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ABSTRACT

Parametric spline curves are sometimes fitted to inaccurate points, e.g. points
measured on a small drawing or a sketch. Such errors may corrupt the shape of the
spline. A small error in the middle of a nearly flat curve may for example change it
from an intended convex to a concave curve. A rule of thumb is introduced for
detecting when this may occur. These undesired inflections may be avoided by
employing an appropriate number n of control points. A method for determining the
numbers of control points that produce correctly shaped curves is introduced.

INTRODUCTION

Ship lines can have quite complex shapes as they must meet both hydrostatic,
hydrodynamic, aesthetic, and ease of manufacturing requirements. Several methods
have been developed for fitting of splines to such complex lines, e.g. (Soding 1990)
and (Rabien 1996). Fitting a spline involves the determination by trial and error of the
number and location of the control points. This process can be quite slow, because
moving a control point to improve on one shape characteristic may harm another
characteristic. In order to shorten the process, this paper suggests starting the process
by determining the numbers of control points that produce transverse sectional curves
that have the required shape. Using these numbers of control points in the later part of
the fairing process ensures to some extend that the transverse sections maintain the
required shape. The designer may therefore concentrate on meeting the remaining
shape requirements.

The shape of a planar curve is characterized by its convexity/concavity properties.
We employ +,- and 0 to denote a convex, concave and straight line segment
respectively. The shape shown in Figure 1 is characterized as +-+-0. Further shape
characterizations such as fairness (Farin 1992) are not considered by the method
proposed in this paper. It is suggested to employ our method to achieve a spline with
the required convexity/concavity properties. The resulting splines are by their nature
nice curves. Further improvements the fairness of the spline may therefore be
achieved by small adjustments at a later stage
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Figure 1. Example of the specification of the shape of a planar curve

A special kind of problems occurs when the splines are fitted to inaccurate input
points measured on a small scaled drawing or sketch. These errors can cause
undesired inflections in splines that have nearly flat parts. To get a feeling on how this
works we consider the example in Figure 2:

B1
A ® C
B

Figure 2. Example of shape corruption. The intended curve was the concave ABC arc.
However, because of a measurement error of the size of BB1 that is greater than the
distance BD to the chord connecting A and C we get the convex arc AB1C.

Based on the analysis illustrated in Figure 2 this paper suggests a rule of thumb for
detecting when such shape corruption may occur:

Rule of thumb: A rough method for estimating when undesired inflections may
occur, is to select the flattest part of the curve, and estimate the largest distance
between the curve and the cord connecting the first and the last point of this flat part.
If the errors in the input points are larger than this distance, the curve may flip to the
wrong side of the chord and thus change the shape of the curve.

These unwanted shape corruption indicated by the rule of thumb may be avoided by
designers employing B splines whose shape is controlled by moving of control points.
These designer may exploit the theorem (Kantorowitz 1993) stating that the shape of
uniform quadratic and cubic spline curves that do not intersect themselves is the same



as the shape of their control polygon (the polygon connecting the control points). This
is illustrated in Figure 3. The designer has in Figure 3 placed the control points such
that a convex control polygon is obtained. The theorem guarantees that the
corresponding spline curve is also convex. This method is especially useful in the flat
parts, because it is quite easy to see if a polygon is convex or concave.

Figure 2. A convex control polygon and the corresponding convex spline

A number of experiments were made to evaluate methods for overcoming the
problems indicated by this rule of thumb. All the experiments reported in this paper
employed parametric cubic B splines using arc length parameterization. Splines with
these characteristics are often employed in industry with satisfactory results. The
splines were computed such that the best least squares fit to the erroneous input points
is obtained using methods described in (Linnik 1961) and (Lau 1994).

In all the experiments described in the following sections we consider a computed
spline to be satisfactory if it meets the criteria:

1. The spline has the required shape, i.e. has the required concavity/convexity
properties.

2. The standard deviation between the input points and the corresponding spline
points is less than 6=0.001 of the maximal ordinate of the curve. The standard
deviation is computed as

where n is the number of inaccurate input points and di is the difference between the
y ordinate of the i input point and the ordinate of the corresponding spline point.

The rule of thumb tells us when there is a possibility of undesired inflections. The
more important problem is how to avoid such unintended inflections. Generally the
shape of a spline may be controlled by its degree, the number and locations of the
control points and the method of parameterization. In this paper we investigate what
the selection of a proper number of control points can do. The degree of the spline
and the parameterization method are not varied. Using a large number of control
points produces a highly flexible spline that enables undesired inflections. Using a
small number of control points may produce a spline that is not sufficiently flexible to
fit to the shape of the curve. It is therefore necessary to look for a useful number of



control points that is sufficiently large to enable fitting to the shape of the curve and at
the same time small enough to hinder undesired inflections. An experimental method
for the detection of such useful numbers of control points is presented in this paper.

DETERMINATION OF THE USEFUL NUMBER OF CONTROL POINTS

The experiments were made with the curves of a German destroyer C4, whose shape
was specified in (Kracht 1966) by offsets at the transverse sections:

xi=-1,-0.95,-0.9,-0.8,-0.7,...0.8, 0.9 0.95, 1.0. (2)

In this study we fitted B-splines y(z)to the given transverse sectional. A novel
method is introduced to determine the useful number of control points.. We illustrate
the method by applying it for section x=-0.6 shown in Figure 4. The determination of
the useful numbers of control points is illustrated by Table 1

Figure 4. Section x=-0.6 has neither highly curved nor very flat parts. The shown plot
is made with 6 control points

Number control points | Max deviation between Shape Useful
spline and given points
4 0.002 +- Yes
5 0.001 +- Yes
6 0.000 +- Yes
7 0.000 +- Yes
8 0.000 +- Yes
9 0.000 +- Yes
10 0.000 +- Yes
11 0.000 +- Yes
12 0.001 +-+- No
13 0.011 - No




Table 1. The useful number of control points for the section x=0.6 are 4 to 11. At 12
control points the shape is corrupted and at 13 control points the deviations from the
given input data are unacceptably high.

The section x=-0.6 has many useful numbers of control points because it has neither
very flat nor very curved parts. The analysis shown for section x=-6 is done for all
transverse sections. Ideally we would like to use the same number of control points
for all the transverse section. It was, however not possible to find a number of control
points that was useful for all sections. We employed therefore 5 control points for the
curves in the fore ship. Going higher caused unwanted inflections in the curves
around in x=-0.3 which have quite flat parts (see Figure 6). Some of the sections in
the aft body have a complex shape, and 8 control points were therefore employed. The
high number of control points caused unwanted inflections which were suppressed by
adding more input points. These points were obtained by interpolation in the offsets
given in (Kracht 1966). The most severe problems arose in the transverse sections of
the stern, where each section is composed of two very flat parts connected by a highly
curved part, as illustrated by Figure 5.

Figure 5: A transverse section at the stern is composed of two very flat parts
connected by a highly curved part. The figure shows the case of section x=-0.9

For these stern sections 8 control points caused undesired inflections. Adding input
points helped, but a considerable number of points is needed. Getting more input
points involves work and seem not to be a good solution. We looked there for another
method that employs only the given input points. There are two main problems in the
stern sections. The first is that the employed cubic splines have continuous second
derivatives. However, at the point where the very flat part is connected to the highly
curved part, the second derivative is discontinuous (the second derivative of the near



straight line part is close to zero, while the second derivative of the connected highly
curved part is quite different from zero).

A solution to this problem is to employ a spline whose second derivative is
discontinuous. This can be achieved by employing double knots in the cubic spline.
The second reason for the difficulties is that we have employed uniform splines, i.c.
splines where the knots of the spline are uniformly distributed over the length of the
curve. This means that there are many control points in the quite long flat parts. These
many control points means that many inflections are possible in the flat part. The
possibility for inflection can be completely avoided by employing a single quadratic
spline (3 control points only) for a plat part of the section. Using instead a single
cubic spline (4 control points) enable a better fit to the shape of the section, but enable
a single inflection point in the worse case. Each one of the sections at the stern was
therefore computed by three different cubic splines fitted respectively to the lower flat
part, the highly curved middle part and to the nearly flat upper part.. The three splines
were connected at the two points of connection with a common first derivative only.
Such three cubic splines were enough for a satisfactory solution in the stern region
(see the curves x=0.9 and x=-1.0 in Figure 6).
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DISCUSSION AND CONCLUSIONS
The paper introduces a rule of thumb for detecting risks for unwanted inflections in
the splines. It is, however, not necessary to employ the rule of thumb if we have
another way of reducing the risks for unwanted inflections. Such a way is the program
described in this paper, which determine for each section the numbers of control
points that produce the required shape without unwanted inflections. The program
was tested on the body of the a destroyer with a quite difficult shape composed of
both flat and curved parts. The program detected useful numbers of control points in
all the transverse sectional curves with the exception of the curves in the stern. This is
an indication that it is difficult to fit uniform splines to the shapes in the sten. Each
one of these curves is composed of three parts, i.e. two very flat parts connected to
highly curved part, with a discontinuous second derivative at the two points of
connection. Each one of these sections was therefore fitted by three connected cubic
spline sections, such that a discontinuous second derivative is obtained at points
where the flat and highly curve sections meet.
It is proposed that the fairing process be started with the program that determines the
numbers of control points that can produce the required shape with a little risk for
unwanted inflections. Then we select one of these useful numbers of control points for
the following part of the fairing process. This ensures to some extent that the shape of
the transverse section is correct during the remainder of the process. This enables the
designer to concentrate on meeting other requirements to the shape. Starting with a
useful number of control is therefore expected to reduce the total time it takes to
achieve the final results.
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