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Abstract. We discuss the definability of finite graphs in first-order logic with two
relation symbols for adjacency and equality of vertices. The logical depth D(G)
of a graph G is equal to the minimum quantifier depth of a sentence defining G

up to isomorphism. The logical width W (G) is the minimum number of variables
occurring in such a sentence. The logical length L(G) is the length of a shortest
defining sentence. We survey known estimates for these graph parameters and
discuss their relations to other topics (such as the efficiency of the Weisfeiler-
Lehman algorithm in isomorphism testing, the evolution of a random graph, or the
contribution of Frank Ramsey to the research on Hilbert’s Entscheidungsproblem).
Also, we trace the behavior of the descriptive complexity of a graph as the logic
becomes more restrictive (for example, only definitions with a bounded number of
variables or quantifier alternations are allowed) or more expressible (after powering
with counting quantifiers).
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1. Introduction

1.1. Basic notions and examples. We consider the first-order language of graph
theory whose vocabulary contains two relation symbols ∼ and =, respectively for
adjacency and equality of vertices. The term first-order imposes the condition that
the variables represent vertices and hence the quantifiers apply to vertices only.
Without quantification over sets of vertices, we are unable to express by a single
formula some basic properties of graphs, such as being bipartite, being connected,
etc. (see, e.g., [71, Theorems 2.4.1 and 2.4.2]). However, first-order logic is powerful
enough to define any individual graph. How succinctly this can be done is the
subject of this article.

As a starting example, let us say in the first-order language that vertices x and y
are at distance at most n from one another. A possible formula ∆n(x, y) can look
as follows:

∆1(x, y)
def
= x ∼ y ∨ x = y,

∆n(x, y)
def
= ∃z1 . . .∃zn−1

(

∆1(x, z1) ∧
n−2
∧

i=1

∆1(zi, zi+1) ∧ ∆1(zn−1, y)
)

. (1)

By a sentence we mean a first-order formula where every variable is bound by a
quantifier. If we specify a graph G, a sentence Φ is either true or false on it. If H is
a graph isomorphic to G, then Φ is either true or false on G and H simultaneously.
In other words, first-order logic cannot distinguish between isomorphic graphs. In
general, we say that a sentence Φ distinguishes a graph G from another graph H if
Φ is true on G but false on H .

For example, sentence ∀x∀y ∆1(x, y) distinguishes a complete graph Kn from any
graph H that is not complete. The sentence ∀x∀y ∆n−1(x, y) distinguishes Pn, the
path with n vertices, from any longer path Pm, m > n.

Throughout this survey we consider only graphs whose vertex set is finite and
non-empty. We say that a sentence Φ defines a graph G (up to isomorphism) if Φ
distinguishes G from every non-isomorphic graph H .

For example, the single-vertex graph P1 is defined by sentence ∀x∀y (x = y). If
n ≥ 2, then the path Pn is defined by

∀x∀y∆n−1(x, y) ∧ ¬∀x∀y∆n−2(x, y)

to say that the diameter equals n − 1

∧ ∀x¬∃y1∃y2∃y3

(

∧

i=1,2,3

x ∼ yi ∧
∧

i6=j

¬(yi = yj)

)

to say that the maximum degree ≤ 2

∧ ∃x¬∃y1∃y2

(

∧

i=1,2

x ∼ yi ∧ ¬(y1 = y2)

)

to say that the minimum degree ≤ 1 (thereby

distinguishing from cycles C2n−2 and C2n−1)

(2)
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We have already mentioned the following basic fact: Every finite graph G is
definable.1 Indeed, let V (G) = {v1, . . . , vn} be the vertex set of G and E(G) be its
edge set. A sentence defining G could read:

∃x1 . . .∃xn ( Distinct(x1, . . . , xn) ∧ Adj(x1, . . . , xn) )

∧ ∀x1 . . .∀xn+1 ¬Distinct(x1, . . . , xn+1),
(3)

where, for the notational convenience, we use the following shorthands

Distinct(x1, . . . , xk)
def
=

∧

1≤i<j≤k

¬ (xi = xj),

Adj(x1, . . . , xn)
def
=

∧

{vi,vj}∈E(G)

xi ∼ xj ∧
∧

{vi,vj}6∈E(G)

¬ (xi ∼ xj).

In other words, we first specify that there are n distinct vertices, list the adjacencies
and the non-adjacencies between them, and then state that we cannot find n + 1
distinct vertices.

The sentence (3) is an exhaustive description of G and seems rather wasteful. We
want to know if there is a more succinct way of defining a graph on n vertices. The
following natural succinctness measures of a first-order formula Φ are of interest:

• the length L(Φ) which is the total number of symbols in Φ (each variable
symbol contributes 1);

• the quantifier depth D(Φ) which is the maximum length of a chain of nested
quantifiers in Φ;

• the width W (Φ) which is the number of variables used in Φ (different occur-
rences of the same variable are not counted).2

Formula ∆n in (1) was intentionally written in a non-optimal way. Note that
L(∆n) = Θ(n), D(∆n) = n− 1, and W (∆n) = n + 1. The same distance restriction
can be expressed more succinctly with respect to the latter two parameters, namely

∆′
1(x, y)

def
= ∆1(x, y),

∆′
n(x, y)

def
= ∃z

(

∆′
⌊n/2⌋(x, z) ∧ ∆′

⌈n/2⌉(z, y)
)

,
(4)

where ⌈x⌉ (resp. ⌊x⌋) stands for the integer nearest to x from above (resp. from
below). Now D(∆′

n) = ⌈log2 n⌉, giving an exponential gain for the quantifier depth!
The width can be reduced even more drastically: by recycling variables we can write
∆′

n with only 3 variables in total, achieving W (∆′
n) = 3.

We now come to the central concepts of our survey. Let us define L(G) (resp.
D(G), W (G)) to be the minimum of L(Φ) (resp. D(Φ), W (Φ)) over all sentences

1This fact, though very simple, highlights a fundamental difference between the finite and the
infinite: There are non-isomorphic countable graphs satisfying precisely the same first-order sen-
tences (see, e.g., [71, Theorem 3.3.2]).

2Grädel [31] defines the width of a formula Φ as the maximum number of free variables in a
subformula of Φ. Denote this version by W ′(Φ). Clearly, W ′(Φ) ≤ W (Φ) and the inequality can
be strict. Nevertheless, the two parameters are closely related: Φ can be rewritten by renaming
bound variables in an equivalent form Φ′ so that W (Φ′) = W ′(Φ); see [31, Lemma 3.1.4].
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Φ defining a graph G. We will call these graph invariants, respectively, the logical
length, depth, and width of G.

Example 1.1.

1. Using ∆′
n in place of ∆n in (2), we see that D(Pn) < log2 n+3 and W (Pn) ≤

4. The reader is encouraged to improve the latter to W (Pn) ≤ 3.
2. The generic defining sentence (3) shows that L(G) = O(n2) and D(G) ≤ n+1

for every graph G on n vertices.
3. The complement of G, denoted by G, is the graph on the same vertex set

V (G) whose edges are those pairs that are not in E(G). One can easily prove
that D(G) = D(G) and W (G) = W (G).

The logical length, depth, and width of a graph satisfy the following inequalities:

W (G) ≤ D(G) < L(G).

The latter relation follows from an obvious fact that D(Φ) < L(Φ) for any first-order
formula Φ. The former follows from a bit less obvious fact that for any first-order
formula Φ there is a logically equivalent formula Ψ with W (Ψ) ≤ D(Φ).

1.2. Variations of logic.

1.2.1. Fragments. Suppose that we put some restrictions on the structure of a defin-
ing sentence. This may cause an increase in the resources (length, depth, width)
that we need in order to define a graph in the straitened circumstances. These effects
will be one of our main concerns in this survey. We will deal with restrictions of the
following two sorts. We may be allowed to make only a small (constant) number of
quantifier alternations or to use only a bounded number of variables. The former is
commonly used in logic and complexity theory to obtain hierarchical classifications
of various problems. The latter is in the focus of finite-variable logics (see, e.g,
Grohe [32]). Moreover, the number of variables has relevance to the computational
complexity of the graph isomorphism problem, see Section 4.
Bounded number of quantifier alternations. A first-order formula Φ with connectives
{¬,∧,∨} is in a negation normal form if all negations apply only to relations (one can
think that we now do not have negation at all but introduce instead two new relation
symbols, for inequality and non-adjacency). It is well known that this structural
restriction actually does not make first-order logic weaker: We can always move
negations in front of relation symbols without increasing the formula’s length more
than twice and without changing the quantifier depth and the width.

Given such a formula Φ and a sequence of nested quantifiers in it, we count the
number of quantifier alternations, that is, the number of successive pairs ∀∃ and ∃∀
in the sequence. The alternation number of Φ is the maximum number of quantifier
alternations over all such sequences. The a-alternation logic consists of all first-order
formulas in the negation normal form whose alternation number does not exceed a.
We will adhere to the following notational convention: a subscript a will always
indicate that at most a quantifier alternations are allowed. For example, Da(G) is
the minimum quantifier depth of a sentence in the a-alternation logic that defines a
graph G.
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For any graph G on n vertices we have

D(G) ≤ . . . ≤ Da+1(G) ≤ Da(G) ≤ . . . ≤ D1(G) ≤ D0(G) ≤ n + 1,

where the last bound is due to the defining sentence (3).
Bounded number of variables. The k-variable logic is the fragment of first-order
logic where only k variable symbols are available, that is, the formula width is
bounded by k. The restriction of defining sentences to the k-variable logic will be
always indicated by a superscript k. To make this notation always applicable, we
set Dk(G) = ∞ if the k-variable logic is too weak to define G. If k ≥ W (G) for a
graph G of order n, then we have

D(G) ≤ Dk+1(G) ≤ Dk(G) < nk−1 + k,

where the last bound will be established in Theorem 4.7 below. Note that the
bounds in Example 1.1.1 can be strengthened to D3(Pn) < log2 n + 3.

1.2.2. An extension with counting quantifiers. We will also enrich first-order logic by
allowing one to use expressions of the type ∃mΨ in order to say that there are at least
m vertices with property Ψ. Those are called counting quantifiers and the extended
logic will be referred to as counting logic. A counting quantifier ∃m contributes 1
in the quantifier depth irrespectively of the value of m. For the counting logic we
will use the “sharp-notation”, thus denoting the logical depth and width of a graph
G in this logic, respectively, by D#(G) and W#(G). Clearly, D#(G) ≤ D(G) and
W#(G) ≤ W (G). The counting quantifiers often allow us to define a graph much
more succinctly. For example, D#(Kn) = W#(Kn) = 2 as this graph is defined by

∀x∀y (x ∼ y ∨ x = y) ∧ ∃nx (x = x) ∧ ¬∃n+1x (x = x).

This is in sharp contrast with the fact that D(Kn) = W (Kn) = n + 1, where the
lower bound follows from the simple observation that n variables are not enough to
distinguish between Kn and Kn+1.

1.3. Outline of the survey. Section 2 specifies notation and proves a couple of
basic facts about first-order sentences. The latter are applied to establish an upper
bound on the logical length L(G) of a graph in terms of its logical depth D(G) and
to estimate from above the number of graphs whose logical depth is bounded by a
given parameter k. The existence of such bounds is more important than the bounds
themselves that are huge, involving the tower function. Furthermore, we define
D(G, H) to be the smallest quantifier depth sufficient to distinguish between non-
isomorphic graphs G and H . We will observe that the obvious inequality D(G, H) ≤
D(G) gives the sharp lower bound on D(G). Thus estimating D(G) reduces to
estimating D(G, H) for all H 6∼= G

The value of D(G, H) is characterized in Section 3 as the length of the Ehrenfeucht
game on G and H . Moreover, the logical width admits a characterization in terms
of another parameter of the game. Thus, the determination of the logical depth and
width of a graph reduces to designing optimal strategies in the Ehrenfeucht game.

In Section 4, the logical width and the logical depth are also characterized, respec-
tively, as the minimum dimension and the minimum number of rounds such that
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the so-called Weisfeiler-Lehman algorithm returns the correct answer. The algo-
rithm tries to decide whether two input graphs are isomorphic; its one-dimensional
version is just the well-known color-refining procedure. Thus, an analysis of the
algorithm can give us information on the logical complexity of the input graphs.
This relationship is even more advantageous in the other direction: Once we prove
that all graphs in some class C have low logical complexity, we immediately obtain
an efficient isomorphism test for C.

This paradigm is successful for graphs with bounded treewidth and planar graphs,
with good prospects for covering all classes of graphs with an excluded minor. In
Section 5.1 we report strong upper bounds for the logical depth/width of graphs
in these classes. In Section 5.2 we survey the bounds known in the general case.
In particular, if a graph G on n vertices has no twins, i.e., vertices with the same
neighborhood, then D(G) < 1

2
n+3. The factor of 1

2
can be improved for graphs with

bounded vertex degrees. Here we have to content ourselves with linear bounds in
view of a linear lower bound by Cai, Fürer, and Immerman [14]. They constructed
examples of graphs with maximum degree 3 such that W#(G) > c n for a positive
constant c.

Section 6 discusses the logical complexity of a random graph. We obtain rather
close lower and upper bounds for almost all graphs. Furthermore, we trace the
behavior of the logical depth in the evolutional random graph model Gn,p where p
is a function of n.

While in Sections 5 and 6 we deal with, respectively, worst case and average
case bounds, Section 7 is devoted to the best case. More specifically, we define
succinctness function q(n) to be equal to the minimum of D(G) over all G on n
vertices. Since only finitely many graphs are definable with a fixed quantifier depth,
q(n) goes to infinity as n increases. It turns out that its growth is inconceivably slow:
We show a superrecursive gap between the values of q(n) and n. This phenomenon
disappears if we “smoothen” q(n) by considering the least monotonic upper bound
for this function: the smoothed succinctness function is very close to the log-star
function. Furthermore, the succinctness function can be considered in any logic. Let
q0(n) be its variant for the logic with no quantifier alternation. We can determine
q0(n) with rather high precision: It is also related to the log-star function. The
lower bound for q0(n) implies a superrecursive gap between the graph parameters
D(G) and D0(G), yet another evidence of the weakness of the 0-alternation logic.
The tight upper bound for q0(n) shows that, nevertheless, there are graphs whose
definitions, even if quantifiers are not allowed to alternate, can have surprisingly low
quantifier depth. We give several methods of explicit constructions of such graphs.
These constructions have another interesting aspect. They allow us to show that
the previously mentioned tower-function bounds from Section 2 cannot be improved
substantially.

Some of the most interesting open questions are collected in Section 8.

1.4. Other structures. Some of the results presented in the survey generalize to
relational structures over a fixed vocabulary. Such generalizations are often straight-
forward. For example, the upper bounds on succinctness functions hold true if the
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vocabulary contains at least one relation symbol of arity more than 1 (since any
graph can be trivially represented as a structure over this vocabulary). Extension
of the worst case bounds to general structures is also possible but requires essential
additional efforts; see [64].

Various definability parameters were investigated also for special structures: col-
ored graphs (Immerman and Lander [45], Cai, Fürer, and Immerman [14]), digraphs
and hypergraphs (Pikhurko, Veith, and Verbitsky [63]), bit strings and ordered trees
(Spencer and St. John [72]), linear orders (Grohe and Schweikardt [39]).

2. Preliminaries

2.1. Notation: Arithmetic and graphs. We define the tower function by
Tower(0) = 1 and Tower(i) = 2Tower(i−1) for each subsequent integer i. Given a func-
tion f , by f (i)(x) we will denote the i-fold composition of f . In particular, f (0)(x) =
x. By log n we always mean the logarithm base 2. The “inverse” of the tower func-
tion, the log-star function log∗ n, is defined by log∗ n = min { i : Tower(i) ≥ n}. We
use the standard asymptotic notation. For example, f(n) = Ω(g(n)) means that
there is a constant c > 0 such that f(n) ≥ c g(n) for all sufficiently large n.

The number of vertices in a graph G is called the order of G and is denoted by
v(G). The neighborhood N(v) of a vertex v consists of all vertices adjacent to v.
The degree of v is defined by deg v = |N(v)|. The maximum degree of a graph G is
defined by ∆(G) = maxv∈V (G) deg v.

The distance between vertices u and v in a graph G is defined to be the minimum
length of a path from u to v and denoted by dist(u, v). If u and v are in different
connectivity components, then we set dist(u, v) = ∞. The eccentricity of a vertex
v is defined by e(v) = maxu∈V (G) dist(v, u).

Let X ⊂ V (G). The subgraph induced by G on X is denoted by G[X]. We denote
G \ X = G[V (G) \ X], which is the result of the removal of all vertices in X from
G. If a single vertex v is removed, we write G− v = G \ {v}. A set of vertices X is
called homogeneous if G[X] is a complete or an empty graph.

A graph is k-connected if it has at least k +1 vertices and remains connected after
removal of any k − 1 vertices. 2-connected graphs are also called biconnected.

A graph is asymmetric if it admits no non-trivial automorphism.

2.2. A length-depth relation. We have already mentioned the trivial relation
D(G) < L(G). Now we aim at bounding L(G) from above in terms of D(G). We
write G≡k H to say that graphs G and H cannot be distinguished by any sentence
with quantifier depth k. As it is easy to see, ≡k is an equivalence relation. Its
equivalence classes will be referred to as ≡k-classes. We say that a sentence Φ
defines a ≡k-class α if Φ is true on all graphs in α and false on all other graphs.

Lemma 2.1.

1. The number of ≡k-classes is finite and does not exceed Tower(k +log∗ k +2).
2. Every ≡k-class is definable by a sentence Φ with D(Φ) = k and L(Φ) <

Tower(k + log∗ k + 2).
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Proof. The case of k = 1 is easy: There is only one ≡1-class (consisting of all graphs),
which is definable by ∀x(x = x).

Let k ≥ 2 and 0 ≤ s ≤ k. When we write z̄, we will mean an s-tuple (z1, . . . , zs)
(if s = 0, the sequence is empty). If ū ∈ V (G)s and Φ is a formula with s free
variables x1, . . . , xs, then notation G, ū |= Φ(x̄) will mean that Φ(x̄) is true on G
with each xi being assigned the respective ui as its value.

A formula Φ(x1, . . . , xs) of quantifier depth k−s is normal if Φ is built from vari-
ables x1, . . . , xk and every maximal sequence of nested quantifiers in Φ has length
k − s and quantifies the variables xs+1, . . . , xk exactly in this order. A simple in-
ductive syntactic argument shows that any Φ(x1, . . . , xs) has an equivalent normal
formula Φ′(x1, . . . , xs) of the same quantifier depth as Φ.

We write G, ū ≡k,s H, v̄ to say that G, ū |= Φ(x̄) exactly when H, v̄ |= Φ(x̄) for
every normal formula Φ of quantifier depth k − s. A normal formula Φ(x̄) defines
a ≡k,s-class α if G, ū |= Φ(x̄) exactly when G, ū belongs to α. The ≡k,s-equivalence
class of G, ū will be denoted by [G, ū]k,s.

Let f(k, s) denote the number of all ≡k,s-classes and l(k, s) denote the minimum
l such that every ≡k,s-class is definable by a normal formula of depth at most k − s
and length at most l. Note that relations ≡k and ≡k,0 coincide. Thus, our goal is
to estimate the numbers f(k, 0) and l(k, 0) from above.

We use the backward induction on s. A ≡k,k-class can be determined by specifying,
for each pair of the k elements, whether they are equal and, if not, whether they
are adjacent or non-adjacent. There are at most three choices per pair. It easily

follows that f(k, k) ≤ 3(k
2) and l(k, k) < 9k2. We are now going to estimate f(k, s)

and l(k, s) in terms of f(k, s + 1) and l(k, s + 1). Suppose that each ≡k,s+1-class β
is defined by a formula Φβ(x1, . . . , xs, xs+1) whose length is bounded by l(k, s + 1).

Define S(G, ū) = { [G, ū, u]k,s+1 : u ∈ V (G)}, the set of ≡k,s+1-classes obtainable
from G, ū by specifying one extra vertex. Note that

G, ū ≡k,s H, v̄ if and only if S(G, ū) = S(H, v̄).

Indeed, suppose that S(G, ū) 6= S(H, v̄), say, β = [G, ū, u]k,s+1 is not in S(H, v̄)
for some u ∈ V (G). Then G, ū 6≡k,s H, v̄ because formula ∃xs+1Φβ is true for G, ū
but false for H, v̄. Suppose now that G, ū and H, v̄ are distinguishable by a normal
formula of quantifier depth k − s. As it is easily seen, they are distinguishable by
such a formula of the form ∃xs+1Φ. Without loss of generality, assume that the
formula ∃xs+1Φ is true for G, ū but false for H, v̄. Let u ∈ V (G) be such that
G, ū, u |= Φ. Since Φ distinguishes G, ū, u from all H, v̄, v with v ∈ V (H), the class
[G, ū, u]k,s+1 is not in S(H, v̄) and, hence, S(G, ū) 6= S(H, v̄).

Thus, for a ≡k,s-class α we can correctly define the set of ≡k,s+1-classes accessible
from α by S(α) = S(G, ū) for some (in fact, arbitrary) G, ū in α. It follows from
what we have proved that for arbitrary ≡k,s-classes α and α′, we have

α = α′ if and only if S(α) = S(α′).

As an immediate consequence,

f(k, s) ≤ 2f(k,s+1).
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Since 2 ·
(

k
2

)

≤ 2k for every integer k ≥ 1, we have f(k, k) ≤ 22k ≤ Tower(log∗ k +2).
By the above recursion, we conclude that f(k, 0) ≤ Tower(k + log∗ k + 2), which
proves Part 1 of the lemma.

Another conclusion is that any ≡k,s-class α can be defined by a normal formula

Φα(x̄)
def
=

∧

β∈S(α)

∃xs+1 Φβ(x̄, xs+1) ∧ ∀xs+1

∧

β 6∈S(α)

¬Φβ(x̄, xs+1).

Looking at the length of Φα(x̄), we obtain the recurrence

l(k, s) ≤ f(k, s + 1)(l(k, s + 1) + 9). (5)

Set g(x) = 2x(x + 9). A simple inductive argument shows that

f(k, s) ≤ 2g(k−s)(9k2) and l(k, s) ≤ g(k−s)(9k2).

Define the two-parameter function Tower(i, x) inductively on i by Tower(0, x) = x
and Tower(i+1, x) = 2Tower(i,x) for i ≥ 0. This is a generalization of the old function:
Tower(i, 1) = Tower(i). One can prove by induction on i that for any x ≥ 5 and
i ≥ 1 we have

g(i)(x) < Tower(i + 1, x)/2. (6)

Indeed, it is easy to check the validity of (6) for i = 1, while for i ≥ 2 we have

g(i)(x) < g(Tower(i, x)/2) < 2Tower(i,x)−1 = Tower(i + 1, x)/2. (7)

We have for all k ≥ 5 that 9k2 < Tower(log∗ k + 1). This follows from 9k2 < 2k for
k ≥ 10 and can be checked by hand for 5 ≤ k ≤ 9. Thus, for k ≥ 5, we have by (6)
that

l(k, 0) ≤ g(k)(9k2) < Tower(k+1, 9k2)/2 < Tower(k+1, 9k2) < Tower(k+log∗ k+2).

Routine calculations (omitted) based on (5) and the exact initial values f(2, 2) = 3,
f(3, 3) = 15, and f(4, 4) = 127 give Part 2 of the lemma for 2 ≤ k ≤ 4. �

Lemma 2.1.2 gives us a bound for the logical length of a graph in terms of its
logical depth. It suffices to notice that each single graph G constitutes a ≡k-class
for k = D(G).

Theorem 2.2 (Pikhurko, Spencer, and Verbitsky [60]).

L(G) < Tower(D(G) + log∗ D(G) + 2).

In fact, [60, Theorem 10.1] states only that L(G) < Tower(D(G) + log∗ D(G) +
O(1)). Here we went into the trouble of estimating the error term more precisely so
that Lemma 2.1.2 and some of its consequences can be stated more neatly.

Lemma 2.1.1 gives the following result.

Theorem 2.3. The number of graphs with logical depth at most k does not exceed
Tower(k + log∗ k + 2).

Notice two further consequences of Lemma 2.1.
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Theorem 2.4.

1. There are at most Tower(k+log∗ k+3) pairwise inequivalent sentences about
graphs of quantifier depth k.

2. Every sentence Φ about graphs of quantifier depth k has an equivalent sen-
tence Φ′ with the same quantifier depth and length less than 3 Tower(k +
log∗ k + 2)2.

Proof. Note that, if a sentence Φ has quantifier depth k, then the set of all graphs
on which Φ is true is the union of some ≡k-classes. Therefore, there are 2f(k) and
no more pairwise inequivalent sentences of quantifier depth k, where f(k) is the
number of ≡k-classes. Part 1 now follows from Lemma 2.1.1. By the same reason
every sentence Φ of quantifier depth k is equivalent to the disjunction of sentences
defining some ≡k-classes. By Lemma 2.1.2, such disjunction does not need to be
longer than (f(k) + 3)Tower(k + log∗ k + 2). This proves Part 2. �

2.3. Distinguishability vs. definability. Given two non-isomorphic graphs G
and H , we define D(G, H) (resp. W (G, H)) to be the minimum of D(Φ) (resp.
W (Φ)) over all sentences Φ distinguishing G from H . Thus, D(G, H) > k if and
only if G ≡k H . Obviously, D(G, H) = D(H, G). Also, D(G, H) ≤ D(G) and
W (G, H) ≤ W (G). It turns out that these inequalities are tight in the following
sense.

Lemma 2.5.

1. D(G) = maxH 6∼=G D(G, H).
2. W (G) = maxH 6∼=G W (G, H).

Proof. 1. For each H non-isomorphic to G fix a sentence ΦH that distinguishes G
from H and has the minimum possible quantifier depth, i.e., D(ΦH) = D(G, H).

Consider the sentence Φ
def
=
∧

H 6∼=G ΦH . It distinguishes G from each non-isomorphic

H and has quantifier depth maxH D(ΦH). Therefore, D(G) ≤ maxH D(G, H) as
wanted. An obvious drawback of this argument is that the above conjunction over
H in Φ is actually infinite. However, we have D(ΦH) ≤ D(G) and there are only
finitely many pairwise inequivalent first-order sentences about graphs of bounded
quantifier depth, see Theorem 2.4 above. Thus we can obtain a legitimate finite
sentence defining G by removing from Φ duplicates up to logical equivalence.

2. Running the same argument, we have to “prune” the infinite conjunction
∧

H 6∼=G ΦH , where W (ΦH) = W (G, H). Here we encounter a complication because

there are infinitely many inequivalent sentences of the same width. (Consider e.g.
the sentences from Example 1.1.1.) However, Theorem 4.7.1 in Section 4 implies
that for every H we can additionally require that the depth of ΦH is at most, for
example, nn + n, where n is the order of G. Now we can proceed as in Part 1 of the
lemma. �

Lemma 2.5 stays true in any finite-variable logic, any logic with bounded number
of quantifier alternations, the logic with counting quantifiers, and any hybrid thereof.
We set Dk(G, H) = ∞ if k variables do not suffice to distinguish G from H .
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3. Ehrenfeucht games

Let G and H be graphs with disjoint vertex sets. The r-round k-pebble Ehrenfeucht
game on G and H , denoted by Ehr

k
r(G, H), is played by two players, Spoiler and

Duplicator, to whom we may refer as he and she respectively. The players have
at their disposal k pairwise distinct pebbles p1, . . . , pk, each given in duplicate. A
round consists of a move of Spoiler followed by a move of Duplicator. At each move
Spoiler takes a pebble, say pi, selects one of the graphs G or H , and places pi on a
vertex of this graph. In response Duplicator should place the other copy of pi on a
vertex of the other graph. It is allowed to move previously placed pebbles to other
vertices and place more than one pebble on the same vertex.

After each round of the game, for 1 ≤ i ≤ k let xi (resp. yi) denote the vertex of
G (resp. H) occupied by pi, irrespectively of who of the players placed the pebble
on this vertex. If pi is off the board at this moment, xi and yi are undefined. If after
every of r rounds the component-wise correspondence (x1, . . . , xk) to (y1, . . . , yk) is
a partial isomorphism from G to H , this is a win for Duplicator. Otherwise the
winner is Spoiler. The following example should provide the reader with a hint for
the solution of the exercise suggested in Example 1.1.1.

Example 3.1. Spoiler wins Ehr
3
4(Pn, H) if ∆(H) ≥ 3. Assume that H contains no

triangle because otherwise Spoiler wins by pebbling its vertices. Let v be a vertex in
H of degree at least 3. Spoiler pebbles 3 neighbors of v. Duplicator should pebble
3 distinct pairwise non-adjacent vertices in Pn for otherwise she loses the game.
The distance between any two vertices pebbled in H is equal to 2. Unlike to this,
some two vertices pebbled in Pn (say, by pebbles p1 and p2) are at a larger distance.
Spoiler moves p3 to v. Duplicator is forced to violate the adjacency relation.

The particular case of Ehr
k
r(G, H) in which the number of pebbles is the same

as the number of rounds, i.e., k = r, deserves a special attention. In this case, the
outcome of the game will not be affected if we prohibit moving pebbles from one
vertex to another, that is, if we allow the players to play with each pi exactly once,
say, in the i-th round. We denote this variant of Ehr

r
r(G, H) by Ehrr(G, H) and

will mean it whenever the term Ehrenfeucht game is used with no specification.

Lemma 3.2. Suppose that in the 3-pebble Ehrenfeucht game on (G, H) some two
vertices x, y ∈ V (G) at distance n were selected so that their counterparts x′, y′ ∈
V (H) are at a strictly larger distance (possibly infinity). Then Spoiler can win in at
most ⌈log n⌉ extra moves.

Proof. Spoiler sets u1 = x, u2 = y, v1 = x′, v2 = y′, and places a pebble on the
middle vertex u in a shortest path from u1 to u2 (or either of the two middle vertices
if d(u1, u2) is odd). Let v ∈ V (H) be selected by Duplicator in response to u. By
the triangle inequality, we have d(u, um) < d(v, vm) for m = 1 or m = 2. For such
m Spoiler resets u1 = u, u2 = um, v1 = v, v2 = vm and applies the same strategy
once again. In this way Spoiler ensures that d(u1, u2) < d(v1, v2) in each round.
Eventually, unless Duplicator loses earlier, d(u1, u2) = 1 while d(v1, v2) > 1, that is,
Duplicator fails to preserve adjacency.
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To estimate the number of moves made, notice that initially d(u1, u2) = n and
for each subsequent u1, u2 this distance becomes at most f(d(u1, u2)), where f(α) =
(α + 1)/2. Therefore the number of moves does not exceed the minimum i such
that f (i)(n) < 2. As (f (i))−1(β) = 2iβ − 2i + 1, the latter inequality is equivalent to
2i ≥ n, which proves the bound. �

There is a rather clear connection between Spoiler’s strategy designed in the proof
of Lemma 3.2 and first-order formula ∆′

n(x, y) in (4). We will see that, in some strong
sense, Ehrr(G, H) corresponds to first-order logic, while Ehr

k
r(G, H) corresponds

to its k-variable fragment. In fact, every logic has its own corresponding game.
In the k-alternation variant of Ehrr(G, H) Spoiler is allowed to switch from one

graph to another at most k times during the game, i.e., in at most k rounds he can
choose the graph other than that in the preceding round.

In the counting version of the game Ehr
k
r(G, H) Spoiler can make a counting

move consisting of two acts. First, he specifies a set of vertices A in one of the
graphs. Duplicator has to respond with a set of vertices B in the other graph so
that |B| = |A| (if this is impossible, she immediately loses). Second, Spoiler places
a pebble pi on a vertex b ∈ B. In response Duplicator has to place the other copy of
pi on a vertex a ∈ A. It is clear that, any round with |A| = 1 is virtually the same
as a round of the standard game.

There is a general analogy between strategies allowing Spoiler to win a game
on G and H and first-order sentences distinguishing these graphs: the former can
be converted into the latter and vice versa so that the duration of a game will be
in correspondence to the quantifier depth and the number of pebbles will be in
correspondence to the number of variables.

Theorem 3.3 (The Ehrenfeucht theorem and its variations). Let G and H be non-
isomorphic graphs.

1. (Ehrenfeucht [24], Fräıssé [28]3) D(G, H) equals the minimum r such that
Spoiler has a winning strategy in Ehrr(G, H).

2. (Pezzoli [59]) Dk(G, H) equals the minimum r such that Spoiler has a winning
strategy in the k-alternation game Ehrr(G, H).

3. (Immerman [42], Poizat [65]) W (G, H) equals the minimum k such that
Spoiler has a winning strategy in Ehr

k
r(G, H) for some r.

4. (Immerman [42], Poizat [65]) Dk(G, H) equals the minimum r such that
Spoiler has a winning strategy in Ehr

k
r(G, H).

5. (Immerman and Lander [45]) W#(G, H) equals the minimum k such that
Spoiler has a winning strategy in the counting version of Ehr

k
r(G, H) for

some r. Furthermore, if k ≤ W#(G, H), then Dk
#(G, H) equals the mini-

mum r such that Spoiler has a winning strategy in the counting version of
Ehr

k
r(G, H).

We refer the reader to [43, Theorem 6.10] for the proof of Parts 3–5. Part 1 follows
from Part 4 in view of the facts that D(G, H) = mink Dk(G, H) and that any

3It was Ehrenfeucht who formally introduced the game. Prior to Ehrenfeucht, Fräıssé obtained
virtually the same result using an equivalent language of partial isomorphisms.
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sentence Φ can be equivalently rewritten with the same quantifier depth D(Φ) and
with use of at most D(Φ) variables.

In view of Lemma 2.5, the Ehrenfeucht theorem provides us with a powerful tool
for estimating the logical depth and width of graphs. Consider, for instance, a path
Pn. Example 3.1 and Lemma 3.2 are immediately translated into the upper bound
D3(Pn) < log n + 3. On the other hand, a lower bound D(Pn) ≥ log n − 2 follows
from the existence of a winning strategy for Duplicator in Ehrr(Pn, Pn+1) whenever
r ≤ ⌊log n⌋ − 1 (all details can be found in [71, Theorem 2.1.3]).

4. The Weisfeiler-Lehman algorithm

Graph Isomorphism is the problem of recognizing if two given graphs are isomor-
phic. The best known algorithm (Babai, Luks, and Zemlyachenko [8]) takes time

2O(
√

n log n), where n denotes the number of vertices in the input graphs. Particu-
lar classes of graphs for which Graph Isomorphism is solvable more efficiently are
therefore of considerable interest. Somewhat surprisingly, a number of important
tractable cases are solvable by a combinatorially simple, uniform approach, namely
the multidimensional Weisfeiler-Lehman algorithm. The efficiency of this method
depends much on the logical complexity of input graphs.

For the history of this approach to the graph isomorphism problem we refer the
reader to [4, 14]. We will abbreviate k-dimensional Weisfeiler-Lehman algorithm
by k-dim WL. The 1-dim WL is commonly known as canonical labeling or color
refinement algorithm. It proceeds in rounds; in each round a coloring of the vertices
of input graphs G and H is defined, which refines the coloring of the previous round.
The initial coloring C0 is uniform, say, C0(u) = 1 for all vertices u ∈ V (G)∪ V (H).
In the (i + 1)st round, the color Ci+1(u) is defined to be a pair consisting of the
preceding color Ci−1(u) and the multiset of colors Ci−1(w) for all w adjacent to u.
For example, C1(u) = C1(v) iff u and v have the same degree. To keep the color
encoding short, after each round the colors are renamed (we never need more than
2n color names4). As the coloring is refined in each round, it stabilizes after at
most 2n rounds, that is, no further refinement occurs. The algorithm stops once
this happens. If the multiset of colors of the vertices of G is distinct from the
multiset of colors of the vertices of H , the algorithms reports that the graphs are
not isomorphic; otherwise, it declares them to be isomorphic. Disappointingly, the
output is not always correct. The algorithm may report false positives, for example,
if both input graphs are regular with the same vertex degree.

Following the same idea, the k-dimensional version iteratively refines a coloring
of V (G)k ∪ V (H)k. The initial coloring of a k-tuple ū is the isomorphism type of
the subgraph induced by the vertices in ū (viewed as a labeled graph where each
vertex is labeled by the positions in the tuple where it occurs). Loosely speaking, the
refinement step takes into account the colors of all neighbors of ū in the Hamming
metric. Color stabilization is surely reached in r < 2nk rounds and, thus, the
algorithm terminates in polynomial time for fixed k.

4We do not need even more than n because appearance of the (n + 1)th color indicates non-
isomorphism.
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Let us give a careful description of the k-dim WL for k ≥ 2. Given an ordered
k-tuple of vertices ū = (u1, . . . , uk) ∈ V (G)k, we define the isomorphism type of ū
to be the pair

tp(ū) =
(

{

(i, j) ∈ [k]2 : ui = uj

}

,
{

(i, j) ∈ [k]2 : {ui, uj} ∈ E(G)
}

)

,

where [k] denotes the set {1, . . . , k}. If w ∈ V (G) and i ≤ k, we let ūi,w denote the
result of substituting w in place of ui in ū.

The r-round k-dim WL takes as an input two graphs G and H and purports to
decide if G ∼= H . The algorithm performs the following operations with the set
V (G)k ∪ V (H)k.

Initial coloring. The algorithm assigns each ū ∈ V (G)k ∪ V (H)k color Ck,0(ū) =
tp(ū) (in a suitable encoding).

Color refinement step. In the i-th round each ū ∈ V (G)k is assigned color

Ck,i(ū) =
(

Ck,i−1(ū),
{{(

Ck,i−1(ū1,w), . . . , Ck,i−1(ūk,w)
)

: w ∈ V (G)
}}

)

and similarly with each ū ∈ V (H)k.
Here {{. . .}} denotes a multiset. In a weaker count-free version of the algorithm,

this notation will be interpreted as a set. Let

Ck,r(G) =
{{

Ck,r(ū) : ū ∈ V (G)k
}}

.

Computing an output. The algorithm reports that G 6∼= H if

Ck,r(G) 6= Ck,r(H) (8)

and that G ∼= H otherwise.
In the above description we skipped an important implementation detail. In order

to prevent increasing the length of Ck,i(ū) at the exponential rate, we arrange colors
of all k-tuples of V (G)k ∪ V (H)k in the lexicographic order and replace each color
with its number before every refinement step.

Furthermore, let

diagC k,r(G) =
{{

Ck,r(uk) : u ∈ V (G)
}}

,

where uk denotes the k-tuple (u, . . . , u).

Lemma 4.1. In both the standard and the count-free versions of the k-dim WL,
inequality

diagC k,r(G) 6= diagC k,r(H) (9)

implies (8), which in its turn implies

diagC k,r+k−1(G) 6= diagC k,r+k−1(H). (10)

Proof. Consider the standard version; the analysis of the count-free case is similar
(and even simpler). Note that k-tuples with different equality types never have the
same color. Therefore, Ck,r(G) and Ck,r(H) are different iff their restrictions to
some equality type are different. This proves the first implication.

On the other hand, suppose that (8) holds. Let E be an equality type on which
Ck,r(G) and Ck,r(H) differ. Note that each ū in E contributes color Ck,r(ū) (a certain
number of times) to color Ck,r+k−1(ak). Moreover, the sum of the contributions over
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all vertices a is the same for every ū ∈ E. It follows that, if a color has different
multiplicities in Ck,r(G) and Ck,r(H), its “traces” occur different number of times in
diagC k,r+k−1(G) and diagC k,r+k−1(H), and hence these multisets are distinct. �

As it is easily seen, if φ is an isomorphism from G to H , then for all k, i, and ū ∈
V (G)k we have Ck,i(ū) = Ck,i(φ(ū)). This shows that for isomorphic input graphs
the output is always correct. If input graphs are non-isomorphic and the dimension
k is not big enough, the algorithm can erroneously report isomorphism. A criterion
for the optimal choice of the dimension is obtained by Cai, Fürer, and Immerman
[14], who discovered a connection between the Weisfeiler-Lehman algorithm and
the logical complexity of graphs via the Ehrenfeucht game (for the color refinement
algorithm this was done by Immerman and Lander [45]). The success of the standard
version of the algorithm depends on distinguishability of the input graphs in the logic
with counting quantifiers, while the count-free version is in the same way related to
the standard first-order logic.

Referring to the k-dim WL below, we will always assume k ≥ 1 for the standard
version of the algorithm and k ≥ 2 for its count-free version (we can exclude the
case of k = 1, whose analysis differs by some details, as the count-free 1-dim WL is
of no interest: note that it is unable to distinguish between two graphs of order n
without isolated vertices).

Given numbers r, l, and k ≤ l, graphs G, H , and k-tuples ū ∈ V (G)k, v̄ ∈ V (H)k,
we use notation Ehr

l
r(G, ū, H, v̄) to denote the r-round l-pebble Ehrenfeucht game

on G and H with initial configuration (ū, v̄), that is, the game starts on the board
with k already pebbled pairs (ui, vi). The following lemma is a key element of our
analysis.

Lemma 4.2 (Cai, Fürer, and Immerman [14]). Let ū ∈ V (G)k and v̄ ∈ V (H)k.

1. Equality
Ck,r(ū) = Ck,r(v̄) (11)

holds for (the standard version of) the k-dim WL iff Duplicator has a winning
strategy in the counting version of Ehr

k+1
r (G, ū, H, v̄).

2. Equality (11) holds for the count-free version of the k-dim WL iff Duplicator
has a winning strategy in (the standard version of) Ehr

k+1
r (G, ū, H, v̄).

Proof. We prove only Part 2 (Part 1 is proved in detail in [14, Theorem 5.2]). We
proceed by induction on r. The base case r = 0 is straightforward by the definitions
of the initial coloring and the game. Assume that the proposition is true for r − 1
rounds.

Let xi and yi denote the vertices in G and H respectively marked by the i-th
pebble pair. Assume (11) and consider the Ehrenfeucht game on G, H with initial
configuration (x1, . . . , xk) = ū and (y1, . . . , yk) = v̄. First of all, this configuration is
non-losing for Duplicator since (11) implies that tp(ū) = tp(v̄). Further, Duplicator
can survive in the first round. Indeed, assume that Spoiler in this round selects a
vertex a in one of the graphs, say in G. Then Duplicator selects a vertex b in the other
graph H so that Ck,r−1(ūi,a) = Ck,r−1(v̄i,b) for all i ≤ k. In particular, tp(ūi,a) =
tp(v̄i,b) for all i ≤ k. Along with tp(ū) = tp(v̄), this implies that tp(ū, a) = tp(v̄, b).
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Assume now that in the second round Spoiler removes j-th pebble, j ≤ k. Then
Duplicator’s task in the rest of the game is essentially to win Ehr

k+1
r−1(G, ūj,a, H, v̄j,b).

Since Ck,r−1(ūj,a) = Ck,r−1(v̄j,a), Duplicator succeeds by the induction assumption.
Assume now that (11) is false. It follows that Ck,r−1(ū) 6= Ck,r−1(v̄) (then Spoiler

has a winning strategy by the induction assumption) or there is a vertex a in
one of the graphs, say in G, such that for every b in the other graph H we have
Ck,r−1(ūj,a) 6= Ck,r−1(ūj,b) for some j = j(b). In the latter case Spoiler in his first
move places the (k + 1)-th pebble on a. Let b be the vertex selected in response
by Duplicator. In the second move Spoiler will remove the j(b)-th pebble, which
implies that the players essentially play Ehr

k+1
r−1(G, ūj,a, H, v̄j,b) from now on. By

the induction assumption, Spoiler wins. �

Lemma 4.3. Equality diagC k,r(G) = diagC k,r(H) is true for the standard (resp.
count-free) version of the k-dim WL iff Duplicator has a winning strategy in the
counting (resp. standard) version of Ehr

k+1
r+1(G, H).

Proof. We consider the standard version of the algorithm; the proof for the count-
free version is very similar. If the multisets diagC k,r(G) and diagC k,r(H) are not
equal, Spoiler has a winning strategy in the counting game Ehr

k+1
r+1(G, H). In the

first round he makes a counting move that forces pebbling a ∈ V (G) and b ∈ V (H)
so that Ck,r(ak) 6= Ck,r(bk). The remainder of the game is equivalent to the counting
game Ehr

k+1
r (G, ak, H, bk), where Spoiler has a winning strategy by Lemma 4.2.

If the multisets diagC k,r(G) and diagC k,r(H) are equal, Duplicator is able to play
the first round so that Ck,r(ak) = Ck,r(bk) for the pebbled vertices a and b. She
wins the remaining game again by Lemma 4.2. �

We say that the r-round k-dim WL works correctly for a graph G if its output
is correct on all input pairs (G, H) (here H may have any order, not necessary the
same as G).

Theorem 4.4. The r-round k-dim WL works correctly for G if

k ≥ W#(G) − 1 and r ≥ Dk+1
# (G) − 1

and only if
k ≥ W#(G) − 1 and r ≥ Dk+1

# (G) − k.

The same holds true for the count-free r-round k-dim WL and the standard logic
(without counting).

Proof. If G ∼= H , the output is correct in any case. Suppose that G 6∼= H . By
Lemma 4.1, inequality (9) is a sufficient condition for the output being correct while
(10) is a necessary condition for this. The theorem now follows from Lemma 4.3, the
Ehrenfeucht theorem (Theorem 3.3.4,5), and Lemma 2.5.1 along with its counting
version. �

By Theorem 4.4, k ≥ W#(G)−1 is both a sufficient and a necessary condition for
a successful work of the k-dim WL on all inputs (G, H). As we already discussed,
the number of rounds can be taken r = O(nk). Therefore, Graph Isomorphism is
solvable in polynomial time for any class of graphs C with W#(G) = O(1) for all
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G ∈ C. This applies to any class of graphs embeddable into a fixed surface and any
class of graphs with bounded treewidth (see Section 5.1).

Sometimes the Weisfeiler-Lehman algorithm gives us even better result, namely
the solvability of the isomorphism problem by a parallel algorithm in polylogarithmic
time. The concept of polylogarithmic parallel time is captured by the complexity
class NC and its refinements:

NC =
⋃

i NCi and NCi ⊆ ACi ⊆ TCi ⊆ NCi+1,

where NCi consists of functions computable by circuits of polynomial size and depth
O(logi n), ACi is an analog for circuits with unbounded fan-in, and TCi is an ex-
tension of ACi allowing threshold gates. As it is well known [47], ACi consists of
exactly those functions computable by a CRCW PRAM with polynomially many
processors in time O(logi n). Grohe and Verbitsky [40] point out that the r-round
k-dim WL (resp. its count-free version) is implementable in TC1 (resp. AC1) as long
as k = O(1) and r = O(log n). If combined with Theorem 4.4, this gives us the
following result.

Theorem 4.5. Let k ≥ 2 be a constant.

1. Let C be a class of graphs G with Dk
#(G) = O(log n). Then Graph Isomor-

phism for C is solvable in TC1.
2. Let C be a class of graphs G with Dk(G) = O(log n). Then Graph Isomor-

phism for C is solvable in AC1.

We will see applications of Theorem 4.5 in Section 5.1.
Suppose that k ≥ W (G) − 1 and that we do not know a priori any bounds for

Dk+1(G). How large has r to be taken in order to ensure that the r-round k-dim
WL works correctly for G? An answer is given by an important concept of color
stabilization, that was already discussed in the beginning of this section. We will
regard Ck,r as a partition of V (G)k ∪ V (H)k. Let R be the minimum number for
which Ck,R = Ck,R−1. Of course, it is enough to check the condition (8) for r = R;
it cannot change for bigger r. Since each Ck,r is a refinement of Ck,r−1, we have
R ≤ v(G)k + v(H)k. In fact, we are able to prove a bit more delicate claim: The
Weisfeiler-Lehman algorithm can be terminated as soon as Ck,r stabilizes at least
within V (G)k.

To make this more precise, we introduce some notation. Denote the restriction of
the partition Ck,r to V (G)k by Ck,r

G . Let Stabk(G) be the smallest number s such

that Ck,s
G = Ck,s−1

G . Note that Stabk(G) is an individual combinatorial parameter of
a graph G, not depending on H (we may think that the k-dim WL is run on a single
graph G, which is actually a quite meaningful canonization mode of the algorithm).

We now state practical termination rules for the k-dim WL.

Rule 1: Once Ck,r(G) 6= Ck,r(H), terminate and report non-isomorphism.
Rule 2: Once r = Stabk(G) and Ck,r(G) = Ck,r(H), terminate and report

isomorphism.

Let us argue that these rules are sound for both versions of the algorithm. Suppose
that Rule 2 is invoked. Thus Ck,r

G = Ck,r−1
G and Ck,r(G) = Ck,r(H). By the latter
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equality we also have Ck,r−1(G) = Ck,r−1(H). It follows that in the r-th round
the algorithm achieves a proper color refinement on neither G nor H . Thus, the
partition Ck,r has been stabilized on V (G)k ∪ V (H)k and the soundness of Rule 2
follows.

Theorem 4.6.

1. The r-round k-dim WL recognizes non-isomorphism of G and H if

k ≥ W#(G, H) − 1 and r ≥ Stabk(G).

2. The r-round k-dim WL works correctly for G if

k ≥ W#(G) − 1 and r ≥ Stabk(G).

3. Both claims hold true for the count-free version of the algorithm and the
standard logic (with no counting).

We have seen that good bounds for the logical complexity of graphs imply effi-
ciency of the Weisfeiler-Lehman algorithm on these graphs. Now we will get a couple
of noteworthy facts on the logical complexity as a consequence of our analysis of the
algorithm.

Theorem 4.7. Let G be a graph of order n.

1. If G is distinguishable from another graph H in the ℓ-variable logic, then
Dℓ(G, H) ≤ nℓ−1 + ℓ − 2.

2. If G is definable in the ℓ-variable logic, then Dℓ(G) ≤ nℓ−1 + ℓ − 2.

Proof. Let k = ℓ − 1. Comparing the sufficient conditions for the correctness of
the r-round k-dim WL given by Theorem 4.6 and the necessary conditions given by
Theorem 4.4, we have Dk+1(G, H) ≤ Stabk(G) + k provided k ≥ W (G, H) − 1 and
Dk+1(G) ≤ Stabk(G)+k provided k ≥ W (G)−1. For the former claim we need also
the fact, actually established in the proof of Theorem 4.4, that the count-free r-round
k-dim WL is able to recognize non-isomorphism of G and H only if k ≥ W (G, H)−1
and r ≥ Dk+1(G, H) − k. It remains to notice that Stabk(G) ≤ nk − 1. �

A somewhat weaker bound Dℓ(G) ≤ nℓ + ℓ + 1 follows from the work of Dawar,
Lindell, and Weinstein [19, Corollary 4].

5. Worst case bounds

5.1. Classes of graphs. Here we overview known bounds for the logical depth and
width for natural classes of graphs. Several interesting definability effects can be
observed even when we focus on so simple graphs as trees. This class is considered at
the beginning of this section (and will be further discussed in Sections 6 and 7). We
will see that many results about trees admit generalization to graphs with bounded
treewidth. We further consider planar graphs. Then we briefly discuss more general
cases of graphs embeddable into a fixed surface and graphs with an excluded minor,
as well as a few sporadic results on other classes.
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5.1.1. Trees. The following result is based on Edmonds’ algorithm, that dates back
to the sixties (see, e.g., [15]), and its logical interpretation is due to Immerman and
Lander [45].

Theorem 5.1.

1. The color refinement algorithm succeeds in recognizing isomorphism of trees.
Consequently, W#(T, T ′) ≤ 2 for every two non-isomorphic trees T and T ′.

2. W#(T ) ≤ 2 for every tree T .

Proof. 1. As in Section 4, let Cr denote the coloring appearing after the r-th re-
finement. Let Nr(v) denote the set of all vertices at the distance at most r from a
vertex v. It is not hard to see that, if v is an arbitrary vertex in a tree T , then the
subtree spanned by Nr(v) is, up to isomorphism, reconstructible from Cr(v). Let v
and v′ be arbitrary vertices in trees T and T ′. If T 6∼= T ′, we have Cr(v) 6= Cr(v′) at
latest for r one greater than the smaller of the eccentricities of v and v′. Therefore,
the color refinement algorithm distinguishes between any two non-isomorphic trees.
The second statement of Part 1 follows by Lemma 4.2.1 and Theorem 3.3.5.

2. To obtain the desired definability result, we use the equality W#(T ) =
maxH 6∼=T W#(T, H), which is an analog of Lemma 2.5.2 (with a much simpler proof
as graphs of different orders are distinguishable with a single counting quantifica-
tion). Thus, it suffices to prove that W#(T, H) ≤ 2 whenever H 6∼= T . Suppose that
H is not a tree for otherwise we are done by Part 1. Also, as it was just mentioned,
we can suppose that both T and H have n vertices.

Assume first that H has a connected component T ′ which is a tree. Note that
T ′ 6∼= T because T ′ has less than n vertices. Let v ∈ V (T ) and v′ ∈ V (T ′). Run
the color refinement algorithm on input (T, H). As in the proof of Part 1 we have
Cn(v) 6= Cn(v′) because the coloring Cn on T ′ is the same as if the algorithm was
run on T ′ instead of H . Therefore, T and H are distinguishable with 2 variables in
the counting logic.

If none of the connected components of H is a tree, then H has at least n edges.
Since T has exactly n − 1 edges, H and T have distinct multisets of vertex degrees
and, hence, are distinguishable by a sentence with 2 counting quantifiers. �

The proof of Theorem 5.1 gives us only a linear upper bound D2
#(T ) = O(n) for

a tree of order n. We can get a speed-up if we allow more variables.

Theorem 5.2. For every tree T on n vertices we have

D3
#(T ) < 3 log n.

Proof. By an analog of Lemma 2.5.1 for the counting logic and Theorem 3.3.5, we
have to show that Spoiler is able to win the counting game Ehr

3
r(T, T ′) with some

r < 3 log n for any graph T ′ non-isomorphic to T . Suppose that T ′ has the same
order n. If T ′ is disconnected, Spoiler wins (even without counting moves) by Lemma
3.2. If T ′ is connected and has a cycle, then T and T ′ have distinct multisets of
vertex degrees. Therefore, we will suppose that T ′ is a tree too.

Every tree T has a single-vertex separator, that is, a vertex v such that no branch
of T − v has more than n/2 vertices; see, e.g., Ore [58, Chapter 4.2]. The idea of
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Figure 1. A separator strategy of Spoiler.

Spoiler’s strategy is to pebble such a vertex and to force further play on some non-
isomorphic branches of T and T ′, where the same strategy can be applied recursively.

Thus, in the first round Spoiler pebbles a separator v in T and Duplicator responds
with a vertex v′ somewhere in T ′. The component of T − v containing a neighbor
u of v will be denoted by Tvu and considered a rooted tree with the root at u. A
similar notation will apply also to T ′. In the second round Spoiler makes a counting
move and ensures that u ∈ N(v) and u′ ∈ N(v′) are pebbled so that the rooted
trees Tvu and T ′

v′u′ are non-isomorphic, see Fig. 1. The next goal of Spoiler is to
force pebbling adjacent vertices v1 and u1 in Tvu and adjacent vertices v′

1 and u′
1 in

T ′
v′u′ so that Tv1u1 6∼= T ′

v′1u′
1
, V (Tv1u1) ⊂ V (Tvu), and v(Tv1u1) ≤ v(Tvu)/2. Once this

is done, the same will be repeated recursively.
To make the transition from Tvu to Tv1u1, Spoiler follows three rules.
Rule 1. If Tvu has a branch Tux for some x ∈ N(u) \ {v} such that v(Tux) ≤

v(Tvu)/2 and the number of branches isomorphic to Tux is different for Tvu and T ′
v′u′,

then Spoiler makes a counting move and forces pebbling such x and x′ ∈ N(u′)\{v′}
so that Tux 6∼= T ′

u′x′. The latter two branches will serve as Tv1u1 and T ′
v′1u′

1
. If no such

branch is available, Spoiler pebbles a separator w of Tvu. Note that Duplicator is
forced to respond with a vertex w′ in T ′

v′u′. Otherwise we would have dist(w, u) =
dist(w, v) − 1 while dist(w′, u′) = dist(w′, v′) + 1. Therefore, some distances among
the three pebbled vertices would be different in T and in T ′ and Spoiler could win
in less than log v(Tvu) + 1 moves by Lemma 3.2.

Rule 2. If T differs from T ′ by some branch Twx (having a different number of
occurrences in T ′−w′) that does not contain u, Spoiler makes a counting move with
the pebble released from v and forces pebbling such x in T and some x′ in T ′ so
that Twx 6∼= T ′

w′x′ . These branches will serve as Tv1u1 and T ′
v′1u′

1
. (It is possible that

T ′
w′x′ contains u′ or Twx contains u but then the distances among u, w, x are not all

equal to the distances among u′, w′, x′ and Spoiler quickly wins.)
Rule 3. Denote the branch of Tvu − w containing u by Tw,u (and similarly for

T ′). If Rule 2 is not applicable, then Tw,u and T ′
w′,u′ are non-isomorphic (where

an isomorphism would need to respect two pairs of designated vertices, namely u
and u′ as well as the neighbors of w and w′). Assume the harder subcase that
dist(u, w) = dist(u′, w′). When Spoiler pebbles a vertex y on the path from u to
w by moving the pebble from v, Duplicator is forced to pebble the corresponding
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Figure 2. Rule 3 invoked.

vertex y′ on the path from u′ to w′. It is easy to see that an y 6= w can be chosen
so that T − y and T ′ − y′ differ by branches containing neither u and u′ nor w and
w′. Let Spoiler pebble such y as close to w as possible. Note that y 6= u because
otherwise Rule 1 was applicable. Now Spoiler can make a counting move with the
pebble released from w to force pebbling z and z′ for which

Tyz 6∼= T ′
y′z′, (12)

see Fig. 2. This complies with the goal of finding new Tv1u1 and T ′
v′1u′

1
because

v(Tyz) < v(Tw,u) ≤ v(Tvu)/2. (13)

In fact, Duplicator could try to prevent the fulfillment of (12) by forcing a choice
of z′ such that T ′

y′z′ would contain either u′ or w′. In the former case Spoiler could
win by using differences between the distances among u, y, z and among u′, y′, z′.
In the latter case (12) would anyway be true because Tyz and T ′

y′z′ would have
different orders. Indeed, since Rule 2 was not applicable, the choice of y ensures
that the branches of T −y and T ′−y′ containing w and w′ are isomorphic. Thus, we
would have v(T ′

y′z′) = v(Ty,w) ≥ v(Tvu)/2 (where Ty,w denotes the branch of T − y
containing w) while v(Tyz) is strictly smaller by (13).

Given Tvu, Spoiler finds a new distinguishing branch Tv1u1 in 3 rounds in the worst
case. Also, 2 rounds suffice to win the game once the current subtree Tvu has at
most 4 vertices. The number of transitions from the initial branch of order at most
⌈n/2⌉ to one with at most 4 vertices is bounded by log⌈n/2⌉ − 2 because v(Tvu)
becomes twice smaller each time. Routine calculations (and Lemma 3.2) imply the
desired bound on the length of the game. �

The definability of trees in a finite-variable counting logic within logarithmic quan-
tifier depth can also be derived from a work by Etessami and Immerman [26], which
also implies that counting quantifiers are here not needed as long as the maximum
vertex degree is bounded by a constant.

Curiously, Theorem 5.2 sheds some new light on the history of isomorphism test-
ing for trees. The first record of this history was made by Edmonds, who showed
that the problem is solvable in linear time (see Theorem 5.1). Ruzzo [70] found
an AC1 algorithm under the condition that the vertex degrees of input trees are at
most logarithmic in the number of vertices. Miller and Reif [54] established an AC1

upper bound unconditionally. They wrote [54, page 1128]: “No polylogarithmic par-
allel algorithm was previously known for isomorphism of unbounded-degree trees.”
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However, the 2-dimensional Weisfeiler-Lehman algorithm has been discussed in the
literature at least since 1968 (e.g., [76]) and, as we now see by combining Theorem
5.2 with Theorem 4.5.1, this algorithm does the job for arbitrary trees in NC2, i.e.,
in parallel time O(log2 n) !

To complete this historical overview, we have to mention a result by Lindell [52]
who showed that isomorphism of trees is recognizable in logarithmic space. Though
Lindell’s result is best possible (see Jenner et al. [46]), the solvability of the problem
by so simple and natural procedure as the Weisfeiler-Lehman algorithm still remains
a noteworthy fact.

Note that D2
#(Pn) = n

2
− O(1) (it is not hard to see that the color refinement

algorithm requires at least n
2
− O(1) rounds to distinguish between Pn and the

disjoint union of Pn−3 and C3). Thus, Theorem 5.2 shows a jump from linear to
logarithmic quantifier depth under increase the number of variables just by 1. Such
width-depth trade-offs were observed and studied by Fürer [29].

Theorem 5.1 says that 2 variables and counting quantifiers suffice to define any
tree. Moreover, we could well manage without counting quantifiers but then we
would need to have ∆(T )+1 variables. A simple example of a star, where W (K1,m) =
m+1, shows that a smaller number is not enough. The following bound is a variant of
a result by Immerman and Kozen [44], who consider definability of trees represented
by an asymmetric child-parent relation between vertices.

Theorem 5.3. W (T ) ≤ ∆(T )+1 for any tree T with the exceptions of T ∈ {P1, P2}.
The logical depth of a tree can be bounded in terms of the maximum degree and

the order.

Theorem 5.4 (Bohman et al. [11]).

1. For every tree T of order n with maximum vertex degree ∆(T ) ≥ 9 we have

D(T ) ≤
(

∆(T )

2 log(∆(T )/2)
+ 3

)

log n +
3∆(T )

2
+ O(1).

2. Let D(n, d) be the maximum of D(T ) over all trees with n vertices and max-
imum degree at most d = d(n). If both d and log n/ log d tend to infinity,
then

D(n, d) =

(

1

2
+ o(1)

)

d
log n

log d
.

The upper bounds on D(T ) comes from Spoiler’s strategy similar to that of the
proof of Theorem 5.2, that is, Spoiler pebbles a separator v of the given tree T
and then tries to restrict the game to one of the components of T − v. Informally
speaking, the worst case scenario for Spoiler is when T − v has d components of
order about n/d of two different isomorphism types, each occurring half of the time.
Then Spoiler may need around d/2 extra moves to restrict game to a component
of T − v (if the components of the counterpart T ′ − v′ are of these two types but
with different multiplicities). Thus, roughly, Spoiler “reduces” the order by factor
d using d/2 moves, which gives the heuristic for the bound of Theorem 5.4.2. The
optimality of this bound is given by a recursive construction of a tree T (and another
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tree T ′ 6∼= T ), where at each recursion step we glue together about d/2 trees of two
different isomorphism types at a common root.

5.1.2. Graphs of bounded treewidth. Informally speaking, the treewidth of a graph
tells us to which extent the graph is representable as a tree-like structure. This
concept appeared in the Robertson-Seymour theory and, aside of its theoretical
importance, found a lot of applications in design of algorithms on graphs. We do
not go into any detail here, referring instead to the books [21] and [22] that may serve
as introductions to, respectively, the structural theory of graphs and the algorithmic
applications.

It happens quite often that techniques applicable to trees can be extended to
graphs whose treewidth is bounded by a constant. In particular, this is true for the
definability parameters.

Theorem 5.5.

1. (Grohe and Marino [38]) If a graph G has treewidth k, then W#(G) ≤ k + 2.
2. (Grohe and Verbitsky [40]) If a graph G on n vertices has treewidth k, then

D4k+4
# (G) < 2(k + 1) log n + 8k + 9.

Consequently, isomorphism of graphs whose treewidth does not exceed k is
recognizable by the (4k+3)-dimensional Weisfeiler-Lehman algorithm in TC1.

The last claim in the theorem follows a general paradigm provided by Theorem
4.5.1: A low quantifier depth implies solvability of the isomorphism problem in NC.
Prior to [40], for graphs with bounded treewidth only polynomial-time isomorphism
test of Bodlaender [10] was known. Very recently Das, Torán, and Wagner [17] put
the problem in the complexity class LOGCFL.

Like Theorem 5.2, the proof of Theorem 5.5.2 is based on separator techniques.
In general, a set X ⊂ V (G) will be called a separator for graph G if any component
of G \X has at most n/2 vertices. It is well known [69] that all graphs of treewidth
k have separators of size k + 1.

5.1.3. Planar graphs. The separator techniques in the study of logical complexity
of graphs were introduced by Cai, Fürer, and Immerman [14], who derived a bound
W#(G) = O(

√
n) for planar graphs from the known fact [53] that every planar graph

of order n has a separator of size O(
√

n). In fact, this result is a particular case
of Theorem 5.5.1 because planar graphs have treewidth bounded by 5

√
5 n; see [2,

Proposition 4.5]. Later Grohe [33] proved that W#(G) for all planar G is actually
bounded by a constant.

Without counting quantifiers we cannot have any nontrivial upper bound for the
logical depth in terms of the order of a graph as long as a class under considera-
tion contains all trees. However, some natural classes of planar graphs admit such
bounds. A plane drawing of a graph is called outerplanar if all the vertices lie on
the boundary of the outer face. Outerplanar graphs are those planar graphs having
an outerplanar drawing. The treewidth of any outerplanar graph is at most 2. As
it is well known (see, e.g., [41]), any outerplanar graph is representable as a tree of
its biconnected components. Note also that an outerplanar graph is biconnected iff
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it has a Hamiltonian cycle and that such a graph can be geometrically viewed as a
dissection of a convex polygon.

Theorem 5.6 (Verbitsky [74, 75]).

1. If G is a biconnected outerplanar graph of order n, then D(G) < 22 log n+9.
2. For a 3-connected planar graph G of order n we have D15(G) < 11 log n+45.

Part 2 shows another case when Theorem 4.5 is applicable. It gives an AC1

isomorphism test for 3-connected planar graphs and, by a known reduction of Miller
and Reif [54], for the whole class of planar graphs. This complexity bound for the
planar graph isomorphism is not new; it follows from the AC1 isomorphism test for
embeddings designed in [54] and the AC1 embedding algorithm in [67]. As a possible
advantage of the Weisfeiler-Lehman approach, note that it is combinatorially much
simpler and more direct. In particular, we do not need any embedding procedure
here. The best possible complexity bound for the planar graph isomorphism is
recently obtained by Datta et al. [18] who design a logarithmic-space algorithm for
this problem.

Theorem 5.6.1 is proved in [74] and is based on the existence of a 2-vertex separator
in any outerplanar graph. The possibility to avoid counting quantifiers relies on
certain rigidity of biconnected outerplanar graphs. The latter is related to the
following geometric fact: Any such graph has a unique, up to homeomorphism,
outerplanar drawing.

The case of 3-connected planar graphs is much more complicated because the
smallest separators in such graphs can have about

√
n vertices (such examples can

be obtained by adding a few edges to the grid graph Pm × Pm). The proof of The-
orem 5.6.2 in [75] exploits a strong rigidity property of 3-connected planar graphs:
By the Whitney theorem [77], they have a unique, up to homeomorphism, embed-
ding into the sphere. An embedding can be represented as a purely combinatorial
structure, called a rotation system (see [55]), to which one can extend the concepts
of definability, isomorphism, the Ehrenfeucht game etc. Defining rotation systems
is a simpler business because they admit a kind of coordinatization and hence an
analog of the halving strategy from Lemma 3.2 is available for Spoiler. The most
essential ingredient of the proof of Theorem 5.6.2 is a strategy for Spoiler in the
Ehrenfeucht game on graphs allowing him to simulate the Ehrenfeucht game on the
corresponding rotation systems.

5.1.4. Graphs with an excluded minor. No graph with treewidth h has Kh+2 as a
minor. The class of graphs embeddable into a closed 2-dimensional surface S is closed
under minors and, as follows from the Robertson-Seymour Graph Minor Theorem,
no graph from this class contains a minor of Kh for some h = h(S). Extending
his earlier work on graphs embeddable into a fixed surface [34], Grohe [36] recently
announced a proof that, if a graph G does not contain Kh as a minor, then W#(G)
is bounded by a constant c = c(h). The case of h = 5 is treated in detail in [35].

Alon, Seymour, and Thomas [2] proved that, if a graph G of order n does not
contain a Kh as a minor, then it has a separator of size at most h3/2

√
n. Using
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this result, for all connected graphs with this property one can prove [74] that
D(G) = O(h3/2

√
n) + O(∆(G) log n).

5.1.5. Other classes of graphs. A graph is strongly regular if all its vertices have
equal degrees and, for some λ and µ, each pair of adjacent vertices has exactly λ
common neighbors and each pair of non-adjacent vertices has exactly µ common
neighbors. Non-isomorphic graphs with the same order, degree, and parameters
λ and µ are standard examples of a failure of the 2-dim WL algorithm. Babai
studies the isomorphism problem for this class in [5]. His individualization-and-
refinement technique translates into a bound W#(G) ≤ 2

√
n log n for all strongly

regular graphs of a sufficiently large order n with the exception for the disjoint
unions of complete graphs and their complements (for which we have D#(G) ≤ 3).
Further improvements are obtained by Spielman [73].

Grohe [37] considers chordal line graphs and proves that they have a bounded log-
ical width in the counting logic. On the other hand, he shows that there are chordal
graphs with W#(G) = Ω(n) and the same holds true for line graphs. The latter
result is obtained by a reduction to the graphs with W#(G) = Ω(n) constructed by
Cai, Fürer, and Immerman [14] (cf. Theorem 5.7 below). Note that the Cai-Fürer-
Immerman graphs are regular of degree 3, where the regularity can be traded for
the bipartiteness after a slight modification.

5.2. General case.

5.2.1. Identification problem. Recall that

W#(G, H) ≤ W (G, H) ≤ D(G, H) and W#(G, H) ≤ D#(G, H) ≤ D(G, H).

If we are motivated by the graph isomorphism problem, it is quite natural to focus
on these parameters under the assumption that G and H have the same order (even
without saying that D#(G, H) = 1 otherwise). Distinguishing a graph G from
all non-isomorphic H of the same order is sometimes called identification problem.
In particular, we would like to determine or estimate the maximum of D(G, H)
(resp. D#(G, H)) as a function of n = v(G) = v(H). Equivalently, what is the
minimum r = r(n) such that Spoiler has a winning strategy in Ehrr(G, H) for all
non-isomorphic G and H of order n?

By taking disjoint unions of complete and empty graphs, it is easy to find G and
H with D(G, H) ≥ (n + 1)/2. Bounding D#(G, H) from below is much more subtle
issue. Using a nice nontrivial argument, Cai, Fürer, and Immerman [14] came up
with a linear lower bound.

Theorem 5.7 (Cai, Fürer, and Immerman [14]). For infinitely many n there are
non-isomorphic graphs G and H both of order n such that W#(G, H) ≥ c n, where
c is a positive constant.

The calculation of Pikhurko, Veith, and Verbitsky [63, Section 7.5] shows that
one can take c = 0.00465.

Let us turn to upper bounds. Suppose that G 6∼= H and v(G) = v(H) = n. Before
reading further, the reader might try to improve the trivial bound D(G, H) ≤ n
at least somewhat. It may be seen as a curious observation that D(G, H) ≤ n − 1
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follows from the Harary version of the Ulam Reconstruction Conjecture, open for a
long time, claiming that non-isomorphic graphs of equal orders have different sets
of vertex-deleted subgraphs.

One solution of this exercise, giving D(G, H) < n− 1
4

log n, is to apply the Erdős-
Szekeres bound on Ramsey numbers. It implies that every graph G of large order
n contains a homogeneous set of more than 1

2
log n + 1

4
log log n vertices. Spoiler

pebbles the complement of such a set S in G. Suppose that the unpebbled set is
independent (otherwise we can play on the complementary graphs). If Duplicator
is lucky, she manages to pebble the complement to an independent set S ′ in H so
that G \ S ∼= H \ S ′. Identifying the pebbled parts, Spoiler compares the number
of vertices in S and in S ′ with the same neighborhood. These numbers cannot be
identical for G and H and, by v(G) = v(H), Spoiler can demonstrate this using at
most (|S| + 1)/2 further moves in one of the graphs.

After this warm-up, we can state an almost optimal bound.

Theorem 5.8 (Pikhurko, Veith, and Verbitsky [62]). For every two non-isomorphic
graphs G and H of the same order n we have D(G, H) ≤ (n + 3)/2.

5.2.2. General bounds for the logical depth and width. In the case of the counting
logic, Theorem 5.7 provides us with infinitely many graphs G for which D#(G) ≥
W#(G) > 0.00465 n. As usually, n denotes the order of a graph. An upper bound
easily follows from Theorem 5.8: we have D#(G) ≤ 0.5 n + 1.5 for all G. Though
this bound does not use the power of counting quantifiers at all, we are not aware
of any better bound.

Consider the standard first-order logic (without counting). At the first sight,
everything is clear here. Indeed, the general upper bound W (G) ≤ D(G) ≤ n + 1 is
attained, even for the width, by the complete graph Kn and by the empty graph Kn.
However, these are the only two extremal graphs. In other words, D(G) ≤ n for all
G with exception of G ∈ {Kn, Kn}. As Kn and Kn are the most symmetric graphs,
this observation suggests two problems. The first one is to prove a better bound
for a class of graphs with restrictions on the automorphism group. The second is to
obtain, for as small as possible l = l(n), an explicit or algorithmic description of all
order-n graphs whose logical depth (resp. width) exceeds l. We start with the first
problem.

Definition 5.9. Let u, v, and s be three vertices and s /∈ {u, v}. We say that s
separates u and v if s is adjacent to exactly one of the two vertices. Furthermore,
we call u and v twins if no s separates u and v (or, equivalently, if the transposition
of u and v is an automorphism of the graph). A graph is called irredundant if it has
no twins.

Theorem 5.10 (Pikhurko, Veith, and Verbitsky [62]). If G is irredundant, then
D1(G) ≤ (n + 5)/2.

Theorem 5.10 cannot be improved to a sublinear bound. Indeed, consider mP4,
the disjoint union of m copies of P4. As it is easily seen, mP4 is irredundant and
D(mP4) ≥ D(mP4, (m+1)P4) > m (the reader is welcome to play Ehrm(mP4, (m+
1)P4) on Duplicator’s side). No sublinear improvement is possible even for connected
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graphs: the graphs constructed by Cai, Fürer, and Immerman in Theorem 5.7 are
irredundant.

We prove Theorem 5.10 based on Lemma 2.5.1 and the Ehrenfeucht Theorem
(Theorem 3.3.1). That is, we design a strategy allowing Spoiler to win Ehrr(G, H)
for any H 6∼= G, where r = ⌊(n + 5)/2⌋. As an important additional feature of the
strategy, Spoiler will alternate between the graphs only once. By Theorem 3.3.2, this
shows that our bound holds even for the logic with only one quantifier alternation
(as it is indicated by the subscript in Theorem 5.10).

Definition 5.11. Let X ⊂ V (G). Given two vertices u, v ∈ V (G)\X, we call them
X-similar and write u ≡X v if u and v are inseparable by any vertex in X, i.e., if
N(u) ∩ X = N(v) ∩ X.

Now, let y /∈ X. We say that X sifts out y if for every y′ /∈ X the relation y≡X y′

implies y′ = y (in other words, the vertex y is uniquely identified by its adjacencies
to X). Let S(X) consist of all x ∈ X and all y sifted out by X. We call X a sieve5

if S(X) = V (G). Furthermore, X is called a weak sieve if S(S(X)) = V (G).

Consider the Ehrenfeucht game on non-isomorphic G and H and assume that X
is a sieve in G. Let Spoiler pebble all vertices of X. We leave to the reader to verify
that Spoiler can win in at most 2 more moves. We now describe a more advanced
Weak Sieve Strategy.

Lemma 5.12. If X is a weak sieve in G, then Spoiler is able, for any H 6∼= G, to
win Ehrr(G, H) with r ≤ |X| + 3. Moreover, he does not need to jump from one
graph to the other more than once during the game.

Proof. First, Spoiler selects all of X. Let X ′ ⊂ V (H) be the Duplicator’s reply.
Assume that Duplicator has not lost yet. For the notational simplicity let us identify
X and X ′ so that V (G) ∩ V (H) = X = X ′ and the player’s moves coincide on X.
Let Y = S(X) in G and Y ′ = S(X ′) in H .

It is not hard to see that Spoiler wins in at most two extra moves unless the
following holds. For any y ∈ Y \X there is a y′ ∈ Y ′ \X (and vice versa) such that
N(y) ∩ X = N(y′) ∩ X. Moreover, this bijective correspondence between Y and Y ′

establishes an isomorphism between G[Y ] and G′[Y ′].
Suppose that this is the case and identify Y with Y ′. Let Z = V \ Y and

Z ′ = V ′ \ Y . Let z ∈ Z and define

W ′
z = {z′ ∈ Z ′ : N(z′) ∩ Y = N(z) ∩ Y } .

If W ′
z = ∅, Spoiler wins in at most two moves. First, he selects z. Let Duplicator

reply with z′. Assume that z′ ∈ Z ′ for otherwise she has already lost. As the
neighborhoods of z, z′ in Y differ, Spoiler can demonstrate this by picking a vertex
of Y . If |W ′

z| ≥ 2, then Spoiler selects any two vertices in W ′
z and wins with at most

one more move, as required.
Hence, we can assume that for any z we have W ′

z = {f(z)} for some f(z) ∈ Z ′.
Since each vertex in Z is sifted out by Y , the function f is injective. If f(Z) 6= Z ′,
Spoiler easily wins in two moves. Suppose, therefore, that f : Z → Z ′ is a bijection.

5Babai [5] uses sieves under the name distinguishing sets.
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As G 6∼= H , the mapping f does not preserve the adjacency relation between some
y, z ∈ Z. Now, Spoiler selects both y and z. Duplicator cannot respond with f(y)
and f(z); by the definition of f Spoiler can win in one extra move. �

Theorem 5.10 immediately follows from Lemma 5.12 and the next lemma.

Lemma 5.13. Any irredundant graph G on n vertices has a weak sieve X with
|X| ≤ (n − 1)/2.

Proof. Given X ⊂ V (G), let C(X) denote the partition of X = V (G) \ X into
≡X -equivalence classes. Starting from X = ∅, we repeat the following procedure.
As long as there exists u ∈ X such that |C(X ∪ {u})| > |C(X)|, we move u to
X. As soon as there is no such u, we arrive at X which is C-maximal , that is,
|C(X ∪ {u})| ≤ |C(X)| for any u ∈ X. Note that |C(X)| ≥ |X| + 1 because this
inequality is true at the beginning and is preserved in each construction step. Using
also the inequality |X| + |C(X)| ≤ n, we conclude that |X| ≤ (n − 1)/2.

We now prove that the X is a weak sieve. Suppose, to the contrary, that u and v
are distinct S(X)-similar vertices in Z = V (G) \ S(X). By the irredundancy of G,
these vertices are separated by some s. We cannot have s ∈ S(X) by the definition
of S(X)-similarity. Thus s ∈ Z. Let C1 be the class in C(X) including {u, v} and C2

be the class in C(X) containing s. Since s /∈ S(X) \X, the class C2 has at least one
more element in addition to s. If C1 6= C2, moving s to X splits up C1 and does not
eliminate C2. If C1 = C2, moving s to X splits up this class and splits up or does
not affect the others. In either case |C(X)| increases, giving a contradiction. �

The proof of Theorem 5.10 is complete. This theorem was significantly extended in
[62] giving some progress on the second research problem stated above. In particular,
it was shown that one can efficiently check whether or not D(G) ≤ (n+ 5)/2 for the
input graph G of order n and, if this is not true, then one can efficiently compute
the exact value of D(G). Also, the same holds for W (G).

This result is interesting in view of the fact that algorithmic computability of the
logical depth and width of a graph, even with no efficiency requirements, is unclear.
A reason for this is that the question if a given first-order sentence defines some
graph is known to be undecidable [60].

The upper bound of 1
2
n + O(1) can be improved if we impose a restriction on the

maximum vertex degree.

Theorem 5.14 (Pikhurko, Veith, and Verbitsky [62]). Let d ≥ 2. Let G be a graph
of order n with no isolated vertex and no isolated edge. If ∆(G) ≤ d, then

D1(G) < cd n + d2 + d + 4

for a constant cd = 1
2
− 1

4
d−2d−5.

Theorem 5.14 aims at showing a constant cd strictly less than 1/2 rather than
at attempting to find the optimum cd. In the case of d = 2, which is simple and
included just for uniformity, an optimal bound is D1(G) ≤ n/3+O(1). Without the
assumption that G has no isolated vertex and edge, the theorem does not hold for
any fixed cd < 1/2. A counterexample is provided by the disjoint union of isolated
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edges. Even under the stronger assumption that G is connected, Theorem 5.14
still does not admit any sublinear improvement: the Cai-Fürer-Immerman graphs
in Theorem 5.7 are connected and have maximum degree 3.

6. Average case bounds

In Section 5 we investigated the maximum values of logical parameters over graphs
of order n. Now we want to know its typical values. A natural setting for this
problem is given by the Erdős-Rényi model of a random graph Gn,p. The latter is
a random graph on n vertices where every two vertices are connected by an edge
with probability p independently of the other pairs. A particularly important case
is Gn,1/2, when we have the uniform distribution on all graphs on a fixed set of n
vertices. Whenever we say that for a random graph of order n something happens
with high probability (abbreviated as whp), we mean a probability approaching 1 as
n → ∞.

6.1. Bounds for almost all graphs.

6.1.1. Logic with counting. We begin with a simple but useful observation about the
color refinement algorithm described at the beginning of Section 4: If the coloring
of a graph stabilizes with all color classes becoming singletons, it can be considered
a canonical vertex ordering. It turns out that this happens for almost all graphs.
This result can be used to estimate the logical complexity of almost all graphs, in
particular, to show that almost surely W#(Gn,1/2) = 2 (Immerman and Lander [45]).

Theorem 6.1.

1. (Babai, Erdős, and Selkow [6]) 2 color refinements split a random graph Gn,1/2

into color classes which are singletons with probability more than 1 − 1/ 7
√

n,
for all large enough n. Consequently, D2

#(Gn,1/2) ≤ 4 with this probability.
2. (Babai and Kučera [7]) 3 color refinements split a random graph Gn,1/2 into

color classes which are singletons with probability more than 1 − 1/2cn, for
a constant c > 0 and all large enough n. Consequently, D2

#(Gn,1/2) ≤ 5 with
this probability.

The logical conclusions made in Theorem 6.1 are based on the necessity part of
Theorem 4.4. It suffices to notice that, once the color refinement splits the vertex
set of an input graph G into singletons, one extra round of the algorithm suffices to
distinguish G from any non-isomorphic graph.

Next, we are going to show that the upper bound of Theorem 6.1.1 is best possible.
Let Cr

G denote the coloring of the vertex set of a graph G produced by the color
refinement procedure in r rounds.

Lemma 6.2. Whp for G = Gn,1/2 there exists a non-isomorphic graph H on V =
V (G) such that C2

G(x) = C2
H(x) for every vertex x ∈ V .

Proof. Let G be a typical graph of a sufficiently large order n. In particular, we
assume that G satisfies Theorem 6.1.1 and that | deg x− n/2| ≤ m for every vertex

x of G, where we can take e.g. m =
√

(n log n)/2 by a simple application of
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Chernoff’s bound (see also [12, Corollary 3.4]). By the Pigeonhole Principle, there
is a set U of u = ⌈n/(2m + 1)⌉ vertices all having the same degree.

Another property of the random graph G that we assume is that every set X ⊂ V
of size u contains distinct vertices w, x, y, z with wx, yz ∈ E(G) and xy, zw 6∈ E(G).
Indeed, let us fix a u-set X ⊂ V and estimate the probability that it violates this
property. One can find at least

(

u
2

)

/5 edge-disjoint 4-cycles inside the complete
graph on X. (For example, picking up cycles one by one arbitrarily, we get enough
of them by the classical result of Kővari, Sös, and Turán [49] saying that a C4-free
graph on u vertices has O(u3/2) edges.) For each 4-cycle on vertices x1, x2, x3, x4 in
this order, at least one of the relations x1x2, x3x4 ∈ E(G) and x2x3, x4x1 6∈ E(G)
should be false, this having probability 15/16. By the edge-disjointness, these events
for different selected cycles are mutually independent. Hence X violates the desired

property with probability is at most (15/16)(
u
2)/5 = o(

(

n
u

)−1
). Since there are

(

n
u

)

candidates for a bad set X, the probability that it exists is o(1), giving the required.
Hence, the equidegree set U contains vertices w, x, y, z with wx, yz ∈ E(G) and

xy, zw 6∈ E(G). Let H be obtained from G by removing edges wx, yz and adding
edges xy, zw. This operation preserves the degree of every vertex as well as the
multiset of degrees of its neighbors, that is, C2

G(v) = C2
H(v) for every vertex v ∈ V .

Suppose that G and H are isomorphic. Any isomorphism f must preserve the
C2-colors. Since C2-classes are all singletons, f has to be the identity map on
V (G) = V (H). But then the adjacency between, e.g., w and x is not preserved, a
contradiction. The lemma is proved. �

Given a typical G = Gn,1/2, let H be a graph satisfying Lemma 6.2. Thus, the 2-
round color refinement fails to distinguish between G and H . By the sufficiency part
of Theorem 4.4, we have D2

#(G) > 3. As an alternative proof, the reader can design

a winning strategy for Duplicator in the counting game Ehr
2
3(G, H). Together with

Theorem 6.1.1, this bound gives us the exact value D2
#(Gn,1/2).

Theorem 6.3. Whp D2
#(Gn,1/2) = 4.

We always have D#(G) ≤ D2
#(G) and, on the other hand, D#(G) ≤ 2 implies

D2
#(G) ≤ 2 because any definition with quantifier depth 2 can be rewritten with

using only 2 variables. It follows from Theorem 6.3 that 3 ≤ D#(Gn,1/2) ≤ 4 whp.
Unfortunately, we could not decide whether the typical value of D#(Gn,1/2) is 3 or
4, which seems to be an interesting question.

6.1.2. Logic without counting.

Theorem 6.4 (Kim et al. [48]). Fix an arbitrarily slowly increasing function ω =
ω(n). Then we have whp that

log n − 2 log log n + log log e + 1 − o(1) ≤ W (Gn,1/2) ≤
≤ D1(Gn,1/2) ≤ log n − log log n + ω.

We first prove the lower bound.
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Definition 6.5. For an integer k ≥ 1, we say that a graph G has the k-extension
property if, for every two disjoint X, Y ⊂ V (G) with |X ∪ Y | ≤ k, there is a vertex
z /∈ X ∪ Y adjacent to all x ∈ X and non-adjacent to all y ∈ Y .

Lemma 6.6. If both G and H have k-extension property, then W (G, H) ≥ k + 2.

Proof. By Theorem 3.3.3 it suffices to design a strategy allowing Duplicator to sur-
vive in Ehr

k+1(G, H) arbitrarily long. Suppose that Spoiler puts pebble p on a
new position v in one of the graphs, say, G. Let X (resp. Y ) denote the set of
pebbled vertices in H whose counter-parts in G are adjacent (resp. non-adjacent) to
v. Duplicator moves the other copy of p to a vertex z with the given adjacencies to
X ∪ Y whose existence is guaranteed by the k-extension property. �

Lemma 6.7. Let ǫ > 0 be a real constant. Then the k-extension property holds for
Gn,1/2 whp for any k ≤ log n − 2 log log n + log log e − ǫ.

Proof. Let n be large. Any particular X and Y with |X ∪ Y | = k falsify the k-
extension property with probability (1− 2−k)n−k. Since the number of such pairs is
(

n
k

)

2k, a random graph Gn,1/2 does not have the k-extension property with probability
at most

(

n

k

)

2k(1 − 2−k)n−k ≤ nk(1 − 2−k)n ≤ exp
{

k ln n − n2−k
}

.

The former inequality is true only if k ≥ 4 but this makes no problem because the
k-extension property implies itself for all smaller values of parameter k. Since the
function f(x) = x ln n − n2−x is monotone, the k-extension property fails with the
probability bounded from above by

exp {f(log n − 2 log log n + log log e − ǫ)} =

= exp
{

(ln 2) (−2ǫ + 1 + o(1)) log2 n
}

= o(1),

as it was claimed. �

Fix ǫ > 0. Let n be sufficiently large and set k = ⌊log n−2 log log n+log log e−ǫ⌋.
By Lemma 6.7, G = Gn,1/2 has the k-extension property whp. Let H be a graph
which also possesses the k-extension property and is non-isomorphic to G. The
existence of such a graph follows also from Lemma 6.7: Given G, let H = Gn,1/2

be another, independent copy of a random graph. It should be only noticed that

H ∼= G with probability at most n!2−(n
2) = o(1). By Lemma 6.6, we have

W (G) ≥ W (G, H) ≥ k + 2 > log n − 2 log log n + log log e + 1 − ǫ,

thereby proving the lower bound of Theorem 6.4.
To prove the upper bound, we employ the Weak Sieve Strategy that was designed

in Section 5.2.2. Lemma 5.12 allows us to estimate the parameter D1(G) by the
size of a weak sieve existing in G. The upper bound of Theorem 6.4 follows from
Lemmas 6.8 below, that gives us a good enough bound for the size of a weak sieve in
a random graph. The paper [48] states a slightly weaker upper bound than that in
Theorem 6.4 (namely, ω = C log log log n there). The current more precise estimate
is due to Joel Spencer (unpublished).
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Lemma 6.8. Fix an arbitrarily slowly increasing function ω = ω(n). Then whp
Gn,1/2 has a weak sieve of size at most log n − log ln n + ω.

Proof. We will consider a random graph Gn,1/2 on an n-vertex set V . Fix X ⊂ V
with |X| = log n − s, where s = log ln n − ω. We generate Gn,1/2 in two stages.

Stage 1: reveal the edges between X and V \ X (needless to say, each such edge
appears with probability 1/2 independently of the others). Our goal at this stage is
to show that S(X) is large whp.

A fixed y ∈ V \ X is sifted out by X with probability

(1 − 2−|X|)n−|X|−1 = exp {−2s(1 + o(1))} = n−2−ω(1+o(1)) = n−o(1).

By linearity of expectation

E [ |S(X) \ X| ] = (n − |X|)n−o(1) = n1−o(1).

We can now apply the martingale techniques to show that whp |S(X) \ X| is con-
centrated near its mean value. More precisely, we need the following estimate:

P

[

|S(X) \ X| < E [ |S(X) \ X| ] − 2λ
√

n − |X|
]

< e−λ2/2 (14)

for any λ > 0, where P [ A ] denotes the probability of an event A.
To prove it, consider the probability space consisting of all functions g : V \X →

2X . Define a random variable L on this space by setting L(g) to be equal to
the number of values in 2X taken on by g exactly once. Note that, if g and
g′ differ only at one point, then |L(g) − L(g′)| ≤ 2. Construct an appropri-
ate martingale as explained in the Alon-Spencer book [3, Chapter 7.4]. Namely,
let V \ X = {y1, . . . , ym} and define a sequence of auxiliary random variables
X0, X1, . . . , Xm by Xi = E

[

1
2
L(g) | g(yj) = h(yj) for all j ≤ i

]

. By Azuma’s in-
equality (see [3, Theorems 7.2.1 and 7.4.2]), for all λ > 0 we have

P
[

L(g) < E [ L(g) ] − 2λ
√

m
]

< e−λ2/2,

which is exactly what is claimed by (14).
By (14) we have whp that

|S(X) \ X| ≥ n1−o(1).

Conditioning on S(X) satisfying this bound, we go to the next stage of generat-
ing Gn,1/2.

Stage 2: reveal the edges inside V \ X. It is enough to show that V \ S(X) ⊂
S(S(X) \ X) whp. If the last claim is false, then there are z, z′ ∈ V \ S(X) having
the same adjacencies to S(X) \ X. This happens with probability no more than

(

n

2

)

2−|S(X)\X| < n22−n1−o(1)

= o(1).

The proof is complete. �

Theorem 6.4 shows rather close lower and upper bounds for the logical width and
depth of a random graph Gn,1/2. Surprisingly, even this can be improved.
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Theorem 6.9 (Kim et al. [48]). For infinitely many n we have whp

D2(Gn,1/2) ≤ log n − 2 log log n + log log e + 6 + o(1).

This upper bound is at most by 5 + o(1) larger than the lower bound of Theorem
6.4. It follows that, for infinitely many n, the parameters Di(G) with i ≥ 2, D(G),
and W (G) are all concentrated on at most 6 possible values (while some extra work,
see [48, Section 4.3], gives a 5-point concentration).

6.1.3. Bounds for trees.

Theorem 6.10 (Bohman et al. [11]). Let Tn denote a tree on the vertex set
{1, 2, . . . , n} selected uniformly at random among all nn−2 such trees. Whp we have
W (Tn) = (1 + o(1)) log n

log log n
and D(Tn) = (1 + o(1)) log n

log log n
.

The lower bound for W (Tn) immediately follows from the following property of
a random tree: whp Tn has a vertex adjacent to (1 + o(1)) log n

log log n
leaves. Note that

the upper bound for D(Tn) does not follow directly from Theorem 5.4 because whp
∆(Tn) = (1 + o(1)) log n

log log n
(see Moon [56]).

6.2. An application: The convergency rate in the zero-one law. We will
write G |= Φ to say that a sentence Φ is true on a graph G. Let pn(Φ) =
P [ Gn,1/2 |= Φ ]. The 0-1 law established by Glebskii et al. [30] and, independently,
by Fagin [27] says that, for each Φ, pn(Φ) approaches 0 or 1 as n → ∞. Denote the
limit by p(Φ).

Define the convergency rate function for the 0-1 law by

R(k, n) = max
Φ

{ |pn(Φ) − p(Φ)| : D(Φ) ≤ k} .

Note that the maximization here can be restricted to a finite set by Theorem 2.4.1.
Therefore, the standard version of the 0-1 law implies that R(k, n) → 0 as n → ∞ for
any fixed k. Naor, Nussboim, and Tromer [57] showed that R(log n−2 log log n, n) →
0. Another result in [57] states that one can choose p(n) = 1/2 + o(1) and k(n) =
(2+o(1)) logn such that the probability that Gn,p has a k(n)-clique is bounded away
from 0 and 1. Thus for this probability p(n) the 0-1 law does not hold with respect
to formulas of depth k(n).

The following theorem sharpens slightly the first part of the above result and
improves on the second part in two aspects: we do not need to change the probability
p = 1/2 and we get an almost best possible upper bound.

Theorem 6.11. Let g(n) = log n − 2 log log n + log log e + c with constant c.

1. If c < 1, then R(g(n), n) → 0 as n → ∞.
2. If c > 6, then R(g(n), n) does not tend to 0 as n → ∞. More strongly, for

every γ ∈ [0, 1] there is a sequence of formulas Φn1 , Φn2 , . . . (where ni < ni+1)
with D(Φni

) ≤ g(ni) such that pni
(Φni

) → γ as i → ∞.

Part 2 follows from Theorem 6.9. The latter implies that (for infinitely many
n) actually any property P of graphs on n vertices can be “approximated” by a
first-order sentence of depth at most g(n). Indeed, take the conjunction of defining
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formulas over all graphs in P of order n and depth at most g(n). The omitted graphs
constitute negligible proportion of all graphs by Theorem 6.9.

We now prove Part 1. Like the proof in [57] we use the extension property, but
we argue in a slightly different way.

Proof of Part 1. Let Ek denote a first-order statement of quantifier depth k express-
ing the (k − 1)-extension property. Lemma 6.7 provides us with an infinitesimal
α(n) such that, as long as

k ≤ g(n), (15)

we have

1 − pn(Ek) ≤ α(n). (16)

Let Φ be a first-order statement with D(Φ) = k. Under the condition (15), we
have to estimate |pn(Φ) − p(Φ)| from above by a function depending only on n (for
Φ = Ek this is done by (16)). It suffices to do this for k larger than a constant k0.
We have to fix k0 large enough. Note that g(x) is monotone for x ≥ e2. First of all,
we require that k0 ≥ g(e2); then we can speak of the value of g−1(k0). Moreover,
we choose k0 so that 1 − α(n) ≥

√
3/2 whenever n ≥ g−1(k0). In the following we

suppose that k ≥ k0. By our choice of k0, we have

pn(Ek) ≥
√

3

2
(17)

whenever k and n satisfy (15).
Let G′ and G′′ be two independent copies of Gn,1/2. By Lemma 6.6,

P [ D(G′, G′′) > k ] ≥ P [ G′ |= Ek & G′′ |= Ek ] = pn(Ek)2.

On the other hand,

P [ D(G′, G′′) > k ] ≤ P [ G′ and G′′ are not distinguished by Φ ] = pn(Φ)2+(1−pn(Φ))2.

It follows that

2 pn(Φ)(1 − pn(Φ)) ≤ 1 − pn(Ek)2.

Define NΦ to be the maximum number n for which |pn(Φ) − p(Φ)| > 1/2 (and let
NΦ = 0 if no such n exists). For all

n > NΦ, (18)

we immediately obtain

|pn(Φ) − p(Φ)| ≤ 1 − pn(Ek)2 ≤ 2(1 − pn(Ek)).

By (16), this gives us a desired bound

|pn(Φ) − p(Φ)| ≤ 2 α(n) = o(1)

provided condition (15) holds. We are done modulo an extra assumption in (18).
To complete the proof, it suffices to show that condition (18) actually follows from
condition (15) even when NΦ > 0.
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Without loss of generality, suppose that p(Φ) = 0. Denote N = NΦ and let
M = N + 1. By the definition of NΦ, we have pM(Φ) ≤ 1/2. Let GN and GM be
independent random graphs with, respectively, N and M vertices. Note that

P [ D(GN , GM) ≤ k ] ≥ P [ GN |= Φ & GM 6|= Φ ] >
1

4
.

On the other hand,

P [ D(GN , GM) > k ] ≥ P [ GN |= Ek & GM |= Ek ] = pN(Ek)pM(Ek).

It follows that

pN(Ek)pM(Ek) <
3

4
.

Since this contradicts (17) for n = N or n = M , we conclude that k > g(N).
Comparing this with our assumption (15), we obtain (18) by the monotonicity of
g(x) for x ≥ e2. �

6.3. The evolution of a random graph. We now take a dynamical view on a
random graph Gn,p by letting the edge probability p vary. With p varying from 0
to 1, Gn,p evolves from empty to complete. We want to trace the changes of its
logical complexity during the evolution. Since the definability parameters do not
change when we pass to the complement of a graph, we can restrict ourselves to case
p ≤ 1/2.

When p is a constant, one can estimate D(G) within additive error O(log log n).

Theorem 6.12 (Kim et al. [48]). If 0 < p ≤ 1/2 is constant, then whp

log1/p n − c1 ln ln n − O(1) ≤ W (Gn,p) ≤ D(Gn,p) ≤ log1/p n + c2 ln ln n,

where c1 = 2 ln−1(1/p) and c2 = (2 + o(1)) (−p ln p − (1 − p) ln(1 − p))−1 − c1.

Sketch of Proof. Similarly to Theorem 6.4, the lower bound is based on the k-
extension property. However, the proof of the upper bound is quite different. In
particular, we have hardly any control on the alternation number in this result. The
argument is rather complicated so we give only a brief sketch, concentrating more
on its logical rather than probabilistic component.

Let G = Gn,p be typical and G′ 6∼= G be arbitrary. Let V = V (G) and V ′ = V (G′).
For a sequence X of vertices, let VX = {y ∈ V : ∀x ∈ X xy ∈ E(G)} and
GX = G[VX ]. Let the analogous notation (with primes) apply to G′. If there is
x ∈ V such that for every x′ ∈ V ′ we have Gx 6∼= G′

x′, then Spoiler selects x.
Whatever Duplicator’s reply x′ ∈ V ′ is, Spoiler reduces the game to non-isomorphic
graph Gx and G′

x′ . We expect that |Vx| = (p + o(1))n and Gx is also ‘typical’. Thus
Spoiler used one move to reduce the order of the random graph by a factor of p,
which should lead to the upper bound D(G) ≤ (1 + o(1)) log1/p n.

Suppose now that there are x ∈ V and distinct y′, z′ ∈ V ′ such that Gx
∼=

G′
y′

∼= G′
z′. Spoiler selects y′ ∈ V ′. Assume that Duplicator replies with y = x,

for otherwise Gy 6∼= G′
y′ and Spoiler proceeds as above. Now Spoiler selects z′; let

z ∈ V be the Duplicator’s reply. We can assume that Gy,z
∼= G′

y′,z′, for otherwise
Spoiler applies the inductive strategy to the (Gy,z, Gy′,z′)-game, where the order of
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the random graph is reduced by factor (1 +o(1)) p2. Let U = Vy,z and U ′ = V ′
y′,z′. A

first moment calculation shows that there is vertex v ∈ Vy \U such that no vertex of
Vz \U has the same neighborhood in U as v. Let Spoiler select v and let v′ ∈ V ′

y′ \U ′

be the Duplicator’s reply. Two copies G′
y′ and G′

z′ of a ‘typical’ graph Gx have a
large vertex intersection. Another first moment calculation shows that whp there is
only one way to achieve this, namely that the (unique) isomorphism f : V ′

y′ → V ′
z′

between G′
y′ and G′

z′ is in fact the identity on U ′. But then f(v′) has the same
adjacencies to U ′ as v′. Spoiler selects f(v′) and wins the game in at most one extra
move.

Finally, up to a symmetry it remains to consider the case that there is a bijection
g : V → V ′ such that for any x ∈ V we have Gx

∼= G′
g(x).

As G 6∼= G′, there are y, z ∈ V such that g does not preserve the adjacency
between y and z. Spoiler selects y. We can assume that Duplicator replies with
y′ = g(y) for otherwise Spoiler reduces the game to Gy. Now, Spoiler selects z to
which Duplicator is forced to reply with z′ 6= g(z). Let w = g−1(z′). Assume that
Gy,z

∼= Gy′,z′ for otherwise Spoiler applies the inductive strategy to these graphs.
But then Gy,z is an induced subgraph of Gw

∼= G′
z′, a property that we do not expect

to see in a random graph.
In order to convert this rough idea into a rigorous proof one has to show that

whp as long as the subgraphs Gx1,x2,... that can appear in the game are sufficiently
large, they have all required properties. Also, one has to design Spoiler’s strategy
to deals small subgraphs of Gn,p at the end of the game. All details can be found
in [48, Section 3]. �

It is interesting to investigate the behavior, e.g., of D(Gn,p) when p = p(n) tends
to zero. In particular, it is open whether, for every constant δ ∈ (0, 1) and n−δ ≤
p(n) ≤ 1/2 we have whp D(Gn,p) = O(log n).

Some restriction on p(n) from below is necessary here. Indeed, let G be an arbi-
trary non-empty graph (i.e., G has at least one edge) and let G′ be obtained from
G by adding one more isolated vertex. It is easy to see that W (G, G′) > d0(G) and
D(G, G′) > d0(G) + 1, where d0(G) denotes the number of isolated vertices of G. It
follows that

W (G) ≥ d0(G) + 1 and D(G) ≥ d0(G) + 2. (19)

It is well known (see, e.g., [12]) that

d0(Gn,p) = (e−pn + o(1)) n (20)

whp as long as p = O(n−1). In particular, we have W (Gn,p) = (1− o(1))n whenever
p = o(n−1).

In some cases, the lower bounds (19) are sharp.

Lemma 6.13. Let cF (G) denote the number of connected components in a graph G
isomorphic to a graph F . Suppose that a non-empty graph G satisfies

cF (G) + v(F ) ≤ d0(G) + 1, for every component F of G. (21)

Then W (G) + 1 = D(G) = D1(G) = d0(G) + 2.
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Proof. Let us show that D1(G, H) ≤ d0(G) + 2 for any H 6∼= G. Let F be such
that cF (H) 6= cF (G). For definiteness suppose that cF (H) > cF (G). Spoiler marks
cF (G) + 1 components of H which are isomorphic to F by pebbling one vertex in
each of them. Duplicator is forced either to mark one of the F -components of G
twice (by pebbling two vertices, say, u and v in it) or to mark a component F ′ of
G which is not isomorphic to F . In the former case Spoiler wins by pebbling a
path from u to v. In the latter case Spoiler pebbles completely the F -component
of H corresponding to F ′. Duplicator is forced to pebble a connected part F ′′ of
F ′. If she has not lost yet, then F ′′ ∼= F and hence F ′′ is a proper subgraph of F ′.
Spoiler wins by pebbling another vertex in F ′ which is adjacent to a vertex in F ′′.
Altogether at most d0(G) + 2 moves are made.

It remains to prove the upper bound on the width. The last move may require
using the (d0(G)+2)-th pebble. However, for this purpose Spoiler can reuse a pebble
placed earlier in a component different from F ′. This trick is unavailable only if
cF (G) = 1 and cF (H) = 0 or if cF (G) = 0 and cF (H) = 1. In both cases Spoiler
can win in at most v(F ) + 1 rounds (and at most one alternation). Moreover, if this
number is at least d0(G) + 2, then cF (G) = 0 and G has no component with v(F )
or more vertices by (21). In this case, Spoiler can win in at most v(F ) moves. �

Theorem 6.14 (Kim et al. [48], Bohman et al. [11]). If p = c/n with c = c(n) ≥ 0
being an arbitrary bounded function of n, then D(Gn,p) = (e−c + o(1))n whp.

Sketch of Proof. It is well known that, observing the evolution process in the scale
p = c/n, at the point c = 1 we encounter the phase transition. If c < 1 − ǫ, whp all
components of Gn,p have O(log n) vertices each; if c > 1 + ǫ, there appears a unique
exception, the so-called giant component with a linear number of vertices.

One can check that, for any c < α − ǫ, Condition (21) holds whp (even for
the giant component if it exists), where α = 1.1918... is a root of some explicit
equation, see [48, Theorem 19]. Then, by Lemma 6.13 and Equality (20), W (Gn,p)
and D1(Gn,p) (and all parameters in between) are (e−c + o(1)) n. When c is larger
than α + ǫ, then whp the giant component of Gn,p violates (21): Its order exceeds
the number of isolated vertices. This case is handled in [11] as follows.

Denote the giant component of G = Gn,p by M . Given H 6∼= G, we have to
design a strategy allowing Spoiler to fast enough win the Ehrenfeucht game on G
and H . The strategy in the proof of Lemma 6.13 does not work only if cM(H) = 0
or cM(H) ≥ 2. We adapt it for these cases so that Spoiler, instead of selecting all
vertices of M , plays an optimal strategy for M using at most D(M) + log n + 1
moves (instead of v(M) + 1 moves as earlier).

First, we can assume that no component of H has diameter n or more. Otherwise
Spoiler pebbles u and v at distance n in H . For Duplicator’s responses u′ and v′

in G we have either dist(u′, v′) < n or dist(u′, v′) = ∞. Hence Spoiler wins in less
than log n + 1 moves.

Second, we can assume that Duplicator always respects the connectivity relation
(two vertices are in the relation if they are connectable by a path). Indeed, suppose
that u and v belong to the same connected component F in one of the graphs while
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their counter-parts u′ and v′ are in different components of the other graph. Then
Spoiler wins in less than log diam(F ) + 1 moves.

Under this assumption, Spoiler easily forces that, starting from the 2nd round,
the play goes on components of G and H , of which exactly one is isomorphic to M .
One of the main results of [11] states that whp

D(M) = O

(

ln n

ln ln n

)

, (22)

which implies that Spoiler is able to win quickly and proves the theorem.
The upper bound (22) is obtained roughly as follows. By iteratively removing

vertices of degree 1 from the giant component M , one obtains the core C of M
(that is, C is a maximum subgraph with minimum degree at least 2). The kernel
K of G is the serial reduction of C, that is, we iterate the following to obtain K: If
there is a vertex x of degree 2, then we remove x but add edge {y, z}, where y and z
are the two neighbors of x. The kernel may have loops and multiple edges and has to
be modeled as a colored graph. The original graph G can be encoded by specifying
its kernel K and the structure of rooted trees that correspond to each vertex or edge
of K, the latter being viewed as a total coloring of K. It happens that whp every
vertex x of K can be identified by a small-depth formula Φx with one free variable
(that is K, x |= Φx while K, y 6|= Φx for every other vertex y ∈ V (K)) in the first-
order language of colored graphs. Thus one can define K succinctly by stating that
for every x ∈ V (K) there is a unique vertex satisfying Φx, that every vertex satisfies
Φx for some x ∈ V (K), and by listing the adjacencies between vertices identified by
Φx and Φy for every x, y ∈ V (K). The core C can now be defined by specifying the
length of the path corresponding to each edge of K, while the giant component M
can be defined by specifying the random rooted trees hanging on the vertices of C
using Theorem 6.10 (which relies in part on Theorem 5.4). �

The bound (22) is optimal up to a constant factor. This follows from the fact that
whp the giant component M has a vertex v adjacent to at least (1−ǫ) log n/ log log n
leaves. (Indeed, consider the graph M ′ 6∼= M that is obtained from M by attaching
an extra leaf at v.) We believe that the lower bound is sharp, that is, whp D(M) =
(1 + o(1)) log n/ log log n, but we were not able to settle this question.

Finally, we consider edge probabilities p = n−α with rational α ∈ (0, 1). Such p
occur as threshold functions for (non-)appearance of particular graphs as induced
subgraphs in Gn,p. What is relevant to our subject is that such p show an irregular
behavior of Gn,p with respect to first-order properties.

Since the treatment of the general case of rational α would require a considerable
amount of technical work, the paper [48] focuses on a sample value α = 1/4, when
D(Gn,p) falls down and becomes so small as it is essentially possible (cf. Section 7).

Theorem 6.15 (Kim et al. [48]). If p = n−1/4, then whp

log∗ n − log∗ log∗ n − 1 ≤ D(Gn,p) ≤ D3(Gn,p) ≤ log∗ n + O(1).

Sketch of Proof. The upper bound is based on the following ideas. Let the predicate
C(x1, x2, x3, x4) state that these 4 distinct vertices have no common neighbor. Its
probability is (1 − p)n−4 = e−1 + o(1) and its values over different 4-tuples are
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rather weakly correlated. Thus, if for a set A and a vertex v 6∈ A, we define
Hv(A) be the 3-uniform hypergraph on A with x1, x2, x3 ∈ A being a hyperedge
if and only if C(v, x1, x2, x3) holds, then Hv(A) behaves somewhat like a random
hypergraph. As it is shown in [48, Lemma 21], one can find 4 vertices such that their
common neighborhood A is relatively large (namely, |A| = ⌊ln0.3 n⌋) and yet there
are vertices a, m such that hypergraphs Ha(A) and Hm(A) encode in some way the
multiplication and addition tables for an initial interval of integers. Also, any integer
can be succinctly defined in first-order logic with arithmetic operations. Roughly
speaking, in order to define an integer j, one can write it in binary j = bk . . . b1 and
specify for every i ≤ k the i-th bit bi; crucially, the same binary expansion trick
can be used recursively to specify the index i, and so on. This allows us to identify
vertices A with very small depth. Next, we consider the set B of vertices of G that
have exactly 4 neighbors in A and are uniquely determined by this. Again, the
vertices of B are easy to identify (just list the 4 neighbors in A). Finally, if A was
chosen carefully, then each vertex w of G is uniquely identified by the hypergraph
Hw(B). (The reason that we need an intermediate set B is that the number of

possible 3-uniform hypergraphs Hw(A) is at most 2(|A|
3 ) < n − |A|, that is, too

small.) Of course, many technical difficulties arise when one tries to realize this
approach.

The lower bound in Theorem 6.15 is very general. We use only the simple fact that
any particular unlabeled graph with m edges is the value of Gn,p, where p = n−1/4,
with probability at most

n!pm(1 − p)(
n
2)−m ≤ n!(1 − p)(

n
2) ≤ exp

(

−(1/2 − o(1))n7/4
)

.

Let F (k) be the number of non-isomorphic graphs definable with depth at most
k. Then P [ D(G) ≤ k ] ≤ F (k) exp

{

−(1/2 − o(1))n7/4
}

. By Theorem 2.3, F (k) ≤
Tower(k + 2 + log∗ k). If k = log∗ n − log∗ log∗ n − 2, we have F (k) ≤ 2n and hence
P [ D(G) ≤ k ] = o(1). �

The above idea (arithmetization of certain vertex sets in graphs) has been previ-
ously used by Spencer [71, Section 8] to obtain non-convergence and non-separability
results on the example of Gn,p with p = n−1/3.

So far we have considered the evolution of the logical complexity of a random
graph in the standard logic with no counting. We conclude this section with an
extension of Theorem 6.1.

Theorem 6.16 (Czajka and Pandurangan [16]). Let p(n) be any function of n such

that ω(n) log4 n
n log log n

≤ p(n) ≤ 1/2 where ω(n) → ∞ as n → ∞. Then 2 color refinements

split a random graph Gn,p into color classes which are singletons with probability that
is higher than 1−n−c for each constant c > 0 and all large enough n. Consequently,
D2

#(Gn,p) ≤ 4 with this probability.

Note that, in the case of p = 1/2, this result improves the probability bound in
Part 1 of Theorem 6.1, while the probability bound in Part 2 is still better.
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By elaborating on the argument of Lemma 6.2, we are able to supply Theorem
6.16 with the matching lower bound (that is, D2

#(Gn,p) ≥ 4 whp) within the range

4
√

log n/n ≤ p ≤ 1/2.

7. Best-case bounds: Succinct definitions

As in the preceding sections, we consider the logical depth of graphs with a given
number of vertices n. We know that the maximum value D(G) = n + 1 is attained
by the complete and empty graphs (and only by them) and that the typical values
lie around log n (see Theorem 6.4). Now we are going to look at the minimum. We
already have a good starting point: By Theorem 6.15, there are graphs with

D3(G) ≤ log∗ n + O(1).

In order to get such examples, we have to generate a random graph with the edge
probability n−1/4. In Section 7.1 we give three explicit constructions achieving
the same bound. In Section 7.2 we introduce the succinctness function q(n) =
min {D(G) : v(G) = n} and give an account of what is known about it. Section 7.3
is devoted to the question of how succinctly we can define graphs if we are not al-
lowed to make quantifier alternations. In Section 7.4 the bounds on the succinctness
function are applied to proving separations results for logical parameters of graphs,
in particular, for D(G) and L(G).

7.1. Three constructions.

7.1.1. First method: Padding. We describe a “padding” operation that was invented
by Joel Spencer (unpublished). It converts any graph G to an exponentially larger
graph G∗ with the logical depth larger just by 1. G∗ includes G as an induced
subgraph. In addition, for every subset X of V = V (G), the graph G∗ contains a
vertex vX . Denote the set of these vertices by V ′. There is no edge inside V ′ but
there are some edges between V and V ′. Specifically, v ∈ V is adjacent to vX iff
v ∈ X. In particular, v∅ is isolated and N(vV ) = V .

Vertex vV will play a special role in our first-order definition of G∗. First of all,
we will say that there is a vertex c (assuming c = vV ) whose neighborhood spans
in G∗ a subgraph isomorphic to G. This can be done by relativizing a formula ΦG

defining G to N(c). That is, each universal quantification ∀x(Ψ) in ΦG has to be
modified to

∀x∈N(c)(Ψ)
def
= ∀x(x ∼ c → Ψ)

and each existential quantification to

∃x∈N(c)(Ψ)
def
= ∃x(x ∼ c ∧ Ψ).

Denote the relativized version of ΦG by ΦG|N(c). Note that relativization does not
change the quantifier depth. A sentence defining G∗ can now look as follows:

ΦG∗
def
= ∃c

(

ΦG|N(c) ∧ ∀x/∈N(c)(N(x) ⊂ N(c)) ∧ ∀x1 /∈N(c)∀x2 /∈N(c)(N(x1) 6= N(x2))

∧ ∀x1 /∈N(c)∀y∈N(x1)∃x2 /∈N(c)(N(x2) = N(x1) \ {y})
)

,
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where we use harmless shorthands for simple first-order expressions.
It is easy to see that

D(ΦG∗) = max {D(ΦG), 4} + 1

and that, if ΦG is a ∃∗∀∗∃∗∀∗-formula (that is, every chain of nested quantifiers is a
string of this form), then ΦG∗ stays in this class as well. Consider now a sequence
of graphs Gk where G1 = P1, the single-vertex graph, and Gk+1 = (Gk)∗. Since
v(G∗) = v(G) + 2v(G), we have v(Gk) ≥ Tower(k − 1). It follows that D3(Gk) ≤
log∗ v(Gk) + 3.

7.1.2. Second method: Unite and conquer. Suppose that we have a set C of n-vertex
graphs, each of logical depth at most d. Our goal is to construct a much larger set
C∗ of graphs with a much larger number of vertices n∗ and logical depth bounded by
d + 3. An additional technical condition is that all the graphs have diameter 2. We
know from Theorem 6.4 that almost all graphs on n vertices have logical depth less
than log n and it is well known that they have diameter 2. Choosing a sufficiently
large n, we can start with C being the class of all such graphs. Since almost all graphs

are asymmetric, we have |C| = (1− o(1))2(n
2). Just for the notational simplicity, we

prefer that |C| is even.
For each S ⊂ C such that |S| = |C|/2, the set C∗ contains graph

GS =
⊔

G∈S

G,

that is, we take the vertex disjoint union of all graphs in S and complement it. For
convenience, we bound the logical depth of the complement GS =

⊔

G∈C G rather

than that of G. Given an arbitrary H 6∼= GS, we analyze the Ehrenfeucht game on
the two graphs.

If H has a connected component of diameter at least 3, Spoiler pebbles vertices u
and v in H at the distance exactly 3 from one another. For Duplicator’s responses
u′ and v′ in GS, either dist(u′, v′) ≤ 2 or dist(u′, v′) = ∞. In any case, Spoiler
wins within the next 2 moves. Suppose from now on that all components of H have
diameter at most 2. This condition allows us to assume that Duplicator respects
the connectivity relation for otherwise Spoiler wins with one extra move (which will
be added to the total count of rounds).

If one of the graphs, GS or H , has a connected component A non-isomorphic to
any component of the other graph, Spoiler pebbles a vertex in A. Let B be the
component of the other graph where Duplicator responds. Starting from the second
round, Spoiler plays the Ehrenfeucht game on non-isomorphic graphs A and B and
wins in at most d moves.

If such a component does not exist, GS must have a component A with at least
two isomorphic copies in H . Then in the first two rounds Spoiler pebbles vertices
in these two. Duplicator is forced at least once to respond in a component B of GS

non-isomorphic to A, which is an already familiar configuration.
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Thus, D(GS) can be at most 3 larger than the maximum logical depth of graphs
in C. At the same time GS has the much larger number of vertices, namely n∗ =
n|C|/2. It follows that D(G) < log log v(G) for any G in C∗.

Note that any graph in C∗ is the complement of a disconnected graph and hence
has diameter 2. This allows us to iterate the construction. Say, for any G ∈ (C∗)∗

we get D(G) < log log log v(G) and so on. If we fix the initial class C, the iteration
procedure gives us graphs with D(G) < 3 log∗ v(G) + O(1). This bound is worse
than in the preceding section but the extra factor of 3 can be eliminated if Spoiler
plays somewhat more ingeniously (see [61]).

7.1.3. Third method: Asymmetric trees. The two previous examples were artificially
constructed with the aim to ensure low quantifier depth. Now we present a natural
class of graphs admitting succinct definability.

The radius of a graph G is defined by r(G) = minv∈V (G) e(v), where e(v) denotes
the eccentricity of a vertex v. A vertex v is central if e(v) = r(G). Any tree has
either one or two central vertices (see, e.g., [58, Chapter 4.2]).

Lemma 7.1. Let T be an asymmetric tree with r(T ) ≥ 6. Then D(T ) ≤ r(T ) + 2.

Proof. We will design a strategy for Spoiler in the Ehrenfeucht game on T and a
non-isomorphic graph T ′. The reader that took the effort to reconstruct the proof
of Theorem 5.3 will now definitely benefit.

We can assume that T and T ′ have equal diameters (in particular, T ′ is connected)
for else Spoiler wins in less than log r(T )+4 moves by Lemma 3.2. If T ′ is a non-tree,
let Spoiler pebble a vertex v′ on a cycle in T ′. By this move Spoiler forces the game on
T\v and T ′\v′, where v is Duplicator’s response in T . If v is a leaf, Spoiler wins in two
moves. Otherwise T \ v is disconnected, while diam(T ′ \ v′) ≤ 3 diam(T ′) ≤ 6 r(T ).
Lemma 3.2 applies again and Spoiler wins in less than log r(T ) + 6 moves. Assume,
therefore, that T ′ is a tree too.

Call a tree diverging if every vertex w splits it into pairwise non-isomorphic
branches, where each branch is considered rooted at the respective neighbor of w
(an isomorphism of rooted trees has to match their roots). Any asymmetric tree is
obviously diverging. On the other hand, if a tree is diverging, it is either asymmet-
ric or has a single nontrivial automorphism and the latter transposes two central
vertices.

Suppose that T ′ is diverging. In the first round Spoiler pebbles a central vertex v
of T and Duplicator responds with a vertex v′ in T ′. As it is easily seen, at least one
of T \ v and T ′ \ v′ has a branch B non-isomorphic to any branch in the other tree.
Spoiler restricts further play to B by pebbling its root. Continuing in this fashion,
that is, each time finding a matchless subbranch, Spoiler forces pebbling two paths
in T and T ′ emanating from v and v′ respectively. Spoiler wins at latest when the
path in T reaches a leaf.

So suppose that T ′ is not diverging. Let v′ be a central vertex of T ′ and u′ be
a vertex at the maximum possible distance from v′ with the property that T ′ \ u′

has two isomorphic branches B′ and B′′. Spoiler pebbles the path from v′ to u′ and
the two neighbors of u′ in B′ and B′′. From this point Spoiler can play as before
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because B′ and B′′ are diverging and only one of them can be isomorphic to the
corresponding branch pebbled by Duplicator in T . �

Lemma 7.1 shows that asymmetric trees are definable with quantifier depth not
much larger than their radius. On the other hand, asymmetric trees can grow in
breadth, having a huge number of vertices. More precisely, there are asymmetric
trees with v(T ) ≥ Tower(r(T )−1). Indeed, let rk denote the number of asymmetric
rooted trees of height k. A simple recurrence

r0 = r1 = 1, rk = (2rk−1 − 1)2
Pk−2

i=0 ri

shows that rk = Tower(k)−Tower(k− 1) for all k ≥ 1. Let Tk be the tree of radius
k + 1 with a single central vertex c such that the set of branches growing from c
consists of all rk pairwise non-isomorphic rooted trees of height k. (The reader will
now surely recognize another instance of the unite-and-conquer method!) It is clear
that Tk is asymmetric and v(Tk) ≥ rk(k + 1) + 1 > Tower(k). Combining it with
Lemma 7.1, we obtain D(Tk) ≤ k + 3 ≤ log∗ v(Tk) + 2.

With a little extra work, trees with low logical depth can be constructed on any
given number of vertices. It turns out that the log-star bound is essentially the best
what can be achieved for trees.

Theorem 7.2 (Pikhurko, Spencer, and Verbitsky [60]). For every n there is a tree
T on n vertices with D(T ) ≤ log∗ n + 4. On the other hand, for all trees T on n
vertices we have D(T ) ≥ log∗ n − log∗ log∗ n − O(1).

We will see in the next section that the lower bound of Theorem 7.2 cannot be
extended to the class of all graphs.

7.2. The succinctness function. Define the succinctness function by

q(n) = min {D(G) : v(G) = n} .

Since only finitely many graphs are definable with a fixed quantifier depth (see
Theorem 2.3), we have q(n) → ∞ as n → ∞. The examples collected in Section
7.1 show that q(n) increases rather slowly. Let qa(n) denote the version of q(n) for
definitions with at most a quantifier alternations. The padding construction from
Section 7.1.1 gives us

q3(n) ≤ log∗ n + 3 (23)

for infinitely many n and, by Theorem 6.15, this bound holds actually for all n,
perhaps with a worst additive constant.

Is the log-star bound best possible? The answer is surprising enough: in some
strong sense it is but, at the same time, it is very far from being tight. First, let us
elaborate on the latter claim.

A prenex formula is a formula with all its quantifiers being in front. In this case
there is a single sequence of nested quantifiers and the quantifier rank is just the
number of quantifiers occurring in a formula. The superscript prenex will mean that
we allow defining sentences only in prenex form. Thus, qprenex

a (n) is equal to the
minimum quantifier depth of a prenex formula with at most a quantifier alternations
that defines a graph on n vertices. We obviously have D(G) ≤ Da(G) ≤ Dprenex

a (G).
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Recall that La(G) denotes the minimum length of a sentence defining G with at
most a quantifier alternations. Since a quantifier-free formulas with k variables is
equivalent to a disjunctive normal form over 2

(

k
2

)

relations between the variables,
we obtain also relation

La(G) = O(h(Dprenex

a (G))) where h(k) = k22k2

. (24)

Recall that a general recursive function is an everywhere defined recursive func-
tion.

Theorem 7.3 (Pikhurko, Spencer, and Verbitsky [60]). There is no general recur-
sive function f such that f(qprenex

3 (n)) ≥ n for all n.

The theorem implies a superrecursive gap between v(G) and D3(G) or even L3(G).
In particular, the values of q3(n) are infinitely often inconceivably smaller even than
the values of log∗ n. More generally, if a general recursive function l(n) is monotone
nondecreasing and tends to infinity, then

q(n) < l(n) for infinitely many n, (25)

which actually means that the succinctness function admits no reasonable lower
bound.

The proof of Theorem 7.3 is based on simulation of a Turing machine M by a
prenex formula ΦM in which a computation of M determines a graph satisfying ΦM

and vice versa. Such techniques were developed in the classical research on Hilbert’s
Entscheidungsproblem by Turing, Trakhtenbrot, Büchi and other researchers (see
[13] for survey and references). An important feature of our simulation is that it
works if we restrict the class of structures to graphs. As a by-product, we obtain
another proof of Lavrov’s result [51] that the first-order theory of finite graphs is
undecidable. The proof actually shows the undecidability of the ∀∗∃p∀s∃t-fragment
of this theory for some p, s, and t.

We now have to explain why bound (23), though not sharp, is best possible in
some sense. Let us define the smoothed succinctness function q∗(n) to be the least
monotone nondecreasing integer function bounding q(n) from above, that is,

q∗(n) = max
m≤n

q(m).

The following theorem shows that q∗(n) = (1 + o(1)) log∗ n and, therefore, the
log-star function is a nearly optimal monotone upper bound for the succinctness
function q(n).

Theorem 7.4 (Pikhurko, Spencer, and Verbitsky [60]).

log∗ n − log∗ log∗ n − 2 ≤ q∗(n) ≤ log∗ n + 4.

Though the lower bound contains a nonconstant lower order term, it can hardly
be distinguished from a constant: for example, log∗ log∗ n = 3 for n = 1080, which is
a rough estimate of the number of elementary particles in the observable universe.

Proof. Theorem 7.2 implies that q(n) ≤ log∗ n + 4 for all n. Since this bound
is monotone, it is a bound on q∗(n) as well. The lower bound for q∗(n) can be
derived from Theorem 2.3. According to it, at most Tower(k + log∗ k + 2) graphs
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are definable with quantifier depth k. Given n > Tower(3), let k be such that
Tower(k + 2 + log∗ k) < n ≤ Tower(k + 3 + log∗(k + 1)). It follows that k >
log∗ n − log∗ log∗ n − 4. By the Pigeonhole Principle, there will be some m ≤ n for
which no graph of order precisely m is defined with quantifier depth at most k. We
conclude that q∗(n) ≥ q(m) > k and hence q∗(n) ≥ log∗ n − log∗ log∗ n − 2. �

We defined q∗(n) to be the “closest” to q(n) monotone function. Notice that q(n)
itself lacks the monotonicity, deviating from q∗(n) infinitely often (set l(n) to be the
lower bound in Theorem 7.4 and apply (25)).

7.3. Definitions with no quantifier alternation. It is interesting to observe how
the succinctness function changes when we put restrictions on the logic. Note that
all what we have stated about the succinctness function for first-order logic actually
holds true for its fragment with 3 quantifier alternations. Now we consider the
first-order logic with no quantifier alternation, consisting of purely existential and
purely universal formulas and their monotone Boolean combinations (of course, all
negations are supposed to stay in front of relation symbols). It is easy to see that any
sentence with no quantifier alternation is equivalent to a sentence in the Bernays-
Schönfinkel class. The latter consists of prenex formulas in which the existential
quantifiers all precede the universal quantifiers, as in

Φ
def
= ∃x1 . . .∃xk∀y1 . . .∀ylΨ(x̄, ȳ), (26)

where Ψ is quantifier-free. This fragment of first-order logic is provably weak.
To substantiate this claim, consider the finite satisfiability problem: Given a first-

order sentence Φ about graphs, one has to decide whether or not there is a finite
graph satisfying Φ. More generally, let Spectrum(Φ) consist of all those n such that
there is a graph on n vertices satisfying Φ. Thus, the problem is to decide whether
Spectrum(Φ) is nonempty.

The question about algorithmic solvability of the finite satisfiability problem for
graphs is related to Hilbert’s Entscheidungsproblem. Lavrov [51] (see also [25, The-
orem 3.3.3]) proved that, in general, this problem is unsolvable even for sentences
without equality. However, if we consider only sentences in the Bernays-Schönfinkel
class, the problem becomes decidable. This directly follows from the following sim-
ple observation showing that a nonempty spectrum always contains a certain small
number.

Lemma 7.5. Suppose that a first-order sentence Φ is of the form (26). If Φ is
satisfiable, then Spectrum(Φ) contains k or a smaller number.

Proof. Assume that Φ is true on a graph G with more than k vertices and let
U ⊂ V (G) be the set of vertices x1, . . . , xk whose existence is claimed by Φ. Note
that the induced subgraph G[U ] satisfies Φ as well. �

The solvability of the finite satisfiability problem for the Bernays-Schönfinkel class
was observed by Ramsey in [68]. He actually proved a stronger result and his famous
combinatorial theorem appeared there as a technical tool. Recall that a set is cofinite
if it has finite complement.
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Theorem 7.6 (Ramsey [68]). Any sentence about graphs Φ in the Bernays-
Schönfinkel class has either finite or cofinite spectrum. More specifically, if Φ is
of the form (26), then either Spectrum(Φ) contains no number equal to or greater
than 2k4l or it contains all numbers starting from k + l.

Proof. Assume that Φ is true on a graph G with at least 2k4l vertices and let
U ⊂ V (G) consist of vertices x1, . . . , xk whose existence is claimed by Φ. Recall
that Ramsey number R(l) is equal to the minimum R such that every graph with
R or more vertices contains a homogeneous set of l vertices. As it is well known,
R(l) < 4l. By the Pigeonhole Principle, V (G) \ U contains a subset W of R(l)
vertices with the same neighborhood within U . Let X be a homogeneous set of l
vertices in G[W ]. Note that G[U ∪ X] satisfies Φ and that X is a set of l twins in
this graph. Cloning the twins, we can obtain a graph that satisfies Φ and has any
number of vertices larger than k + l. �

Note that this theorem allows us not only to decide whether Spectrum(Φ) is empty
but also to completely determine it.

After this small historical excursion, let us turn back to the definability with no
quantifier alternation. First of all, note that even without quantifier alternation all
graphs remain definable (see (3)) and, hence, the parameter D0(G) is well defined.

Theorem 7.7 (Pikhurko, Spencer, and Verbitsky [60]). D0(G) is a computable
parameter of a graph.

Proof. Given m ≥ 0, one can algorithmically construct a finite set Um consisting of
0-alternating sentences of quantifier depth m so that every 0-alternating sentence
of quantifier depth m has an equivalent in Um. To decide if D0(G) ≤ m, for each
sentence Υ ∈ Um satisfied by G we have to check if Υ can be satisfied by another
graph G′. We first reduce Υ to an equivalent statement Ψ in the Bernays-Schönfinkel
class. Suppose that Ψ has k existential quantifiers. It suffices to test all G′ 6∼= G with
at most k + 1 vertices. Indeed, if Φ is true on a graph with more than k + 1 vertices
then, by the argument used to prove Lemma 7.5, Φ is as well true on its induced
subgraphs with k + 1 and k vertices (one of which is not isomorphic to G). �

We cannot prove anything similar for D(G) or even D1(G). The proof of Theorem
7.7 is essentially based on the decidability of whether or not a 0-alternating sentence
is defining for some graph. However, in general this problem is undecidable (see [60]).

For the logic with no quantifier alternation, the succinctness function has much
more regular behavior.

Theorem 7.8 (Spencer, Pikhurko, and Verbitsky [61]).

log∗ n − log∗ log∗ n − 2 ≤ q0(n) ≤ log∗ n + 22.

The lower bound has to be contrasted to Theorem 7.3. It gives us a kind of a
quantitative confirmation of the fact that the 0-alternation fragment of first-order
logic is strictly less powerful. The upper bound improves upon the alternation
number in (23) attaining the optimum. The proof of this bound is based on the unite-
and-conquer construction in Section 7.1.2, where more subtle analysis is needed in
order to achieve the zero alternation number. All the details can be found in [61].
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Proof of Theorem 7.8 (lower bound). Given n, denote k = q0(n) and fix a graph G
on n vertices such that D0(G) = k. The same relation between La(G) and Da(G)
as in Theorem 2.2 is proved in [61]. By this result, G is definable by a 0-alternating
sentence Υ of length less than Tower(k + log∗ k + 2). Convert Υ to an equivalent
sentence Φ in the Bernays-Schönfinkel class and note that D(Φ) ≤ L(Υ). By Lemma
7.5, Φ must be true on some graph with at most D(Φ) vertices. Since Φ is true only
on G, we have

n ≤ D(Φ) ≤ L(Υ) < Tower(k + log∗ k + 2).

This implies that
log∗ n ≤ k + log∗ k + 2. (27)

Suppose on the contrary to our claim that k ≤ log∗ n − log∗ log∗ n − 3. Then
log∗ k ≤ log∗ log∗ n and (27) implies that

log∗ n ≤ (log∗ n − log∗ log∗ n − 3) + log∗ log∗ n + 2,

which is a contradiction, proving the claimed bound. �

Using the lower bound of Theorem 7.8 and the absence of any recursive link-
age between q3(n) and n, we are able to show a superrecursive gap between two
parameters in the logical depth hierarchy

D(G) ≤ D3(G) ≤ D2(G) ≤ D1(G) ≤ D0(G).

Theorem 7.9 (Pikhurko, Spencer, and Verbitsky [60]). There is no general recur-
sive function f such that D0(G) ≤ f(D3(G)) for all graphs G.

Proof. Assume that such an f exists. Let Gn be a graph for which D3(Gn) = q3(n).
Then

f(q3(n)) = f(D3(Gn)) ≥ D0(Gn) ≥ q0(n) ≥ log∗ n − log∗ log∗ n − 2.

This implies that Tower(2f(q3(n))) ≥ n, contradictory to Theorem 7.3. �

We have seen weighty evidences that the 0-alternating sentences are strictly less
expressive than the sentences of the same quantifier depth with quantifier alterna-
tions. It is quite surprising that, nevertheless, sometimes we can prove for D0(G)
upper bounds which are just a little worse than the best known bounds for D(G).
The following results should be compared with Theorems 5.4, 5.8, and 6.4.

Theorem 7.10.

1. (Bohman et al. [11]) Let D0(n, d) denote the maximum of D0(T ) over all
trees with n vertices and maximum degree at most d = d(n). If both d and
log n/ log d tend to infinity, then D0(n, d) ≤ (1 + o(1))d log n

log d
.

2. (Pikhurko, Veith, and Verbitsky [62]) D0(G, H) ≤ n+5
2

for all non-isomorphic
graphs G and H with the same number of vertices n.

3. (Kim et al. [48]) D0(Gn,1/2) ≤ (2 + o(1)) log n with high probability.

We conclude this subsection with a demonstration of somewhat surprising strength
of the Bernays-Schönfinkel class. We say that a sentence Φ identifies a graph G if it
distinguishes G from any non-isomorphic graph of the same order. Let BS (G) denote
the minimum quantifier depth of Φ in the Bernays-Schönfinkel class identifying G.
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We already discussed the identification problem in Section 5.2.1. Note, however,
a striking difference. While in Section 5.2.1 we could make the conjunction of all
sentences ΦH distinguishing G from another graph H of the same order, now we
have to distinguish G from all such H by a single prenex sentence!

Theorem 7.11 (Pikhurko and Verbitsky [64]).

1. For any graph G of order n, we have BS(G) ≤ 3
4
n + 3

2
.

2. With high probability we have BS(Gn,1/2) ≤ (2 + o(1)) log n. Moreover, the
latter bound holds true even if the number of universal quantifiers in an
identifying formula is restricted to 2.

7.4. Applications: Inevitability of the tower function. Succinctly definable
graphs can be used to show that the tower function is sometimes unavoidable in
relations between logical parameters of graphs. We first observe that the relationship
between the logical depth and the logical length in Theorem 2.2 is “nearly” tight.

Theorem 7.12 (Pikhurko, Spencer, and Verbitsky [60]).6 There are infinitely many
pairwise non-isomorphic graphs G with L(G) ≥ Tower(D(G) − 7).

Proof. The proof is given by a simple counting argument. A first-order sentence Φ
defining a graph G determines a natural binary encoding of G (up to isomorphism)
of length O(L(Φ) log L(Φ)). It follows that at most m = 2O(k log k) graphs can have
logical depth less than k. By the Pigeonhole Principle, there is n ≤ m + 1 such that
L(G) ≥ k for all G on n vertices. For all these graphs we have

L(G) ≥ log log n, (28)

if k is chosen sufficiently large. By Theorem 7.2, there is a graph Gn on n vertices
with

D(Gn) < log∗ n + 5. (29)

Combining (29) and (28), we obtain the desired separation of L(Gn) from D(Gn).
Increasing the parameter k, we can have infinitely many such examples. �

One of the consequences of Theorem 7.3 is that prenex formulas are sometimes un-
expectedly efficient in defining a graph. We are now able to show that, nevertheless,
they generally cannot be competitive against defining formulas with no restriction
on structure. More specifically, we have simple relations

D(G) ≤ Dprenex(G) < L(G) ≤ Lprenex(G). (30)

Combining the second inequality with Theorem 2.2, we obtain

Dprenex(G) < Tower(D(G) + log∗ D(G) + 2)

and we can now see that this relationship between Dprenex(G) and D(G) is not so
far from being optimal.

Corollary 7.13. There are infinitely many pairwise non-isomorphic graphs G with
Dprenex(G) ≥ Tower(D(G) − 8).

6In [60] we stated a better bound L(G) ≥ Tower (D(G) − 6) − O(1), which was proved for the
variant of L(G) where variable xi contributes log i, rather than just 1, to the formula length.
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The proof of Theorem 7.12 gives us actually a better bound, though somewhat
cumbersome, namely L(G) ≥ T/(c log T ) with T = Tower(D(G) − 6) and c a
constant. Corollary 7.13 follows from here simply by noticing that parameters
Dprenex(G) and L(G) are exponentially close. The latter fact follows from (30)
and a version of (24), namely

L(G) = O(h(Dprenex(G))) where h(x) = x22x2

.

In conclusion we note that the tower function is essential also in the upper bound
for the number of graphs definable with quantifier depth k given by Theorem 2.3.

Corollary 7.14. There are at least (1 − o(1))Tower(k − 2) first-order sentences of
quantifier depth k defining pairwise non-isomorphic graphs and, hence, being pair-
wise inequivalent.

Proof. In Section 7.1.3 we noticed that there are exactly rh = Tower(h)−Tower(h−
1) non-isomorphic rooted trees of height h. It follows that there are at least 2rh −
rh − 1 = (1 − o(1))Tower(h + 1) asymmetric trees of radius h + 1. By Lemma 7.1,
each of them is definable with quantifier depth h + 3. �

A lower bound of Tower(k − 2) for the number of pairwise inequivalent sentences
of quantifier depth k is shown by Spencer [71, Theorem 2.2.2].

8. Open problems

Many questions remain open, some of which are included in the main text of the
survey alongside the known related results. For reader’s convenience we collect a
few open problems here that we consider most interesting.

Tomasz  Luczak (Conference on Random Structures and Algorithms, Poznań,
2003) asked if D(G), or W (G), is a computable function of the input graph G.

While the factor of 1/2 in Theorem 5.8 is best possible, we do not know if it can
be improved for logic with counting. Surprisingly, we could not resolve even the
following question. Is there ǫ > 0 such that for every graph G of sufficiently large
order n we have W#(G) ≤ (1

2
− ǫ)n?

Recall that no sublinear bound is generally possible here because Cai, Fürer,
and Immerman [14] constructed graphs with linear width in the counting logic; see
Theorem 5.7. Automorphisms of these graphs play an essential role in establishing
this lower bound. It would be very interesting to estimate W#(G) from above for
asymmetric G. Again, we have only the bound D#(G) ≤ (n + 3)/2 as a straightfor-
ward corollary of Theorem 5.8, where no restriction on the automorphism group is
supposed.

Another research direction, with applications to the graph isomorphism problem,
is identification of natural classes of graphs with W#(G) bounded by a constant; see
Sections 5.1.4 and 5.1.5. Recently, Laubner [50] proves such a bound for interval
graphs. His approach is based on the fact that any maximal clique in an interval
graph is definable as the common neighborhood of some two vertices. This prevents
any straightforward extension to the class of circular-arc graphs, where the number
of maximal cliques can be exponential.
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A result of Dawar, Lindell, and Weinstein [19] (see also Theorem 4.7) implies an
upper bound for D#(G) in terms of W#(G) and the order n of G, where W#(G)
disappointedly occurs at the exponent. Can this bound be improved? At the mo-
ment we cannot even exclude that D#(G) = O(W#(G) log n). If the latter bound

was true for Dk
#(G) with k = O(W#(G)), this would have important consequences

for isomorphism testing by Theorem 4.5.
Where do we need the power of counting quantifiers? To keep far away from the

trivial example of a complete or empty graph, suppose that a graph G is asymmetric.
Is it true or not that W (G) = O(W#(G) log n)? A random graph shows that this
bound would be best possible.

We are still far from having a complete evolutionary picture of the logical com-
plexity for a random graph. Let δ ∈ (0, 1) be fixed and p be an arbitrary function
of n with n−δ ≤ p ≤ 1

2
. Is it true that whp D(Gn,p) = O(log n)?

The local behavior of the succinctness function q(n), that was defined in Sec-
tion 7.2, is unclear. While it is trivial that q(n + 1) ≤ q(n) + 1, we do not know, for
example, if q(n + 1) ≥ q(n) − C for some constant C and all n.

In accordance with our notation system, let qk(n) denote the succinctness function
for the k-variable logic. By slightly modifying the proof of Lemma 7.1, one can show
that q3(n) ≤ (1 + o(1)) log∗ n for all n. Since the satisfiability problem for the 3-
variable logic is undecidable (see, e.g., [32]), it is not excluded that an analog of
Theorem 7.3 can be established for q3(n).

Given a fixed k, how far apart from one another can the values of D(G) and
Dk(G) < ∞ be?

Theorem 7.9 says that there is no recursive link between D3(G) and D0(G). Can
one show a super-recursive gap between Da(G) and Db(G) for some b > a > 0 or,
at least, between D(G) and D1(G)?

Though the case of trees was thoroughly investigated throughout the survey, this
class of graphs deserves further attention. One may expect that many logical ques-
tions for trees are easier. Note in this respect that the first-order theory of finite
trees is decidable due to Rabin [66]. Nevertheless, we do not know, for example,
whether or not the logical depth D(T ) of a tree T is a computable parameter (while
it is not hard to show that the logical width W (T ) is computable in logarithmic
space).

Disappointingly, we were able to collect just a very few results on the logical
length for this survey. From the fact that there are 2(1/2+o(1)) n2

non-isomorphic

graphs of order n, it is easy to derive that whp L(Gn,1/2) = Ω
(

n2

log n

)

. The obvious

general upper bound is O(n2). This leaves open the question what the logical length
of a typical graph is. Also, it would be very interesting to find explicit examples
of graphs with large L(G). Pseudo-random graphs can be natural candidates. For
example, it is well known (Blass, Exoo, and Harary [9]) that Paley graphs share the
first-order properties of a truly random graph. Techniques for estimating the length
of a first-order formula are worked out, e.g., by Adler and Immerman [1], Dawar et
al. [20], Grohe and Schweikardt [39].
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