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1.2 De�nitionsThroughout the paper we are dealing with �rst{order and monadic second{order (monadic, for short)logics over some �xed, �nite signature � (with equality). We assume that � contains exclusively relationsymbols, and therefore functions are represented as restricted relations.Formulas of �rst{order logic are built from atomic formulas of the form R(~x); where R is a symbol in� and ~x is a vector of variables of length equal to arity of R; and using usual connectives: ^; _; :;!;and quanti�ers 8; 9:In formulas of monadic logic set variables are allowed to occur in atomic formulas of the form x 2 X:Also set quanti�cation, denoted 8 and 9; is allowed.We use uppercase letters, or two{letter uppercase abbreviations, to denote set variables, and lowercaseones to denote �rst{order variables. Therefore it will always be clear what kind of quanti�cation we havein mind.Let A be a set of �nite structures A over the signature �; such that the universe jAj of A is someinitial segment of natural numbers. Let A(n) be a subset of A containing all structures A with carrierset (of cardinality) jAj = n = f0; : : : ; n�1g: To avoid pathological cases we assume that for each positiven 2 ! the set A(n) is nonempty.Let for n = 0; 1; : : : �n be a probability distribution on A(n): We write � for f�ngn2!; and call �;somehow loosely, also a distribution. The pair hA;�i is an object of our study in this paper.For any subset D �A we de�ne �n(D) = �n(D \A(n)):If D = fA 2 A j A j= 'g for some sentence ' of the logic under consideration, then we write�n('); instead of �n(D): We are interested in asymptotic properties of �n('); and especially whetherthe limit �(') = limn!1 �n(') exists, for sentences ' of the logic under consideration. If it exists, wecall it an asymptotic probability of ': If this is the case for every sentence of the logic L; we say that theconvergence law holds (for L and �). If, in addition, every sentence has probability either 0 or 1, we saythat the 0{1 law holds. Sometimes, instead of writing �(') = 1; we say that ' holds almost surely (a.s.in short).The following family of examples of probability distributions on the class G of all �nite graphsG = hjGj; Ei was �rst introduced and studied by Erd}os and R�enyi in [3]. Let p = p(n) be a functionfrom ! into the real interval [0,1]. Then we de�ne the probability model G(n; p) = hG;�pi with G beingthe class of all undirected �nite graphs, and �pn(fGg) = pe(1� p)(n2 )�e; where e is the number of edgesin G: Equivalently, one obtains a random graph G 2 G(n; p) as a result of the following experiment: Forevery pair of vertices in f0; : : : ; n� 1g; independently of other pairs, one tosses a coin with outcomes 1(edge) with probability p(n) and 0 (non-edge) with probability 1 � p(n): After �n2 � tosses the randomgraph is constructed.Another example is the following:Let A be arbitrary class of �nite structures, satisfying the conditions we formulated at the beginning.We then de�ne the uniform labelled probability distribution on A: Namely, we set�jAj(fAg) = � 1=jA(n)j if A 2A(n);0 if A 62A(n):E.g., if p = const: = 1=2 then the �p and the uniform labelled distributions on G coincide.Unlabelled distribution is the one in which equivalence classes of the isomorphism relation areequiprobable rather than structures themselves.For a �nite structure A 2 A(n) we de�ne a �rst{order quanti�er{free formula [fx0; : : : ; xn�1g ' A];called the diagram of A: Let v be a valuation such that v(xi) = i for i = 0; : : : ; n � 1: Then we de�ne[fx0; : : : ; xn�1g ' A] to be the conjunction of all formulas in the set�R(xi1; : : : ; xik) j R 2 �; 0 � i1; : : : ; ik < n; A; v j= R(xi1 ; : : : ; xik)	[�:R(xi1; : : : ; xik) j R 2 �; 0 � i1; : : : ; ik < n; A; v j= :R(xi1 ; : : : ; xik)	:2



1.3 Organization of the paperThe paper is organized as follows: In the second section we give a new proof of a classical result ofKaufmann and Shelah [6], stating that there are monadic second{order properties without asymptoticprobability with respect to uniform, labelled probability on the class of �nite graphs. In the thirdsection we show how the proof can be improved to work for so called sparse random graphs G(n; p) withp = p(n) bounded away from 1 and satisfying p(n) � n�� for some � < 1: The fourth section is devotedto adaptation of the same proof to the case of random (uniform, labelled) partial orders, and randomKm+1{free graphs. In the �fth section we discuss interrelations of monadic second{order and �xpointlogics, which can be deduced from our results. In the last, sixth section, we present some �nal remarks.2 The Kaufmann and Shelah TheoremIn this section we give a new proof of the following, classical result of Kaufmann and Shelah.Theorem 1 ((Kaufmann and Shelah [6])) Then there are monadic second{order sentences withoutasymptotic uniform labelled probability in the class of �nite graphs G:Proof:First short description of the main idea: consider a pair (G;H) of graphs G � H withjGj = f0; : : : ; k � 1g and jHj n jGj = fk; : : : ; ` � 1g: From now on writing (G;H) we tacitly make anassumption that G �H.Denote by Ext(G;H) the following sentence, usually called an extension axiom:8x0; : : : ; xk�1 �[fx0; : : : ; xk�1g ' G]! �9xk; : : : ; x`�1 [fx0; : : : ; x`�1g ' H]��;i.e., the one expressing \every copy of G extends to a copy of H".It is well known since the paper of Fagin [4] that for arbitrary two graphs G � H the equality�(Ext(G;H)) = 1 holds. In particular �(Ext(;;G)) = 1 and �(Ext(G;H)) = 1: Then, assuming addi-tionally that jHj is of much greater cardinality than jGj; the graph of the function n 7! �n(Ext(G;H))looks like the one on �gure 1, at the end of the paper.It is important that �n(Ext(G;H)) = 1 for n < jGj; and �n(Ext(G;H)) = 1 � �n(Ext(;;G)) forn < jHj:Then it is natural to expect that a sentence expressing Vi2! Ext(Gi;Hi); with cardinalities of(Gi;Hi) growing very fast with i; should have no asymptotic probability, as we may naturally expect�n(î2!Ext(Gi;Hi)) � mini2! �n(Ext(Gi;Hi));as in the �gure 2 at the end of the paper.Now let us be more precise.Let M be a deterministic, one tape Turing Machine that accepts numbers in unary expansion as itsarguments, and always halts.De�ne sizeM (m) = m + spaceM (m) � timeM (m);where timeM (m) denotes the number of steps of computation ofM on input m; and similarly for spaceM :We construct a monadic formula '(X) with the property that whenever G j= '(X) is true, thecardinality of X is equal to sizeM (m) for some m:Indeed, take '(X) to be:9M;U 9EC;OC;ER;OR ~'(M;U;EC;OC;ER;OR);where ~' is the conjunction of the following conditions:1. M;U � X2. EC;OC;ER;OR� U 3



3. M \ U = ;; M [ U = X;4. EC \OC = ;; EC [OC = U;5. ER \OR = ;; ER [OR = U;6. hU;Ei is a square grid, such that EC and OC (ER and OR; resp.) are unions of disjoint chains,which are even and odd columns (rows, resp.) of the grid,7. E is a bijection from M onto the �rst jM j elements in the �rst row of the grid,8. there are no other edges, except possible edges between vertices of M:X extends M { we call extensions of that shape grid extensions. A �gure showing grid extension is tobe found at the end of the paper. Now it is routine to express, adding more set variables that correspondto letters in tape cells, control states and head positions that the grid with these sets represents successfulcomputation of M on input 1 : : :1 of length jM j:Now similarly, for another Turing machine N we can write a formula (X;Y ) with the property thatwhenever G j= (X;Y ); then jY nXj is equal to sizeN (jXj): It is to be done by treating X exactly asM in ' above, but without quantifying it.Now let the function g : ! ! ! be de�ned as follows:g(m) = 1 +0@least n > g(m� 1) such that �n(VExt(G;H)) �1 � 1=m; where we conjunct over all grid exten-sions (G;H) with jHj � m 1A (1)Clearly g is recursive and strictly increasing.Let a machine N compute some space constructible function h > g in the way that h(m) =spaceN (m); taking unary strings as inputs and producing unary strings as outputs.Now let M be a one tape deterministic Turing Machine that takes unary input strings and outputsalso unary strings. Moreover, let M compute a total function f that for m > 0 satis�es:f(m) > g(sizeN (sizeM (m � 1))):Let us see how to make a monadic sentence without asymptotic probability from N and M:Let '(X) and (X;Y ) be formulas constructed for M and N; respectively.Consider sentence Ext � 8X ('(X) ! (9Y (X;Y ))):Observe that indeed Ext is equivalent to the in�nitary conjunction of the formVm2! Ext(Gm;Hm);where Gm is a grid extension of ; with sizeM (m) elements, and Hm is a grid extension of Gm withsizeN (sizeM (m)) elements.We claim that Ext has no limiting probability.First let n = g(sizeM (m)) � 1 for some m: Then, by construction of g;�n(Ext(;;H)) � 1� 1=mfor all grid extensions (;;H) with jHj � sizeM (m): Therefore in random G with n elements there isa choice of X to satisfy '(X) of cardinality jXj = sizeM (m); with probability � 1 � 1=m: But in thiscase there is no choice of Y to satisfy (X;Y ) since then it would be jY nXj � g(sizeM (m)) > n; whichis impossible. Therefore �n(Ext) � 1=m:In this part of the computation we essentially check that the function n 7! �n(Ext(Gm;Hm)) willhave a minimum with value close to 0 in n:Secondly, let n = g(sizeN (sizeM (m � 1))) for some m: Then, as sizeM (m) > n; all X's that maysatisfy '(X) are of cardinalities sizeM (0); : : : ; sizeM (m�1): But �n(VExt(G;H)) � 1�1=m; where weconjunct over all grid (G;H) with jHj � sizeN (sizeM (m�1)), hence for every X that satis�es '(X) thereis a choice of Y to satisfy (X;Y ); with probability no less than 1�1=m: Therefore �n(Ext) � 1�1=m:In this part of the computation we essentially check that �n(Ext(Gm;Hm)) will not have a minimumwith value close to 0 before �n0(Vm�1i=0 Ext(Gi;Hi)) becomes close to 1 for some n0 > jHm�1j:We immediately infer that Ext has no asymptotic probability. 24



3 Sparse random graphsWe next show how to improve our proof of Kaufmann and Shelah Theorem to obtain the following, muchmore general result:Theorem 2 Let p : ! ! [0; 1] be a function such that n�� � � for some 0 < �; � < 1; and all large n:Then there exist monadic second{order sentences without asymptotic probability with respect to randomgraphs G(n; p):It should be stressed that Spencer and Shelah [10] proved a �rst{order 0{1 law for random graphsG(n; n��) with � irrational. Therefore our nonconvergence result is almost optimal.Proof:We will describe step by step the necessary changes of our proof of Kaufmann and ShelahTheorem to make it work for sparse random graphs. First we give informal description of the changes.Precise formulations follow it, and are stated as separate de�nitions and lemmas.1. It is not true that �p(Ext(G;H)) = 1 holds for arbitrary grid extension (G;H): Therefore we �ndan improved notion of extensions, called k{improved grid extensions, for which the equality holds.It is still possible to encode computations of Turing machines in such extensions.2. We change the function size suitably.3. We de�ne the function g by equality similar to (1):g(m) = 1 +0@least n > g(m � 1) such that �n(VExt(G;H)) �1�1=m; where we conjunct over all k{improved gridextensions (G;H) with jHj � m 1AAs g de�ned above need not be recursive, we show that there exists a recursive function eg suchthat eg � g:Precise formulations of the points above follow:1. Extension axioms Let for a graph G the symbol e(G) denote the number of edges in G; andv(G) the number of vertices of G:We say that the pair (G;H) is safe for exponent � i� for every S withG � S � H : (v(S) � v(G)) � � � (e(S) � e(G)) > 0:Now we cite the theorem:Theorem 3 ((Ruci�nski and Vince [9])) If (G;H) is safe for exponent � < 1 and 0 < � < p(n) �n�� for some constant �; then �p(Ext(G;H)) = 1: 2According to the above result we construct k{improved grid extensions, safe for arbitrary given exponent� > 0: They are obtained from standard grid extensions by adding many new vertices: we add kintermediate vertices on edges between vertices ofXnM; and 2k intermediate vertices on edges connectingelements of M with elements of X nM: The added vertices we call new, in contrary to the old ones. (See�gure 4 at the end of the paper.)The only thing we need is to show that choosing k large enough we can make such extension safe forany given 0 < � < 1: Of course all necessary relations are still monadic de�nable.Lemma 1 If positive natural k is chosen so that � < 2k�2k + 1; then the k{improved grid extension issafe for exponent �:Proof:Let (M;X) be an improved grid extension, and let M � S � X: Let us call a subset H ofS nM a hole if it induces a cycle in S inside of which there is no other vertex of S (\inside" should beunderstood to refer to the situation on �gures 3 and 4). Let us call a root an old vertex in S that isconnected by some path made of new vertices in S to some vertex in M: Now let v denote the number ofvertices in S nM; e the number of edges in S; excluding edges between vertices inside M; h the numberof holes in S; and r the number of roots in S: 5



Then, as it is easy to see, e� v � r + h: (2)Observe that each hole in S has at least 4k new vertices on its boundaries, and each new vertex in Scannot be counted in this way more than twice. Each root is connected to an element in M by a pathof 2k new vertices, which do not lie on a boundary of any hole, and, moreover, are di�erent for di�erentroots. Therefore we get v � 2kr + 2kh: (3)Taking (2) and (3) together we getve = vv + (e � v) � 2k(r + h)2k(r + h) + (r + h) = 2k2k + 1 > �;so indeed v � � � e > 0; as desired. 22. The function size. Once we have the notion of k{grid extension, the de�nition of the function sizeis modi�ed in obvious way.3. The functions g and eg: We show that g de�ned in the proof of theorem 2 is majorized by arecursive function. Our estimates generally come from the fact that there exist rational numbers and0 < �; � < 1 such that n�� � p(n) � � holds for all su�ciently large n:First of all, we reduce our attention to k{improved (we will omit this word in the sequel) gridextensions, which are safe for exponent �:Now we modify our random graph structure. We allow three valued f0; 12 ; 1g logic for edge existence.Now between two given vertices there may exist: non-edge, half-edge and edge. Moreover, we suitablychange the probability space. For every pair of vertices from f0; : : : ; n�1g; independently of other pairs,we toss a three-sided die, which gives outcomes: 0 with probability �; 1 with probability n�� and 12with probability 1 � � � n��: After �n2 � tosses we obtain random three valued graph. This de�nes aprobability space hG3;��;�i; where G3 stands for the class of �nite three valued graphs.The informal idea is as follows: the half-edge should be understood as \not yet decided: there is anedge or not". Usually a ��;�{random graph in G3 contains many such undecided places. But it is possiblethat the places that are already decided allow one to verify that whatever will be decided about half-edgeslater, extension axioms are satis�ed. We want to show that this possibility holds with large probability.The class G of standard, two valued graphs we denote G2; to avoid confusion. It is natural that onemay assume G2 � G3; and therefore it is clear what it means that two graphs G 2 G3 and H 2 G2 areisomorphic, etc. In particular, �p is also a probability distribution in G3:Now it is routine, following the proof of theorem 3 presented in [9], to prove also the following:Lemma 2 Let pair (G;H) with G;H 2 G3; but without half-edges in H; except between vertices of G;be safe for exponent �: De�nition of safety ignores edges inside G; so the above makes sense. Then withasymptotic probability one every subgraph of a random three-valued graph K that is isomorphic to G canbe extended to a subgraph isomorphic to H: 2Let (G;H) be as in the above lemma. The property that every isomorphic copy of G extends to a copyof H we denote by Ext(G;H); and call it also an extension axiom. Note that formally Ext(G;H) is nota �rst{order sentence, unless G;H 2 G2:Now we de�ne the function ~g by~g(m) = 1 +0B@least n > ~g(m � 1) such that ��;�n (VExt(G;H)) �1 � 1=m; where we conjunct over all k{improved gridextensions (G;H) with jHj � m; with G;H 2 G3 likein the last lemma 1CAIt can be easily observed that ~g is recursive.Lemma 3 For every natural number n ~g(n) � g(n):6



Proof:It su�ces to prove the following:For all n such that n�� � p(n) � � the inequality��;�n (^Ext(G;H)) � �pn(^Ext(G;H))holds, where in both sides we conjunct over all k{improved grid extensions (G;H) withjHj � m; possibly with G 2 G3:We �x n satisfying n�� � p(n) � �:For K 2 G3(n) and i = 2; 3 let Cli(K) denote the set of all graphs G 2 Gi(n) such that if there isedge (non-edge, resp.) between u and v in K; then there is edge (non-edge, resp.) between u and v inG: In particular, always Cl2(K) = Cl3(K) \ G2(n) � Cl3(K):Let K0 2 G3 be any graph obtained from K 2 G3 by replacing some of its half-edges by non-edgesor edges, in arbitrary way. Then it is not di�cult to observe that if VExt(G;H) is true in K; then sois in K0:By the above observation it becomes clear that if K j= VExt(G;H); then K0 j= VExt(G;H) forevery K0 2 Cli(K):Moreover, it is easy to observe that for two graphs K;K0 2 Gi; the sets Cli(K) and Cli(K0) areeither disjoint, or one is included in the other.Let K = fK0; : : : ;Kmg be the set of all graphs in G3(n) in which the sentence VExt(G;H) is true.Then maximal sets among Cl3(Kj); j = 0; : : : ;m partition K into disjoint subsets.Now, in order to �nish the proof, it su�ces to check that always�pn(Cl2(Kj)) � ��;�n (Cl3(Kj)):Indeed, if we look at a graph as a sequence of outcomes in �n2 � die tosses, Cli(Kj ) is the set of suchsequences that have 0's and 1's in some speci�ed places, and \anything" in other places. Now it is easierto get 1 in a speci�ed place according to �pn than according to ��;�n ; and similarly for 0. Obtaining\anything" is equally easy.Now the claim easily follows. 2It is left for the reader to verify that the changes described above guarantee that our proof ofKaufmann and Shelah Theorem still works for G(n; p); and therefore that the proof of theorem 2 is�nished. 24 Partial orders and Km+1{free graphsFirst we improve our proof of Kaufmann and Shelah Theorem to make it work for random partial orders.The theorem we obtain is not new { it has been proved by Compton, as reported in [2].Theorem 4 ((Compton [2])) There are monadic second{order sentences without asymptotic probabil-ity with respect to uniform labelled probability distribution on the class of all �nite partial orders.Proof:The only problem in our case is to �nd another representation of computations of Turing machines,as the one found for graphs cannot be embedded in random partial orders. To do so we present nowpart of the �rst{order description of a random partial order (i.e., a part of the complete axiomatizationof the almost sure theory), after cf. [2]. We assume � to be the symbol of the ordering relation, subjectto random choice.With labelled asymptotic probability 1 a partial order will have no chains of length greater than 3.Thus, almost every partial order can be partitioned into 3 levels: L0, the set of minimal elements, L1,the set of elements immediately succeeding elements in L0, and L2, the set of elements immediatelysucceeding elements in L1.First we add three unary relations to the signature for the levels L0, L1, and L2: Now we formulateextension axioms for random partial orders. 7



Let x1; : : : ; xm; y1; : : : ; zk and y1; : : : ; y` be variables, all of them di�erent. Let S � f1; : : : ;mg �f1; : : : ; `g be arbitrary. The following formula is an extension axiom, and holds a.s. in a random partialorder: (8x1; : : : ; xm 2 L1) (8z1; : : : ; zk 2 L0)�(V1�i<j�m xi 6= xj ^V1�i<j�k zi 6= zj)!((9y1; : : : ; y` 2 L0) V1�i<j�` yi 6= yj ^V1�i�k; 1�j�` zi 6= yj ^V(i;j)2S xi � yj ^V(i;j)62S xi 6� yj)�:A formula resulting from the above by interchanging places of L0 and L1; and changing � into �; isalso an axiom.Now we would like to represent, in a way de�nable in �rst{order logic, graphs in random partialorders so that all extension axioms for graphs are a.s. true about these representations.Namely, a graph G on vertex set U0 � L0 is represented by a 4{tuple of subsets of a random partialorder hU0; U1; U2; U3i; such that:1. U0; U2 � L0; U1; U3 � L1;2. � is a bijection from U0 into U1 (denoted '0);3. � is a bijection from U1 into U2 (denoted '1);4. � is a bijection from U2 into U3 (denoted '2);5. for u; v 2 U0 let '2('1('0(u))) � v i� there is an edge from u to v in G:We leave for the reader easy veri�cation that the graph extension axioms of the form Ext(G;H) holda.s., when we look at their representations in random partial orders. Now our proof of Kaufmann andShelah result applies here, and the thesis follows immediately. 2In contrast to the previous result, the following is, to the best of author's knowledge, a new one.A Km+1� free graph is a one having no subgraph isomorphic to Km+1, the complete graph on m + 1vertices.Theorem 5 There are monadic second{order sentences without asymptotic probability with respect touniform labelled probability distribution on the class of all �nite Km+1� free graphs, for m � 2:Proof:Once more we need a part of the �rst{order description of a randomKm+1� free graph, this timeprovided by Kolaitis, Pr�omel, and Rothschild [7, 8].A spindle connecting two vertices x and y in a Km+1� free graph is a subgraph isomorphic to Km�1such that all its vertices are adjacent to both x and y: It appears that with labelled asymptotic probability1 the relation of being connected by a spindle is an equivalence relation of index m; and no two verticesin an equivalence class of this relation are adjacent.Suppose that the edge relation is denoted by E and that L0; : : : ; Lm�1 are the equivalence classes forthe spindle connection relation in a random Km+1� free graph.Let x1; : : : ; xm; y1; : : : ; zk and y1; : : : ; y` be variables, all of them di�erent. Let S � f1; : : : ;mg �f1; : : : ; `g be arbitrary. The following formula is an extension axiom, and holds a.s. in a random Km+1�free graph: (8x1; : : : ; xm 2 L1)(8z1; : : : ; zk 2 L0)�(V1�i<j�m xi 6= xj ^V1�i<j�k zi 6= zj)!((9y1; : : : ; y` 2 L0)V1�i<j�` yi 6= yj ^V1�i�k; 1�j�` zi 6= yjV(i;j)2S E(xi; yj) ^V(i;j)62S :E(xi; yj))�:A formula resulting from the above by interchanging places of L0 and L1 is also an axiom.Now we can easily observe, that almost identical representation as in random partial orders is appro-priate here. The equivalence classes L2 to Lm�1 are ignored in our construction. 28



5 Monadic second{order logic vs. �xpoint logic in the theoryof asymptotic probabilitiesIn this section we shall investigate connections between behaviours of asymptotic probabilities in �xpointlogic and in monadic logic. It was empirically observed that �rst{order 0{1 laws sometimes extend to�xpoint 0{1 laws, sometimes to monadic second{order 0{1 laws, but almost never to both of these logicsat the same time.First of all, in order to support the above claim, we recall some results concerning behaviour ofasymptotic probabilities in �xpoint and monadic second{order logics. Results for monadic second{orderlogic can be found, together with references, in [1, 2], while their �xpoint counterparts are to be foundin [11, 12]. In all the cases below the �rst{order 0{1 law holds.1. Graphs and uniform, labelled or unlabelled probabilities: the �xpoint 0{1 law holds, nonconver-gence in monadic logic;2. Partial orders and uniform, labelled probabilities: the �xpoint 0{1 law holds, nonconvergence inmonadic logic;3. Graphs that are unions of cycles and uniform, unlabelled probabilities: the monadic 0{1 law holds,nonconvergence in �xpoint logic;4. Random graphs G(n; p) with recursive p = p(n) such that either for all " > 0 n�1�" � p(n)� n�1or n�1 � p(n)� n�1 logn : the monadic 0{1 law holds, nonconvergence in �xpoint logic;5. Equivalence relations and uniform, labelled probabilities: both monadic and �xpoint 0{1 laws hold.The last entry above is essentially degenerated: it is known that both �xpoint and monadic logicscollapse to �rst{order logic on equivalence relations. We will return to this observation later.As we saw in previous sections, the fact that appropriate extension axioms hold with asymptoticprobability one is a strong premise against the convergence law for monadic logic. At the same time,almost all known proofs of 0{1 laws for �xpoint logic are based on extension axioms. Therefore it seemsthat the 0{1 law for �xpoint logic is a strong premise against the convergence law for monadic logic.As far as we know, this is the �rst step towards explanation of the observation we mentioned at thebeginning of this section.Of course it would be nice to have some theorem of the form:\If both �xpoint and monadic 0{1 laws hold for hA;�i; then : : :".At �rst glance it seems promising that \both �xpoint and monadic logics almost surely collapse to�rst{order logic in hA;�i" could be placed as a thesis in the above. Unfortunately, this is not true.Appropriate counterexample is constructed in [12], and cited also in [13]. Only the �xpoint logic ismentioned there, but the 0{1 law for monadic logic can be proved in a way similar to that for the�xpoint logic. So the hypothetic theorem{explanation has to be modi�ed. We suggest to add restrictionto recursive distributions only, the latter being de�ned in [13]. The above mentioned counterexample isnonrecursive. To the best of author's knowledge, no known recursive distribution violates the suggestedformulation, which follows:Conjecture 1 Let hA;�i be such that the relation I� = fhA; qi j �jAj(fAg � qg � A�Q is recursive.If both �xpoint and monadic 0{1 laws hold for hA;�i; then both �xpoint logic and monadic second{order logic a.s. collapse to �rst{order logic.For recursive distributions we have a tool which may provide a handle for attacking the conjecture.Namely, it is proved in [13], that if �xpoint 0{1 law holds for a recursive distribution, then �xpointlogic is a.s. bounded, and hence a.s. collapses to �rst{order logic. Similar property, even for recursivedistributions, is not true for monadic logic. 9



6 Final remarks6.1 Further resultsIt can be shown that all our results for labelled distributions are true for unlabelled ones, as well. Infact, in all cases we considered, except the one of sparse random graphs, the extension axioms that holda.s. for labelled distribution, are also known to hold a.s. for the unlabelled one (see [1]).Our proof method also applies to: arbitrary classes of relational structures over arbitrary similaritytype with at least one at least binary relation symbol (but without constants or functions) with eitheruniform labelled or uniform unlabelled probabilities, uniform labelled or unlabelled d� complexes for d >0; and most of classes given by parametric conditions with uniform labelled or unlabelled probabilities.Descriptions of these classes, together with references, are to be found in [1].6.2 Existential monadic logicKaufmann in [5] showed that 0{1 law for uniform labelled random graphs fails even for existential monadiclogic. Our proof method can also be applied in this case. However, the suitable changes are greater thanin previously presented cases.Their informal description is as follows: replace the subformula 9Y (X;Y ) in the sentence Ext by9y 8x (x 2 X ! E(x; y)):The modi�ed Ext is then universal monadic second{order sentence. The existential sentence we thenobtain negating the modi�ed Ext.To apply our proof method we have to show the following:for every pair (G;H) such that jHj � jGj = 1 and the only vertex of jHj n jGj is incident toall vertices of G; the graph of the function n 7! �n(Ext(G;H)) has the shape presented on�gure 1 at the end of the paper.The proof can be based on well known combinatorial estimates for random graphs. Then our proofmethod can be used.Acknowledgment This paper bene�ted very much from sugestions of anonymous referees.References[1] Compton, K.J., 0{1 laws in logic and combinatorics, Proc. NATO Advanced Study Institute onAlgorithms and Order (I. Rival, ed.), Reidel, Dordrecht (1988).[2] Compton, K.J., The Computational Complexity of Asymptotic Problems I: Partial Orders, Infor-mation and Computation 78(1988), pp. 108{123.[3] Erd}os, P., and R�enyi, A., On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutat�o Int.K}ozl. 5(1960), pp. 17{61.[4] Fagin, R., Probabilities on �nite models, J. Symbolic Logic 41(1976), pp. 50{58.[5] Kaufmann, M. A counterexample to the 0{1 law for existential monadic second{order logic, CLIInternal Note 32, Computational Logic Inc., Dec. 1987.[6] Kaufmann, M., Shelah, S., On random models of �nite power and monadic logic, Discrete Math.54(1985), pp. 285{293.[7] Kolaitis, Ph.G., Pr�omel, H., and Rothschild, B., Asymptotic enumeration and a 0{1 law for m�clique free graphs, Bull. Amer. Math. Soc. (N.S.) 13(1985), pp. 160{162.[8] Kolaitis, Ph.G., Pr�omel, H., and Rothschild, B., Kl+1� free graphs: asymptotic structure and a 0{1law, preprint. 10
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6 -�n(Ext(G;H)) n1 jGj jHjFigure 1: Graph of the function n 7! �n(Ext(G;H)):
6 -1 n6 -1 n6 -1 n: : :6 -1 n

n 7! �n(Ext(G1;H1))n 7! �n(Ext(G2;H2))n 7! �n(Ext(Gi;Hi))n 7! �n(Vi2! Ext(Gi;Hi)).............
Figure 2: In�nite conjunction of extension axioms without asymptotic probability12



: : : . . ....
BBBBN BBBBN BBBBN BBBBN BBBBN : : :MU
Figure 3: A grid extension.

� � � � � �� � � � � � ��������� �������� ��� ���� � �������� �_ MUFigure 4: Details of Fig. 3 after improvement. New vertices are denoted by circles, and old ones by �lledcircles. There are k new vertices on each side of the square. There are 2k new vertices on each pathfrom a vertex in M to a root. 13


