight decomposition. The top-level description of the algorithm is:

1. If a zero-cost minimal solution can be found, do: computation of optimal solution.

2. Else, if the problem contains a zero-cost element, do: problem size reduction.

3. Else, do: weight decomposition.

The three types of primitives are:

11



Computation of optimal solution. Find a zero-cost minimal solution and return it. (Typically,
the solution is simply the empty set.) This is the recursion basis.

Problem size reduction. This primitive consists of three parts.

1. Pick a zero-cost item, and assume it is taken into the solution. Note that this changes the
problem instance, and may entail further changes to achieve consistency with the idea
that the item has been taken temporarily to the solution. For example, in the partial
set cover problem we selected a zero-cost set and assumed it is part of our solution.
Hence, we have deleted all elements contained in it and reduced the covering requirement
parameter k by the size of this set. Note that the modification of the problem instance
may be somewhat more involved. For example, a graph edge might be eliminated by
contracting it. As a result, two vertices are “fused” together and the edges incident on
them are merged or deleted. In other words, the modification may consist of removing
some existing items and introducing new ones. This, in turn, requires that the weight
function be modified to cover the new items. However, it is important to realize that the
modification of the weight function amounts to a re-interpretation of the old weights in
terms of the new instance and not to an actual change of weights.

2. Solve the problem recursively on the modified instance.

3. If the solution returned (when re-interpreted in terms of the original instance) is feasible
(for the original instance), return it. Otherwise, add the deleted zero-cost item to the
solution, and return it.

Weight decomposition. Construct an r-effective weight function w1 such that w2 = w − w1 is
non-negative, and solve the problem recursively using w2 as the weight function. Return the
solution obtained.

We note that the above description of the framework should not be taken too literally. Each
branch of the three-way if statement may actually consist of several sub-cases, only one of which is
to be executed. We shall see an example of this in the algorithm for feedback vertex set (Section 4.3).

The analysis of an algorithm that follows the framework is similar to our analysis for partial set
cover. It consists of proving the following three claims.

Claim 1. The algorithm outputs a minimal feasible solution.

This claim is proven by induction on the recursion. In the base case the solution is feasible
and minimal by design. For the inductive step, if the algorithm performs weight decomposi-
tion, then by the inductive hypothesis the solution is feasible and minimal. If the algorithm
performs problem size reduction, the claim follows from the fact that the solution returned
by the recursive call is feasible and minimal with respect to the modified instance (by the
inductive hypothesis) and it is extended only if it is infeasible with respect to the current
instance. Although the last argument seems straightforward, the details of a rigorous proof
tend to be slightly messy, since they depend on the way in which the instance is modified.

Claim 2. The weight function w1 is r-effective.

The proof depends on the combinatorial structure of the problem at hand. Indeed, the key
to the design of a local ratio algorithm is understanding the combinatorial properties of the
problem and finding the “right” r and r-effective weight function (or functions).

12



Claim 3. The algorithm computes an r-approximate solution.

The proof of this claim is also by induction on the recursion, based on the previous two claims.
In the base case the computation of optimal solution ensures that the solution returned is
r-approximate. For the inductive step, we have two options. In the problem size reduction
case, the solution found recursively for the modified instance is r-approximate by the inductive
hypothesis, and it has the same cost as the solution generated for the original instance, since
the two solutions may only differ by a zero-weight item. This, combined with the fact that
the optimum can only decrease because of instance modification, yields the claim. In the
weight decomposition case, the claim follows by the inductive hypothesis and the Local Ratio
Theorem, since the solution is feasible and minimal, and w1 is r-effective.

4.3 Feedback Vertex Set

A set of vertices in an undirected graph is called a feedback vertex set (FVS for short) if its removal
leaves an acyclic graph (i.e., a forest). Another way of saying this is that the set intersects all
cycles in the graph. The feedback vertex set problem is: given a vertex-weighted graph, find a
minimum-weight FVS. In this section we describe and analyze a 2-approximation algorithm for the
problem following our framework for covering problems.

The algorithm is as follows.

Algorithm FVS(G,w)

1. If G is empty, return ∅.
2. If there exists a vertex v ∈ V such that deg(v) ≤ 1 do:
3. return FVS(G \ {v} , w).

4. Else, if there exists a vertex v ∈ V such that w(v) = 0 do:
5. F ′ ← FVS(G \ {v} , w).
6. If F ′ is an FVS with respect to G:
7. Return F ′.
8. Else:
9. Return F = F ′ ∪ {v}.

10. Else:

11. Let ε = minv∈V
w(v)

deg(v) .

12. Define the weight functions w1(v) = ε · deg(v)
and w2 = w − w1.

13. Return FVS(G,w2)

The analysis follows the pattern outlined above—the only interesting part is showing that
w1 is 2-effective. For a given set of vertices X let us denote deg(X) =

∑

v∈X
deg(v). Since

w1(F ) = ε · deg(F ) for any FVS F , it is sufficient to demonstrate the existence of a number b such
that for all minimal solutions F , b ≤ deg(F ) ≤ 2b. Note that the weight decomposition is only
applied to graphs in which all vertices have degree at least 2, so we shall henceforth assume that
our graph G = (V,E) is such a graph.
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Consider a minimal feasible solution F . The removal of F from G leaves a forest on |V | − |F |
nodes. This forest contains less than |V | − |F | edges, and thus the number of edges deleted to
obtain it is greater than |E|− (|V |− |F |). Since each of these edges is incident on some vertex in F ,
we get |E| − (|V | − |F |) < deg(F ) (which is true even if F is not minimal). Let F ∗ be a minimum
cardinality FVS, and put b = |E| − (|V | − |F ∗|). Then b < deg(F ), and it remains to prove that
deg(F ) ≤ 2b = 2|E| − 2(|V | − |F ∗|). We show equivalently that deg(V \ F ) ≥ 2(|V | − |F ∗|). To
do so we select for each vertex v ∈ F a cycle Cv containing v but no other member of F (the
minimality of F ensures the existence of such a cycle). Let Pv denote the path obtained from Cv

by deleting v, and let V ′ denote the union of the vertex sets of the Pvs. Consider the connected
components of the subgraph induced by V ′. Each connected component fully contains some path
Pv. Since the cycle Cv must contain a member of the FVS F ∗, either Pv contains a vertex of F ∗ \F
or else v ∈ F ∗ ∩F . Thus there are at most |F ∗ \ F | connected components that contain vertices of
F ∗ and at most |F ∗ ∩ F | that do not, for a total of at most F ∗ connected components. Hence, the
subgraph contains at least |V ′|− |F ∗| edges, all of which have both endpoints in V ′. In addition, G
contains at least 2|F | edges with exactly one endpoint in V ′—the two edges connecting each v ∈ F
with the path Pv (to form the cycle Cv). It follows that deg(V ′) ≥ 2(|V ′| − |F ∗|) + 2|F |. Thus,
bearing in mind that F ⊆ V \ V ′ and that the degree of every vertex is at least two, we see that

deg(V \ F ) = deg(V ′) + deg((V \ V ′) \ F )

≥ 2(|V ′| − |F ∗|) + 2|F |+ 2(|V | − |V ′| − |F |)
= 2(|V | − |F ∗|).

4.4 Background

Partial set cover. The partial set cover problem was first studied by Kearns [48] in relation to
learning. He proves that the performance ratio of the greedy algorithm is at most 2Hn +3, where n
is the number of sets. (Recall that Hn is the nth harmonic number.) Slav́ık [60] improves this bound
to Hk. The special case in which the cardinality of every set is exactly 2 is called the partial vertex
cover problem. This problem was studied by Bshouty and Burroughs [25], who obtained the first
polynomial time 2-approximation algorithm for it. The max {dmax, 2}-approximation algorithm for
partial set cover given in this section (Algorithm PSC) is due to Bar-Yehuda [14]. In fact, his
approach can be used to approximate an extension of the partial cover problem in which there is a
length li associated with each element x, and the goal is to cover elements of total length at least k.
(The plain set cover problem is the special case where li = 1 for all i.) Gandhi et al. [34] present a
multi-phase primal-dual algorithm for partial cover achieving a performance ratio of max {dmax, 2}.
Minimal solutions and feedback vertex set. Minimal solutions first appeared in a local
ratio algorithm for FVS. FVS is NP-hard [47] and MAX SNP-hard [53], and at least as hard
to approximate as vertex cover [51]. An O(log n)-approximation algorithm for unweighted FVS is
implies by a lemma due to Erdös and Pósa [31]. Monien and Shultz [55] improve the ratio to

√
log n.

Bar-Yehuda et al. [18] present a 4-approximation algorithm for unweighted FVS, and an O(log n)-
approximation algorithm for weighted FVS. Bafna, Berman, and Fujito [9] present a local ratio
2-approximation algorithm for weighted FVS, whose weight decomposition is somewhat similar to
the one used in Algorithm FVS. Their algorithm is the first local ratio algorithm to make use of
minimal solutions (although this concept was used earlier in primal-dual algorithms for network
design problems [58, 1, 37]). At about the same time, Becker and Geiger [20] also obtained a
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2-approximation algorithm for FVS. Algorithm FVS is a recursive local ratio formulation of their
algorithm. Chudak et al. [26] suggest yet another 2-approximation algorithm, and give primal-dual
analyses of the three algorithms. Fujito [33] proposes a generic local ratio algorithm for a certain
type of node-deletion problems. Algorithm RecursiveVC, Algorithm FVS, and the algorithm
from [9] can be seen as applications of Fujito’s generic algorithm. Bar-Yehuda [15] presents a unified
local ratio approach for covering problems. He present a short generic approximation algorithm
which can explain many known optimization and approximation algorithms for covering problems
(including Fujito’s generic algorithm). Later, Bar-Yehuda and Rawitz [19] devised a framework
that extends the one from [15]. The notion of effectiveness of a weight function first appeared
in [15]. The corresponding primal-dual notion appeared earlier in [22].

5 Scheduling Problems

In this section we turn to applications of the local ratio technique in the context of resource al-
location and scheduling problems. Resource allocation and scheduling problems are immensely
popular objects of study in the field of approximation algorithms and combinatorial optimization,
owing to their direct applicability to many real-life situations and their richness in terms of math-
ematical structure. Historically, they were among the first to be analyzed in terms of worst-case
approximation ratio, and research into these problems continues actively to this day.

In very broad terms, a scheduling problem is one in which jobs presenting different demands
vie for the use of some limited resource, and the goal is to resolve all conflicts. Conflicts are
resolved by scheduling different jobs at different times and either enlarging the amount of available
resource to accommodate all jobs or accepting only a subset of the jobs. Accordingly, we distinguish
between two types of problems. The first type is when the resource is fixed but we are allowed
to reject jobs. The problem is then to maximize the number (or total weight) of accepted jobs,
and there are two natural ways to measure the quality of a solution: in throughput maximization
problems the measure is the total weight of accepted jobs (which we wish to maximize), and in loss
minimization problems it is the total weight of rejected jobs (which we wish to minimize). While
these two measures are equivalent in terms of optimal solutions, they are completely distinct when
one considers approximate solutions. The second type of problem is resource minimization. Here
we must satisfy all jobs, and can achieve this by increasing the amount of resource. The objective
is to minimize the cost of doing so.

Our goal in this section is twofold. First, we demonstrate the applicability of the local ra-
tio technique in an important field of research, and second, we take the opportunity of tackling
throughput maximization problems to develop a local ratio theory for maximization problems in
general. We begin with the latter. We present a local ratio theorem for maximization problems and
sketch a general framework based on it in Section 5.1. We apply this framework to a collection of
throughput maximization problems in Section 5.2. Following that, we consider loss minimization
in Section 5.3, and resource minimization in Section 5.4.

5.1 Local Ratio for Maximization Problems

The Local Ratio Theorem for maximization problems is nearly identical to its minimization coun-
terpart. It applies to optimization problems that can be formulated as follows.
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Given a weight vector w ∈ R
n and a set of feasibility constraints F , find a solution

vector x ∈ R
n satisfying the constraints in F that maximizes the inner product w · x.

Before stating the Local Ratio Theorem for maximization problems, we remind the reader of
our convention that a feasible solution to a maximization problem is said to be r-approximate if its
weight is at least 1/r times the optimum weight (so approximation factors are always greater than
or equal to 1).

Theorem 5 (Local Ratio—Maximization Problems) Let F be a set of feasibility constraints
on vectors in R

n. Let w,w1, w2 ∈ R
n be such that w = w1 + w2. Let x ∈ R

n be a feasible solution
(with respect to F) that is r-approximate with respect to w1 and with respect to w2. Then, x is
r-approximate with respect to w as well.

Proof. Let x∗, x∗
1, and x∗

2 be optimal solutions with respect to w, w1, and w2, respectively.
Clearly, w1 ·x∗

1 ≥ w1 ·x∗ and w2 ·x∗
2 ≥ w2 ·x∗. Thus, w ·x = w1 ·x+w2 ·x ≥ 1

r
(w1 ·x∗

1)+ 1
r
(w2 ·x∗

2) ≥
1
r
(w1 · x∗) + 1

r
(w2 · x∗) = 1

r
(w · x∗). �

The general structure of a local ratio approximation algorithm for a maximization problem is
similar to the one described for the minimization case in Section 4.2. It too consists of a three-way
if condition that directs execution to one of three main options: optimal solution, problem size
reduction, or weight decomposition. There are several differences though. In contrast to what is
done in the minimization case, we make no effort to keep the weight function non-negative, i.e., in
weight decomposition steps we allow w2 to take on negative values. Also, in problem size reduction
steps we usually remove an element whose weight is either zero or negative. Finally and most
importantly, we strive to construct maximal solutions rather than minimal ones. This affects our
choice of w1 in weight decomposition steps. The weight function w1 is chosen such that every
maximal solution (a feasible solution that cannot be extended) is r-approximate with respect to
it2. In accordance, when the recursive call returns in problem size reduction steps, we extend the
solution if possible (rather than if necessary), but we attempt to do so only for zero-weight elements
(not negative weight ones).

As in the minimization case, we use the notion of effectiveness.

Definition 3 In the context of maximization problems, a weight function w is said to be r-effective
if there exists a number b such that b ≤ w · x ≤ r · b for all maximal feasible solutions x.

5.2 Throughput Maximization Problems

Consider the following general problem. The input consists of a set of activities, each requiring
the utilization of a given limited resource. The amount of resource available is fixed over time;
we normalize it to unit size for convenience. The activities are specified as a collection of sets
A1, . . . ,An. Each set represents a single activity: it consists of all possible instances of that
activity. An instance I ∈ Ai is defined by the following parameters.

1. A half-open time interval [s(I), e(I)) during which the activity will be executed. We call s(I)
and e(I) the start-time and the end-time of the instance.

2We actually impose a somewhat weaker condition, as described in Section 5.2.
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Figure 1: An example of activities and instances.

2. The amount of resource required for the activity. We refer to this amount as the width of the
instance and denote it d(I). Naturally, 0 < d(I) ≤ 1.

3. The weight w(I) ≥ 0 of the instance. It represents the profit to be gained by scheduling this
instance of the activity.

Different instances of the same activity may have different parameters of duration, width, or weight.
A schedule is a collection of instances. It is feasible if (1) it contains at most one instance of every
activity, and (2) for all time instants t, the total width of the instances in the schedule whose
time interval contains t does not exceed 1 (the amount of resource available). The goal is to find a
feasible schedule that maximizes the total weight of instances in the schedule. For example, consider
the problem instance depicted in Figure 1. The input consists of three activities, A, B, C, each
comprising several instances, depicted as rectangles in the respective rows. The projection of each
rectangle on the t axis represents the corresponding instance’s time interval. The height of each
rectangle represents the resource requirement (the instance’s width) on a 1:5 scale (e.g., the leftmost
instance of activity C has width 0.6). The weights of the instances are not shown. Numbering the
instances of each activity from left to right, the schedule {A(1), C(3), C(4)} is infeasible because
activity C is scheduled twice; {A(1), C(1)} is infeasible because both instances overlap and their
total width is 1.4; {A(1),B(1), C(4)} is feasible.

In the following sections we describe local ratio algorithms for several special cases of the general
problem. We use the following notation. For a given activity instance I, A(I) denotes the activity
to which I belongs and I(I) denotes the set of all activity instances that intersect I but belong to
activities other than A(I).

5.2.1 Interval Scheduling

In the interval scheduling problem we must schedule jobs on a single processor with no preemption.
Each job consists of a finite collection of time intervals during which it may be scheduled. The
problem is to select a maximum weight subset of non-conflicting intervals, at most one interval
for each job. In terms of our general problem, this is simply the special case where every activity
consists of a finite number of instances and the width of every instance is 1.
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J

Figure 2: J , A(J), and I(J): heavy lines represent A(J); dashed lines represent I(J).

To design the weight decomposition for this problem, we examine the properties of maximal
schedules. Let J be the activity instance with minimum end-time among all activity instances of
all activities (breaking ties arbitrarily). The choice of J ensures that all of the intervals intersecting
it intersect each other (see Figure 2). Consider a maximal schedule S. Clearly S cannot contain
more than one instance from A(J), nor can it contain more than one instance from I(J), since all
of these instances intersect each other. Thus S contains at most two intervals from A(J) ∪ I(J).
On the other hand, S must contain at least one instance from A(J) ∪ I(J), for otherwise it would
not be maximal (since J could be added to it). This implies that the weight function

w1(I) = ε ·
{

1 I ∈ A(J) ∪ I(J),

0 otherwise,

is 2-effective for any choice of ε > 0, and we can expect to obtain a 2-approximation algorithm
based on it.

A logical course of action is to fix ε = min {w(I) : I ∈ A(J) ∪ I(J)} and to solve the problem
recursively on w − w1, relying on two things: (1) w1 is 2-effective; and (2) the solution returned
is maximal. However, we prefer a slightly different approach. We show that w1 actually satisfies
a stronger property than 2-effectiveness. For a given activity instance I, we say that a feasible
schedule is I-maximal if either it contains I, or it does not contain I but adding I to it will
render it infeasible. Clearly, every maximal schedule is also I-maximal for any given I, but the
converse is not necessarily true. The stronger property satisfied by the above w1 is that every
J -maximal schedule is 2-approximate with respect to w1 (for all ε > 0). To see this, observe that
no optimal schedule may contain more than two activity instances from A(J)∪I(J), whereas every
J -maximal schedule must contain at least one (if it contains none, it cannot be J -maximal since J
can be added). The most natural choice of ε is ε = w(J).

Our algorithm for interval scheduling is based on the above observations. The initial call is
IS(A, w), where A is the set of jobs, which we also view as the set of all ∪m

i=1Ai.
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Algorithm IS(A, w)

1. If A = ∅, return ∅.
2. If there exists an interval I such that w(I) ≤ 0 do:
3. Return IS(A \ {I}, w).

4. Else:
5. Let J be the instance with minimum end-time in A.

6. Define w1(I) = w(J) ·
{

1 I ∈ A(J) ∪ I(J),

0 otherwise,

and let w2 = w − w1.
7. S ′ ← IS(A, w2).
8. If S ′ ∪ {J} is feasible:
9. Return S = S ′ ∪ {J}.

10. Else:
11. Return S = S ′.

As with similar previous claims, the proof that Algorithm IS is 2-approximation is by induction
on the recursion. At the basis of the recursion (Line 1) the schedule returned is optimal and hence
2-approximate. For the inductive step there are two possibilities. If the recursive call is made in
Line 3, then by the inductive hypothesis the schedule returned is 2-approximate with respect to
(A \ {I} , w), and since the weight of I is non-positive, the optimum for (A, w) cannot be greater
than the optimum for (A \ {I} , w). Thus the schedule returned is 2-approximate with respect
to (A, w) as well. If the recursive call is made in Line 7, then by the inductive hypothesis S ′ is
2-approximate with respect to w2, and since w2(J) = 0 and S ⊆ S ′ ∪ {J}, it follows that S too is
2-approximate with respect to w2. Since S is J -maximal by construction (Lines 8–11), it is also
2-approximate with respect to w1. Thus, by the Local Ratio Theorem, it is 2-approximate with
respect to w as well.

5.2.2 Independent Set in Interval Graphs

Consider the special case of interval scheduling in which each activity consists of a single instance.
This is exactly the problem of finding a maximum weight independent set in an interval graph (each
instance corresponds to an interval), and it is well known that this problem can be solved optimally
in polynomial time (see, e.g., [39]). We claim that Algorithm IS solves this problem optimally too,
and to prove this it suffices to show that every J -maximal solution is optimal with respect to w1.
This is so because at most one instance from A(J)∪I(J) may be scheduled in any feasible solution
(since A(J) = {J}), and every J -maximal solution schedules one.

5.2.3 Scheduling on Parallel Identical Machines

In this problem the resource consists of k parallel identical machines. Each activity instance may
be assigned to any of the k machines. Thus d(I) = 1/k for all I.
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In order to approximate this problem we use Algorithm IS, but with a different choice of w1,
namely,

w1(I) = w(J) ·







1 I ∈ A(J),
1/k I ∈ I(J),
0 otherwise.

The analysis of the algorithm is similar to the one used for the case k = 1 (i.e., interval scheduling).
It suffices to show that every J -maximal schedule is 2-approximate with respect to w1. This is
so because every J -maximal schedule either contains an instance from A(J) or a set of instances
intersecting J that prevent J from being added to the schedule. In the former case, the weight of
the schedule with respect to w1 is at least w(J). In the latter case, since k machines are available
but J cannot be added, the schedule must already contain k activity instances from I(J), and its
weight (with respect to w1) is therefore at least k · 1

k
· w(J) = w(J). Thus the weight of every

J -maximal schedule is at least w(J). On the other hand, an optimal schedule may contains at
most one instance from A(J) and at most k instances from I(J) (as they all intersect each other),
and thus its weight cannot exceed w(J) + k · 1

k
· w(J) = 2w(J).

Remark. Our algorithm only finds a set of activity instances that can be scheduled, but does not
construct an actual assignment of instances to machines. This can be done easily by scanning the
instances (in the solution found by the algorithm) in increasing order of end-time, and assigning
each to an arbitrary available machine. It is easy to see that such a machine must always exist.
Another approach is to solve the problem as a special case of scheduling on parallel unrelated
machines (described next).

5.2.4 Scheduling on Parallel Unrelated Machines

Unrelated machines differ from identical machines in that a given activity instance may be
assignable only to a subset of the machines, and furthermore, the profit derived from scheduling it
on a machine may depend on the machine (i.e., it need not be the same for all allowable machines).
We can assume that each activity instance may be assigned to precisely one machine. (Otherwise,
simply replicate each instance once for each allowable machine.) We extend our scheduling model
to handle this problem as follows. We now have k types of unit quantity resource (corresponding to
the k machines), each activity instance specifies the (single) resource type it requires, and the fea-
sibility constraint applies to each resource type separately. Since no two instance may be processed
concurrently on the same machine, we set d(I) = 1 for all instances I.

To approximate this problem, we use Algorithm IS but define I(J) slightly differently. Specif-
ically, I(J) is now defined as the set of instances intersecting J that belong to other activities and
can be scheduled on the same machine as J . It is easy to see that again, every J -maximal schedule
is 2-approximate with respect to w1, and thus the algorithm is 2-approximation.

5.2.5 Bandwidth Allocation of Sessions in Communication Networks

Consider a scenario in which the bandwidth of a communication channel must be allocated to
sessions. Here the resource is the channel’s bandwidth, and the activities are sessions to be routed
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through the channel. A session is specified as a list of intervals in which it can be scheduled,
together with a width requirement and a weight for each interval. The goal is to find the most
profitable set of sessions that can utilize the available bandwidth.

To approximate this problem we first consider the following two special cases.

Special Case 1 All instances are wide, i.e., d(I) > 1/2 for all I.

Special Case 2 All activity instances are narrow, i.e., d(I) ≤ 1/2 for all I.

In the case of wide instances the problem reduces to interval scheduling since no pair of inter-
secting instances may be scheduled together. Thus, we use Algorithm IS to find a 2-approximate
schedule with respect to the wide instances only.

In the case of narrow instances we find a 3-approximate schedule by a variant of Algorithm IS
in which w1 is defined as follows:

w1(I) = w(J) ·







1 I ∈ A(J),
2 · d(I) I ∈ I(J),
0 otherwise.

To prove that the algorithm is a 3-approximation algorithm it suffices to show that every J -maximal
schedule is 3-approximate with respect to w1. (All other details are essentially the same as for
interval scheduling.) A J -maximal schedule either contains an instance of A(J) or contains a set
of instances intersecting J that prevent J from being added to the schedule. In the former case the
weight of the schedule is at least w(J). In the latter case, since J cannot be added, the combined
width of activity instances from I(J) in the schedule must be greater than 1 − d(J) ≥ 1/2, and
thus their total weight (with respect to w1) must be greater than 1

2 · 2w(J) = w(J). Thus, the
weight of every J -maximal schedule is at least w(J). On the other hand, an optimal schedule may
contain at most one instance from A(J) and at most a set of instances from I(J) with total width 1
and hence total weight 2w(J). Thus, the optimum weight is at most 3w(J), and therefore every
J -maximal schedule is 3-approximate with respect to w1.

In order to approximate the problem in the general case where both narrow and wide activity
instances are present, we solve it separately for the narrow instances and for the wide instances, and
return the solution of greater weight. Let OPT be the optimum weight for all activity instances,
and let OPTn and OPTw be the optimum weight for the narrow instance and for the wide instances,
respectively. Then, the weight of the schedule found is at least max

{

1
3OPTn, 1

2OPTw

}

. Now, either
OPTn ≥ 3

5OPT, or else OPTw ≥ 2
5OPT. In either case the schedule returned is 5-approximate.

5.2.6 Continuous Input

In our treatment of the above problems we have tacitly assumed that each activity is specified
as a finite set of instances. We call this type of input discrete input. In a generalization of the
problem we can allow each activity to consist of infinitely many instances by specifying the activity
as a finite collection of time windows. A time window T is defined by four parameters: start-time
s(T ), end-time e(T ), instance length l(T ) ≤ e(T ) − s(T ), and weight w(T ). It represents the
set of all instances defined by intervals of length l(T ) contained in the interval [s(T ), e(T )) with
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associated profit w(T ). We call this type of input continuous input. The ideas underlying our
algorithms for discrete input apply equally well to continuous input, and we can achieve the same
approximation guarantees. However, because infinitely many intervals are involved, the running
times of the algorithms might become super-polynomial (although they are guaranteed to be finite).
To obtain efficiency we can sacrifice an additive term of ε in the approximation guarantee in return
for an implementation whose worst case time complexity is O(n2/ε). Reference [11] contains the
full details.

5.2.7 Throughput Maximization with Batching

The main constraint in many scheduling problems is that no two jobs may be scheduled on the
same machine at the same time. However, there are situations in which this constraint is relaxed,
and batching of jobs is allowed. Consider, for example, a multimedia-on-demand system with a
fixed number of channels through which video films are broadcast to clients (e.g., through a cable
TV network). Each client requests a particular film and specifies several alternative times at which
he or she would like to view it. If several clients wish to view the same movie at the same time,
their requests can be batched together and satisfied simultaneously by a single transmission. In
the throughput maximization version of this problem, we aim to maximize the revenue by deciding
which films to broadcast, and when, subject to the constraint that the number of channels is fixed
and only a single movie may be broadcast on a given channel at any time.

Formally, the batching problem is defined as follows. We are given a set of jobs, to be processed
on a system of parallel identical machines. Each job is defined by its type, its weight, and a set of
start-times. In addition, each job type has a processing time associated with it. (In terms of our
video broadcasting problem, machines correspond to channels, jobs correspond to clients, job types
correspond to movies, job weights correspond to revenues, start-times correspond to alternative
times at which clients wish to begin watching the films they have ordered, and processing times
correspond to movie lengths.) A job instance is a pair (J, t) where J is a job and t is one of its
start-times. Job instance (J, t) is said to represent job J . We associate with it the time interval
[t, t + p), where p is the processing time associated with J ’s type. A batch is a set of job instances
such that all jobs represented in the set are of identical type, no job is represented more than once,
and all time intervals associated with the job instances are identical. We associate with the batch
the time interval associated with its job instances. Two batches conflict in jobs if there is a job
represented in both; they conflict in time if their time intervals are not disjoint. A feasible schedule
is an assignment of batches to machines such that no two batches in the schedule conflict in jobs
and no two batches conflicting in time are assigned to the same machine. The goal is to find a
maximum-weight feasible schedule. (The weight of a schedule is the total weight of jobs represented
in it.)

The batching problem can be viewed as a variant of the scheduling problem we have been dealing
with up till now. For simplicity, let us consider the single machine case. For every job, consider
the set of batches in which it is represented. All of these batches conflict with each other, and we
may consider them instances of a single activity. In addition, two batches with conflicting time
intervals also conflict with each other, so it seems that the problem reduces to interval scheduling.
There is a major problem with this interpretation, though, even disregarding the fact that the
number of batches may be exponential. The problem is that if activities are defined as we have
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suggested, i.e., each activity is the set of all batches containing a particular job, then activities are
not necessarily disjoint sets of instances, and thus they lack a property crucial for our approach
to interval scheduling. Nevertheless, the same basic approach can be still be applied, though the
precise details are far too complex to be included in a survey such as this. We refer the reader to
Bar-Noy et al. [12], who describe a 4-approximation algorithm for bounded batching (where there
is an additional restriction that no more than a fixed number of job instances may be batched
together), and a 2-approximation algorithm for unbounded batching.

5.3 Loss Minimization

In the previous section we dealt with scheduling problems in which our aim was to maximize the
profit from scheduled jobs. In this section we turn to the dual problem of minimizing the loss due
to rejected jobs.

Recall that in our general scheduling problem (defined in Section 5.2) we are given a limited
resource, whose amount is fixed over time, and a set of activities requiring the utilization of this
resource. Each activity is a set of instances, at most one of which is to be selected. In the loss
minimization version of the problem considered here, we restrict each activity to consist of a single
instance, but we allow the amount of resource to vary in time. Thus the input consists of the
activity specification as well as a positive function D(t) specifying the amount of resource available
at every time instant t. Accordingly, we allow arbitrary positive instance widths (rather than
assuming that all widths are bounded by 1). A schedule is feasible if for all time instants t, the
total width of instances in the schedule containing t is at most D(t). Given a feasible schedule, the
feasible solution it defines is the set of all activity instances not in the schedule. The goal is to find
a minimum weight feasible solution.

We now present a variant of Algorithm IS achieving an approximation guarantee of 4. We
describe the algorithm as one that finds a feasible schedule, with the understanding that the feasible
solution actually being returned is the schedule’s complement. The algorithm is as follows. Let
(A, w) denote the input, where A is the description of the activities excluding their weights, and w
is the weight function. If the set of all activity instances in A constitutes a feasible schedule, return
this schedule. Otherwise, if there is a zero-weight instance I, delete it, solve the problem recursively
to obtain a schedule S, and return either S ∪{I} or S, depending (respectively) on whether S ∪{I}
is a feasible schedule or not. Otherwise, decompose w by w = w1 + w2 (as described in the next
paragraph), where w2(I) ≥ 0 for all activity instances I, with equality for at least one instance,
and solve recursively for (A, w2).

Let us define the decomposition of w by showing how to compute w1. For a given time instant
t, let I(t) be the set of activity instances containing t. Define ∆(t) =

∑

I∈I(t) d(I) − D(t). To
compute w1, find t∗ maximizing ∆(·) and let ∆∗ = ∆(t∗). Assuming ∆∗ > 0 (otherwise the schedule
containing all instances is feasible), let

w1(I) = ε ·
{

min{∆∗, d(I)} I ∈ I(t∗),
0 otherwise,

where ε (which depends on t∗) is the unique scaler resulting in w2(I) ≥ 0 for all I and w2(I) = 0
for at least one I. A straightforward implementation of this algorithm runs in time polynomial in
the number of activities and the number of time instants at which D(t) changes value.
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To prove that the algorithm is 4-approximation, it suffices (by the usual arguments) to show
that w1 is 4-effective. In other words, it suffices to show that every solution defined by a maximal
feasible schedule is 4-approximate with respect to w1. In the sequel, when we say weight, we mean
weight with respect to w1.

Observation 6 Every collection of instances from I(t∗) whose total width is at least ∆∗ has total
weight at least ε∆∗.

Observation 7 Both of the following evaluate to at most ε∆∗: (1) the weight of any single instance,
and (2) the total weight of any collection of instances whose total width is at most ∆∗.

Consider an optimal solution (with respect to w1). Its weight is the total weight of instances
in I(t∗) that are not in the corresponding feasible schedule. Since all of these instances intersect
at t∗, their combined width must be at least ∆∗. Thus, by Observation 6, the optimal weight is
at least ε∆∗. Now consider the complement of a maximal feasible schedule M. We claim that it
is 4-approximate because its weight does not exceed 4ε∆∗. To prove this, we need the following
definitions. For a given time instant t, letM(t) be the set of instances containing t that are not in
the scheduleM, (i.e., M(t) = I(t) \M). We say that t is critical if there is an instance I ∈M(t)
such that adding I to M would violate the width constraint at t. We say that t is critical because
of I. Note that a single time instant may be critical because of several different activity instances.

Lemma 8 If t is a critical time instant, then
∑

I∈M(t) w1(I) < 2ε∆∗.

Proof. Let J be an instance of maximum width in M(t). Then, since t is critical, it is surely
critical because of J . This implies that

∑

I∈M∩I(t) d(I) > D(t)− d(J). Thus,

∑

I∈M(t)

d(I) =
∑

I∈I(t)

d(I) −
∑

I∈M∩I(t)

d(I)

= D(t) + ∆(t) −
∑

I∈M∩I(t)

d(I)

< d(J) + ∆(t)

≤ d(J) + ∆∗.

Hence,
∑

I∈M(t)\{J} d(I) < ∆∗, and therefore, by Observation 7,

∑

I∈M(t)

w1(I) =
∑

I∈M(t)\{J}

w1(I) + w1(J) ≤ ε∆∗ + ε∆∗ = 2ε∆∗.

�

Thus there are two cases to consider. If t∗ is a critical point, then the weight of the solution is
∑

I∈M(t∗) w1(I) < 2ε∆∗ and we are done. Otherwise, let tL < t∗ and tR > t∗ be the two critical time

instants closest to t∗ on both sides (it may be that only one of them exists). The maximality of the
schedule implies that every instance inM(t∗) is the cause of criticality of at least one time instant.
Thus each such instance must contain tL or tR (or both). It follows thatM(t∗) ⊆M(tL)∪M(tR).
Hence, by Lemma 8, the total weight of these instances is less than 4ε∆∗.
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5.3.1 Application: General Caching

In the general caching problem a replacement schedule is sought for a cache that must accommodate
pages of varying sizes. The input consists of a fixed cache size D > 0, a collection of pages
{1, 2, . . . ,m}, and a sequence of n requests for pages. Each page j has a size 0 < d(j) ≤ D and a
weight w(j) ≥ 0, representing the cost of loading it into the cache. We assume for convenience that
time is discrete and that the ith request is made at time i. (These assumptions cause no loss of
generality as will become evident from our solution.) We denote by r(i) the page being requested
at time i. A replacement schedule is a specification of the contents of the cache at all times. It
must satisfy the following condition. For all 1 ≤ i ≤ n, page r(i) is present in the cache at time i
and the sum of sizes of the pages in the cache at that time is not greater than the cache size D.
The initial contents of the cache (at time 0) may be chosen arbitrarily. Alternatively, we may insist
that the cache be empty initially. The weight of a given replacement schedule is

∑

w(r(i)) where
the sum is taken over all i such that page r(i) is absent from the cache at time i− 1. The objective
is to find a minimum weight replacement schedule.

Observe that if we have a replacement schedule that evicts a certain page at some time between
two consecutive requests for it, we may as well evict it immediately after the first of these requests
and bring it back only for the second request. Thus, we may restrict our attention to schedules in
which for every two consecutive requests for a page, either the page remains present in the cache
at all times between the first request and the second, or it is absent from the cache at all times in
between. This leads naturally to a description of the problem in terms of time intervals, and hence
to a reduction of the problem to our loss minimization problem, as follows. Given an instance of the
general caching problem, define the resource amount function by D(i) = D− d(r(i)) for 1 ≤ i ≤ n,
and D(0) = D (or D(0) = 0 if we want the cache to be empty initially). Define the activity instances
as follows. Consider the request made at time i. Let j be the time at which the previous request
for r(i) is made, or j = −1 if no such request is made. If j + 1 ≤ i − 1, we define an activity
instance with time interval [j + 1, i− 1], weight w(r(i)), and width d(r(i)). This reduction implies
a 4-approximation algorithm for the general caching problem via our 4-approximation algorithm
for loss minimization.

5.4 Resource Minimization

Until now we have dealt with scheduling problems in which the resource was limited, and thus
we were allowed to schedule only a subset of the jobs. In this section we consider the case where
all jobs must be scheduled, and the resource is not limited (but must be paid for). The objective
is to minimize the cost of the amount of resource in the solution. We present a 3-approximation
algorithm for such a problem. We refer to the problem as the bandwidth trading problem, since it is
motivated by bandwidth trading in next generation networks. (We shall not discuss this motivation
here, as it is rather lengthy.)

The algorithm we present here is somewhat unusual in that it does not use an r-effective weight
function in the weight decomposition steps. Whereas previous algorithms prune (or extend), if
possible, the solution returned by the recursive call in order to turn it into a “good” solution,
i.e., one that is minimal (or maximal), the algorithm we present here uses a weight function for
which good solutions are solutions that satisfy a certain property different from minimality or
maximality. Accordingly, it modifies the solution returned in a rather elaborate manner.
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5.4.1 Bandwidth Trading

In the bandwidth trading problem we are given a set of machine types T = {T1, . . . , Tm} and a set
of jobs J = {1, . . . , n}. Each machine type Ti is defined by two parameters: a time interval I(Ti)
during which it is available, and a weight w(Ti), which represents the cost of allocating a machine
of this type. Each job j is defined by a single time interval I(j) during which it must be processed.
We say that job j contains time t if t ∈ I(j). A given job j may be scheduled feasibly on a machine
of type T if type T is available throughout the job’s interval, i.e., if I(j) ⊆ I(T ). A schedule is a
set of machines together with an assignment of each job to one of them. It is feasible if every job is
assigned feasibly and no two jobs with intersecting intervals are assigned to the same machine. The
cost of a feasible schedule is the total cost of the machines it uses, where the cost of a machine is
defined as the weight associated with its type. The goal is to find a minimum-cost feasible schedule.
We assume that a feasible schedule exists. (This can be checked easily.)

Our algorithm for the problem follows.

Algorithm BT(T , J, w)

1. If J = ∅, return ∅.
2. Else, if there exists a machine type T ∈ T such that w(T ) = 0 do:
3. Let J ′ be the set of jobs that can be feasibly scheduled on

machines of type T , i.e., J ′ = {j ∈ J | I(j) ⊆ I(T )}.
4. S′ ← BT(T \ {T} , J \ J ′, w).
5. Extend S ′ to all J by allocating |J ′| machines of type T and

scheduling one job from J ′ on each.

6. Return the resulting schedule S.

7. Else:
8. Let t be a point in time contained in a maximum number of jobs, and

let Tt be the set of machine types available at time t (see Figure 3).

9. Let ε = min {w(T ) |T ∈ Tt}.

10. Define the weight functions w1(T ) =

{

ε T ∈ Tt,
0 otherwise,

and w2 = w −w1.

11. S′ ← BT(T , J, w2).
12. Transform S ′ into a new schedule S (in a manner described below.

13. Return S.

To complete the description of the algorithm we must describe the transformation of S ′ to S
referred to in Line 12. We shall do so shortly, but for now let us just point out two facts relating
to the transformation.

1. For all machine types T , S does not use more machines of type T than S ′.

2. Let k be the number of jobs containing time t (Line 8). The number of machines used by S
whose types are in Tt is at most 3k.
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Machine
Types

Jobs

Figure 3: Jobs containing time t (top, dark), and machine types available at time t (bottom, dark).

Based on these facts, we now prove that the algorithm is a 3-approximation algorithm. The proof
is by induction on the recursion. In the base case (J = ∅), the schedule returned is optimal and
therefore 3-approximate. For the inductive step there are two cases. If the recursive invocation is
made in Line 4, then by the inductive hypothesis, S ′ is 3-approximate with respect to (T \{T} , J \
J ′, w). In addition, no job in J \ J ′ can be scheduled feasibly on a machine of type T ; all jobs in J ′

can be scheduled feasibly on machines of type T ; and machines of type T are free (w(T ) = 0). Thus
w(S) = w(S ′), and the optimum cost for (T , J, w) is the same as for (T \ {T} , J \J ′, w). Therefore
S is 3-approximate. The second case in the inductive step is that the recursive call is made in
Line 11. In this case, S ′ is 3-approximate with respect to w2 by the inductive hypothesis. By the
first fact above, w2(S) ≤ w2(S

′), and therefore S too is 3-approximate with respect to w2. By the
second fact above, w1(S) ≤ 3kε, and because there are k jobs containing time t—each of which can
be scheduled only on machines whose types are in Tt, and no two of which may be scheduled on
the same machine—the optimum cost is at least kε. Thus S is 3-approximate with respect to w1.
By the Local Ratio Theorem, S is therefore 3-approximate with respect to w.

It remains to describe the transformation of S ′ to S in Line 12. Let Jt ⊆ J be the set of jobs
containing time t, and recall that k = |Jt|. An example (with k = 3) is given in Figure 3. The
strips above the line represent jobs, and those below the line represent machine types. The darker
strips represent the jobs in Jt and the machine types in Tt. Let Mt ⊆MS be the set of machines
that are available at time t and are used by S, and let JMt

be the set of jobs scheduled by S on
machines in Mt. (JMt

consists of the jobs Jt and possibly additional jobs.) If |Mt| ≤ 3k then
S′ = S. Otherwise, we choose a subset of M′

t ⊆ Mt of size at most 3k and reschedule all of the
jobs in JMt

on these machines. The choice of M′
t and the construction of S ′ are as follows.

1. Let Mc ⊆ Mt be the set of k machines to which the k jobs in Jt are assigned. (Each job
must be assigned to a different machine since they all exist at time t). Let Jc be the set of
all jobs scheduled on machines inMc. We schedule these jobs the same as in S.

2. Let Ml ⊆Mt \Mc be the set of k machines in Mt \Mc with leftmost left endpoints. (See
example in Figure 4.) Let Jl ⊆ JMt

be the set of jobs in JMt
that lie completely to the left

of time point t and are scheduled by S on machines in Mt \ Mc. We schedule these jobs
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Figure 4: Rescheduling jobs that were assigned to Mt and exist before time t.

on machines from Ml as follows. Let t′ be the rightmost left endpoint of a machine in Ml.
The jobs in Jl that contain t′ must be assigned in S to machines from Ml. We retain their
assignment. We proceed to schedule the remaining jobs in Jl greedily by order of increasing
left endpoint. Specifically, for each job j we select any machine inMl on which we have not
already scheduled a job that conflicts with j and schedule j on it. This is always possible
since all k machines are available between t′ and t, and thus if a job cannot be scheduled, its
left endpoint must be contained in k other jobs that have already been assigned. These k +1
jobs coexist at the time instant defining the left endpoint of the job that cannot be assigned,
in contradiction with the fact that k is the maximal number jobs coexisting at a any time.

3. Let Mr ⊆ Mt \ Mc be the set of k machines in Mt \ Mc with rightmost right endpoints.
(Mr and Ml and not necessarily disjoint.) Let Jr ⊆ JMt

be the set of jobs in JMt
that lie

completely to the right of time point t and are scheduled by S on machines inMt \Mc. We
schedule these jobs on machines fromMr in a similar manner to the above.

We have thus managed to schedule Jc ∪ Jl ∪ Jr = JMt
on no more than 3k machines fromMt, as

desired.
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5.5 Background

Throughput maximization. Single machine scheduling with one instance per activity is equiva-
lent to maximum weight independent set in interval graphs and hence polynomial-time solvable [39].
Arkin and Silverberg [3] solve the problem efficiently even for unrelated multiple machines. The
problem becomes NP-hard (even in the single machine case) if multiple instances per activity are
allowed [61] (i.e., the problem is interval scheduling) or if instances may require arbitrary amounts
of the resource. (In the latter case the problem is NP-hard as it contains knapsack [35] as a special
case in which all time intervals intersect.) Spieksma [61] studies the unweighted interval schedul-
ing problem. He proves that it is Max-SNP-hard, and presents a simple greedy 2-approximation
algorithm. Bar-Noy et al. [13] consider real-time scheduling, in which each job is associated with a
release time, a deadline, a weight, and a processing time on each of the machines. They give sev-
eral constant factor approximation algorithms for various variants of the throughput maximization
problem. They also show that the problem of scheduling unweighted jobs on unrelated machine is
Max-SNP-hard.

Bar-Noy et al. [11], present a general framework for solving resource allocation and scheduling
problems that is based on the local ratio technique. Given a resource of fixed size, they present
algorithms that approximate the maximum throughput or the minimum loss by a constant factor.
The algorithms apply to many problems, among which are: real-time scheduling of jobs on parallel
machines; bandwidth allocation for sessions between two endpoints; general caching; dynamic
storage allocation; and bandwidth allocation on optical line and ring topologies. In particular, they
improve most of the results from [13] either in the approximation factor or in the running time
complexity. Their algorithms can also be interpreted within the primal-dual schema (see also [19])
and are the first local ratio (or primal-dual) algorithms for a maximization problems. Sections 5.2
and 5.3, with the exception of Section 5.2.7, are based on [11].

Independently, Berman and DasGupta [21] also improve upon the algorithms given in [13].
They develop an algorithm for interval scheduling that is nearly identical to the one from [11]. Fur-
thermore, they employ the same rounding idea used in [11] in order to contend with time windows.
In addition to single machine scheduling, they also consider scheduling on parallel machines, both
identical and unrelated.

Chuzhoy et al. [27] consider the unweighted real-time scheduling problem and present an (e/(e−
1)+ε)-approximation algorithm. They generalize this algorithm to achieve a ratio of (1+e/(e−1)+ε)
for unweighted bandwidth allocation.

The batching problem discussed in Section 5.2.7 is from Bar-Noy et al. [12]. In the case of
bounded batching, they describe a 4-approximation algorithm for discrete input and a (4 + ε)-
approximation algorithm for continuous input. In the case on unbounded batching, their approx-
imation factors are 2 and 2 + ε, respectively. However, in the discrete input case the factor 2 is
achieved under an additional assumption. (See [12] for more details.) In the parallel batch pro-
cessing model all jobs belong to the same family, and any group of jobs can be batched together.
A batch is completed when the largest job in the batch is completed. This model was studied
by Brucker et al. [24] and by Baptiste [10]. The model discussed in [12] is called batching with
incompatible families. This model was studied previously with different objective functions such as
weighted sum of completion times [62, 30, 8] and total tardiness [54].

Loss minimization. Section 5.3 is based on [11]. Albers et al. [2] consider the general caching
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problem. They achieve a “pseudo” O(1)-approximation factor (using LP rounding) by increasing
the size of the cache by O(1) times the size of the largest page, i.e., their algorithm finds a solution
using the enlarged cache whose cost is within a constant factor of the optimum for for the original
cache size. When the cache size may not be increased, they achieve an O(log(M+C)) approximation
factor, where M and C denote the cache size and the largest page reload cost, respectively. The
reduction of general caching to the loss minimization problem discussed in Section 5.3 is also
from [2].

Resource minimization. Section 5.4 is based on a write-up by Bhatia et al. [23]. The general
model of the resource minimization problem, where the sets of machine types on which a job can be
processed are arbitrary, is essentially equivalent (approximation-wise) to set cover [23, 45]. Kolen
and Kroon [49, 50] show that versions of the general problem considered in [23] are NP-hard.

Acknowledgments

We thank the anonymous reviewer for many corrections and suggestions. One of the suggestions
was a proof of the 2-effectiveness of the weight function used in the context of feedback vertex set
(Section 4.3) which was considerably simpler than our original proof. This proof inspired the proof
that now appears in the text.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456, 1995.

[2] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. In 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 31–40, 1999.

[3] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start and end times. Discrete
Applied Mathematics, 18:1–8, 1987.

[4] S. Arora and C. Lund. Hardness of approximations. In Hochbaum [44], chapter 10, pages
399–446.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal
of the ACM, 45(1):70–122, 1998.

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation; Combinatorial optimization problems and their approximabil-
ity properties. Springer Verlag, 1999.

[8] M. Azizoglu and S. Webster. Scheduling a batch processing machine with incompatible job
families. Computer and Industrial Engineering, 39(3–4):325–335, 2001.

30



[9] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected feedback
vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297, 1999.

[10] P. Baptiste. Batching identical jobs. Mathematical Methods of Operations Research, 52(3):355–
367, 2000.

[11] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Shieber. A unified approach to
approximating resource allocation and schedualing. Journal of the ACM, 48(5):1069–1090,
2001.

[12] A. Bar-Noy, S. Guha, Y. Katz, J. Naor, B. Schieber, and H. Shachnai. Throughput maxi-
mization of real-time scheduling with batching. In 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 742–751, 2002.

[13] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple
machines in real-time scheduling. SIAM Journal on Computing, 31(2):331–352, 2001.

[14] Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem. Journal
of Algorithms, 39(2):137–144, 2001.

[15] R. Bar-Yehuda. One for the price of two: A unified approach for approximating covering
problems. Algorithmica, 27(2):131–144, 2000.

[16] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2(2):198–203, 1981.

[17] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[18] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and bayesian inference.
SIAM Journal on Computing, 27(4):942–959, 1998.

[19] R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual schema and
the local-ratio technique. In 4th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, volume 2129 of LNCS, pages 24–35, 2001.

[20] A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and greedy-like ap-
proximation algorithms for the vertex feedback set problem. Artificial Intelligence, 83(1):167–
188, 1996.

[21] P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization for real-
time scheduling. Journal of Combinatorial Optimization, 4(3):307–323, 2000.

[22] D. Bertsimas and C. Teo. From valid inequalities to heuristics: A unified view of primal-dual
approximation algorithms in covering problems. Operations Research, 46(4):503–514, 1998.

[23] R. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading.
In 30th International Colloquium on Automata, Languages, and Programming, volume 2719 of
LNCS, pages 751–766, 2003.

31



[24] P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts, T. Tautenhahn, and S. L.
van de Velde. Scheduling a batching machine. Journal of Scheduling, 1(1):31–54, 1998.

[25] N. H. Bshouty and L. Burroughs. Massaging a linear programming solution to give a 2-
approximation for a generalization of the vertex cover problem. In 15th Annual Symposium
on Theoretical Aspects of Computer Science, volume 1373 of LNCS, pages 298–308. Springer,
1998.

[26] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson. A primal-dual
interpretation of recent 2-approximation algorithms for the feedback vertex set problem in
undirected graphs. Operations Research Letters, 22:111–118, 1998.

[27] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problems. In 42nd IEEE Symposium on Foundations
of Computer Science, pages 348–356, 2001.
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