Non-Definability
in
First Order Logic
and
Monadic Second Order Logic

Ehrenfeucht-Fraïssé Theorem
Hintikka Formulas

Ehrenfeucht-Fraïssé Theorem, I

Theorem: (Easy part)
Assume there is a $MSOL(\tau)$-sentence ϕ with k variables and quantifier depth n in Prenex Normal Form such that $A_0 \models \phi$ and $A_1 \models \neg \phi$.

Then I has a winning strategy for the k-pebble n-moves game on A_0 and A_1.

Ehrenfeucht-Fraïssé Theorem, II

We first assume that there infinitely many pebbles.

We write ϕ and $\neg \phi$ in Prenex Normal Form:

$\phi = \exists X_1 \exists x_2 \exists X_3 \exists x_4 \ldots \exists x_{n-1} \exists X_n$
$\quad B(X_1, x_2, \ldots, x_{n-1}, X_n)$
$\neg \phi = \forall X_1 \forall x_2 \exists X_3 \forall x_4 \ldots \forall x_{n-1} \forall X_n$
$\quad \neg B(X_1, x_2, \ldots, x_{n-1}, X_n)$

where B is without quantifiers.

We can read from the quantifier prefix a winning strategy.

Ehrenfeucht-Fraïssé Theorem, III

Assume $A_0 \models \phi$ and $A_1 \models \neg \phi$.

Player I follows the existential quantifiers.

Player I picks in A_0 a set A_1 such that

$A_0, A_1^0 \models \exists x_2 \exists X_3 \exists x_4 \ldots \exists x_{n-1} \exists X_n$
$\quad B(A_1^0, x_2, \ldots, x_{n-1}, X_n)$

Whatever player II picks as A_1^1

$A_1, A_1^1 \models \forall x_2 \exists X_3 \exists x_4 \ldots \exists x_{n-1} \forall X_n$
$\quad \neg B(A_1^1, x_2, \ldots, x_{n-1}, X_n)$

Next player I picks an element a_2^0 in A_0 such that

$A_0, A_1^0, a_2^0 \models \forall X_3 \exists x_4 \ldots \exists x_{n-1} \exists X_n$
$\quad B(A_1^0, a_2^0, \ldots, x_{n-1}, X_n)$

Whatever player II picks as a_2^1

$A_1, A_1^1, a_2^1 \models \exists X_3 \exists x_4 \ldots \exists x_{n-1} \forall X_n$
$\quad \neg B(A_1^1, a_2^1, \ldots, x_{n-1}, X_n)$

Now player I picks in A_1 a set A_1^1 such that

$A_1, A_1^1, a_3^2, A_1^2 \models \forall x_4 \ldots \forall x_{n-1} \forall X_n$
$\quad \neg B(A_1^2, a_3^2, A_1^1, \ldots, x_{n-1}, X_n)$

and so on........
Ehrenfeucht-Fraïssé Theorem, IV

Finally the outcome is from A_0

$$A_0^0, a_2^0, A_3^0, \ldots, a_{n-1}^0, A_n^0$$

and from A_1

$$A_1^1, a_2^1, A_3^1, \ldots, a_{n-1}^1, A_n^1$$

such that

$$A_0 \models B(A_1^0, a_2^0, A_3^0, \ldots, a_{n-1}^0, A_n^0)$$

and

$$A_1 \models \neg B(A_1^1, a_2^1, A_3^1, \ldots, a_{n-1}^1, A_n^1)$$

which shows that player I wins, as this cannot be a local isomorphism

(Lemma on local isomorphisms and quantifierfree formulas)

How many non-equivalent formulas?

FOL atomic case

Assume we have (first order) variables

$$x_1, x_2, \ldots, x_v$$

This gives $\binom{v}{2} + \binom{v}{1} = O(v^2)$ many instances of $x_i = x_j$ with $i \leq j$.

For a r-ary relation symbol R we get r^v many instances of $R(x_{j1}, x_{j2}, \ldots, x_{jr})$.

If we allow $c_1, c_2, \ldots, c_{v'}$ constants the numbers become $O((v + v')^2)$ and $r^v + v'$ respectively.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\alpha^{FOL}_{\tau,v}$.

How many non-equivalent formulas?

MSOL atomic case

Assume we have first and second order variables

$$x_1, x_2, \ldots, x_v, U_1, U_2, \ldots, U_{v_2}$$

This gives $O(v_2^2)$ many instances of $x_i = x_j$ with $i \leq j$ and $v_1 \cdot v_2$ many instances of $x_i \in U_j$.

For a r-ary relation symbol R we get r^v many instances of $R(x_{j1}, x_{j2}, \ldots, x_{jr})$.

If we allow c_1, c_2, \ldots, c_{v} constants the numbers become $O(v_2^2)$, $(v_1 + v_2)v_2$ and $r^{v_1 + v_2}$ respectively.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\alpha^{MSOL}_{\tau,v}$.

How many non-equivalent formulas?

Quantifierfree case

For quantifierfree formulas we only count formulas in CNF.

There are $2^{\alpha^{FOL}_{\tau,v}}$, resp. $2^{\alpha^{MSOL}_{\tau,v}}$ many disjunctions

$$\bigvee_{j=1}^{2^{\alpha^{FOL}_{\tau,v}}} (\neg)^v(j) A_j$$

where A_j ranges over atomic formulas.

Hence we have (at most) $2^{2^{\alpha^{FOL}_{\tau,v}}}$ many formulas in CNF.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\alpha^{FOL}_{\tau,v}$ and $\beta^{MSOL}_{\tau,v}$, respectively.
How many non-equivalent formulas?
Quantifiers I: PNF

Counting quantified formulas is a bit more tricky. We can assume that the formulas are in

Prenex Normal Form

But then variables are NOT reused.

So for each CNF formula with \(v \) variables there are \(3^v \cdot v! \) many quantifier prefixes (\(\exists, \forall \), not quantified).

This gives at most

\[
3^v \cdot v! \cdot \beta \tau, \nu^{FOL}
\]

many prenex normal form formulas.

How many formulas are there?
Quantifiers II: quantifier rank

Theorem:
For each \(\tau \) and \(v = v_1 + v_2 \) many variables

\[
x_1, x_2, \ldots, x_{v_1}, U_1, U_2, \ldots, U_{v_2}
\]

there are only \(\gamma_{\tau, v, q}^{MSOL} \) many formulas of quantifier rank \(q \).

Proof: We estimate this number by induction over \(q \) for \(MSOL \).

For \(q = 0 \) we have at most \(\gamma \) many formulas with \(\gamma_0 = \beta \tau, \nu^{MSOL} \).

Treating them as atomic formulas we have \(2v \) many ways of adding one quantifier, and hence at most

\[
\gamma_{\tau, v, q+1}^{MSOL} = \gamma_{q+1} = 2^{2v \cdot q^2}
\]

many formulas of rank \(q + 1 \).
The boolean algebra $F_{m,k,q}(\tau)$, I

Proposition:
There are, up to (finite) equivalence, only finitely many formulas in $F_{m,k,q}(\tau)$.

If ϕ and ψ have only infinite models, they are finitely equivalent (false).

There are fewer formulas for finite equivalence.

The number of equivalence classes is growing very fast.

Proposition:
$F_{m,k,q}(\tau)$ is closed under conjunction \land, disjunction \lor and negation \neg.
i.e. it forms a finite boolean algebra.

The boolean algebra $F_{m,k,q}(\tau)$, II

The formula $\exists x (x \neq x)$ is the minimal element.

The formula $\exists x (x = x)$ is the maximal element.

A formula ϕ is an atom, if

- it is not (finitely) equivalent to $\exists x (x \neq x)$,

- but for each ψ either $\phi \land \psi$ is equivalent to ϕ or to $\exists x (x \neq x)$.

Hintikkake formulas, II

We denote by $B_{k,q}(\tau)$ and $B_{k,q}^f(\tau)$ the finite boolean algebra of $F_{m,k,q}(\tau)$ up to equivalence and finite equivalence, resp.
The elements are denoted by $\bar{\phi}$.

The set of atoms in $B_{k,q}(\tau)$ and $B_{k,q}^f(\tau)$ is denoted by $H_{k,q}(\tau)$ and $H_{k,q}^f(\tau)$.

The formulas ϕ with $\bar{\phi} \in H_{k,q}(\tau)$ ($\bar{\phi} \in H_{k,q}^f(\tau)$) are called Hintikka formulas.

Hintikkake formulas, III

1. Every sentence $\phi \in F_{m,k,q}(\tau)$ is equivalent to the disjunction of a unique set of (k,q)-Hintikka sentences $\bigvee_i h_i(\phi)$, with $h_i(\phi) \in H_{k,q}(\tau)$.

Not computable from k,q,τ and ϕ alone.

2. For every k,q,τ and τ-structure \mathcal{A} there is a unique Hintikka sentence $h_{k,q}(\mathcal{A}) \in F_{m,k,q}(\tau)$ such that $\mathcal{A} \models h_{k,q}(\mathcal{A})$.

3. Furthermore, if \mathcal{A} is finite, $h_{k,q}(\mathcal{A})$ is computable from k,q,τ and \mathcal{A}.

But only highly ineffective algorithms are known.
Theorem: (Ehrenfeucht-Fraissé)

For two \(\tau \)-structures \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) the following are equivalent:

1. \(\Pi \) has a winning strategy in the game with \(n \) moves and \(k \) point pebbles and \(k \) set pebbles.

2. \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) satisfy the same sentences of \(Fm_{k,m}(\tau) \).

3. \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) satisfy the same unique (up to equivalence) \((k,m)\)-Hintikka sentence.

We have shown already \((1) \Rightarrow (3)\).

\((2) \Rightarrow (3) \) is trivial.

\((3) \Rightarrow (2) \) follows from the properties of Hintikka formulas.

We are left with \((3) \Rightarrow (1)\).

Constructing the Hintikka sentence, I

Assume we have more pebbles than moves.

Let \(\mathcal{A} \) be a finite \(\tau \)-structure and \(a_1, a_2, \ldots, a_s \) elements \(\mathcal{A} \).

We define a formula \(\phi(v_1, \ldots, v_s)^m_{\mathcal{A}} \)

such that

\[\mathcal{A}, \bar{a} \models \phi(v_1, \ldots, v_s)^m \]

and whenever

\[\mathcal{B}, \bar{b} \models \phi(v_1, \ldots, v_s)^m \]

then player \(\Pi \) has a winning strategy in the game for \(\text{FOL} \) for \(m \) more moves starting with \(\mathcal{A}, \bar{a} \) and \(\mathcal{B}, \bar{b} \).

\(\phi(v_1, \ldots, v_k)^q_{\mathcal{A}} \) (i.e. \(k = s, q = m \)) will be a Hintikka formula for \(Fm^\text{FOL}_{k,q}(\tau) \).

Constructing the Hintikka sentence, II

\[\phi(v_1, \ldots, v_k)^q_{\mathcal{A}} := \]

\[(\bigwedge \{ R(v_{j_1}, \ldots, v_{j_s}) : \mathcal{R} \in \tau, \mathcal{A}, \bar{a} \models R(v_{j_1}, \ldots, v_{j_s}) \}) \]

\[\land \]

\[(\bigwedge \{ \neg R(v_{j_1}, \ldots, v_{j_s}) : \mathcal{R} \in \tau, \mathcal{A}, \bar{a} \models \neg R(v_{j_1}, \ldots, v_{j_s}) \}) \]

\[\land \]

\[(\bigwedge \{ v_{j_1} = v_{j_2} : j_1, j_2 \leq s \text{ and } \mathcal{A}, \bar{a} \models v_{j_1} = v_{j_2} \}) \]

\[\land \]

\[(\bigwedge \{ v_{j_1} \neq v_{j_2} : j_1, j_2 \leq s \text{ and } \mathcal{A}, \bar{a} \models v_{j_1} \neq v_{j_2} \}) \]

The formula is finite, provided \(\tau \) is.

We look at the example of a linear order with \(s = 3 \) and \(m = 2 \).

Assume \(a_2 < a_1 = a_3 \) in \(\mathcal{A} \).

Compute the formula.

Constructing the Hintikka sentence, III

\[\phi(v_1, \ldots, v_k)^m_{\mathcal{A}} := \]

\[\left(\bigwedge_{a \in \mathcal{A}} \exists v_{s+1} \phi(v, v_{s+1})^{m-1}_{\mathcal{A}} \right) \land \left(\bigwedge_{a \in \mathcal{A}} \forall v_{s+1} \bigvee_{a \in \mathcal{A}} \phi(v, v_{s+1})^{m-1}_{\mathcal{A}} \right) \]

This is finite by the previous theorem.

We look at the example of a linear order with \(s = 3 \) and \(m = 2 \).

Assume \(a_2 < a_1 = a_3 \) in \(\mathcal{A} \).

Compute the formula.
Constructing the Hintikka sentence, IV

We have to verify:

- $\mathcal{A}, \bar{a} \models \phi(v_1, \ldots, v_s)_{\bar{a}}$

- whenever $\mathcal{B}, \bar{b} \models \phi(v_1, \ldots, v_s)_{\bar{a}}$
 then player II has a winning strategy in the game for FOL for m more moves
 starting with \mathcal{A}, \bar{a} and \mathcal{B}, \bar{b}.

We shall return to these questions later.

CS 236 331:2001 Lecture 4

Dense linear orders, I

We look at linear orders such that between any two distinct elements there is a third element.
These are called dense linear orders.

Exercise:
Express this in FOL.
Show that such an order is always infinite.

There are variations:

- with/without first element.

- with/without last element.

Examples are

- The real numbers \mathbb{R}, which are uncountably infinite.

- The irrational numbers $\mathbb{I} \subseteq \mathbb{R}$, which are also uncountably infinite.

- The rationals \mathbb{Q}, which are countably infinite.

- The open intervals $(a, b) \subseteq \mathbb{R}$.

- The open intervals $(a, b) \subseteq \mathbb{Q}$.

- The corresponding closed intervals $[a, b]$ and the intervals $(a, b]$ and $[a, b)$.
Dense linear orders, III

There is a sentence $\phi_{\text{cut}} \in \text{MSOL}(\tau_{\text{ord}})$ which is true in \mathbb{Q} but not in \mathbb{R}.

ϕ_{cut} says:

"The universe is the disjoint union of two open intervals"

Exercise:
Write down this formula.

In \mathbb{Q} we take $(-\infty, \sqrt{2}) \cup (\sqrt{2}, \infty)$.

In \mathbb{R} every Cauchy sequence converges, hence such a decomposition is not possible.

Dense linear orders, IV

Theorem: (Cantor ca. 1870)
Let \mathcal{A}_0 and \mathcal{A}_1 be two dense linear orders with the same configuration of first and last elements.

Then player Π has one (extendible) winning strategy WS in the FOL game for games of arbitrary finite length.

Note that this is stronger than the statement:
For every game length n player Π has a winning strategy WS.

Corollary:
No $FOL(\tau_{\text{ord}})$ sentence ϕ can distinguish \mathbb{Q} from \mathbb{R}, or $(a, b] \cap \mathbb{Q}$ from $(a, b] \cap \mathbb{R}$ for $a, b \in \mathbb{Q}$, etc...

CS 236 331:2001

Lecture 4

Dense linear orders, V

Proof: (No first, no last element)
Assume we have played

$a^0_{i_{m-1}} \leq a^0_i \leq \ldots \leq a^0_k$ and $a^1_{i_{m-1}} \leq a^1_i \leq \ldots \leq a^1_k$

and player I chooses, w.l.o.g., $a^0_{m+1} = b$.

There are three cases

- $b < a^0_i$, or $a^0_i < b$.
- $b = a^0_i$ for some $j \leq m$.
- $a^0_{i_{m-1}} < b < a^0_i$ for some $j \leq m$.

In each case Π can reply correspondingly.
In the last case we use density.
In the first case we use the absence of first/last elements.

Exercise:
Complete the proof also for the cases with first/last elements.