
ar
X

iv
:m

at
h/

04
01

30
7v

2
 [

m
at

h.
L

O
]

 3
1

M
ar

 2
00

4

Succinct Definitions in

the First Order Theory of Graphs

Oleg Pikhurko∗ Joel Spencer† Oleg Verbitsky‡

24 March 2004

Abstract

We say that a first order sentence A defines a graph G if A is true on G

but false on any graph non-isomorphic to G. Let L(G) (resp. D(G)) denote
the minimum length (resp. quantifier rank) of a such sentence. We define the
succinctness function s(n) (resp. its variant q(n)) to be the minimum L(G)
(resp. D(G)) over all graphs on n vertices.

We prove that s(n) and q(n) may be so small that for no general recursive
function f we can have f(s(n)) ≥ n for all n. However, for the function
q∗(n) = maxi≤n q(i), which is the least monotone nondecreasing function
bounding q(n) from above, we have q∗(n) = (1 + o(1)) log∗ n, where log∗ n

equals the minimum number of iterations of the binary logarithm sufficient to
lower n to 1 or below.

We show an upper bound q(n) < log∗ n + 5 even under the restriction of
the class of graphs to trees. Under this restriction, for q(n) we also have a
matching lower bound.

We show a relationship D(G) ≥ (1 − o(1)) log∗ L(G) and prove, using the
upper bound for q(n), that this relationship is tight.

For a non-negative integer a, let Da(G) and qa(n) denote the analogs of
D(G) and q(n) for defining formulas in the negation normal form with at
most a quantifier alternations in any sequence of nested quantifiers. We show
a superrecursive gap between D0(G) and D3(G) and hence between D0(G)
and D(G). Despite it, for q0(n) we still have a kind of log-star upper bound:
q0(n) ≤ 2 log∗ n + O(1) for infinitely many n.

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-
3890. Web: http://www.math.cmu.edu/~pikhurko/

†Courant Institute, New York University, New York, NY 10012. E-mail: spencer@cs.nyu.edu
‡Dept. of Mechanics & Mathematics, Kyiv University, Ukraine. E-mail: oleg@ov.litech.net

1

http://arXiv.org/abs/math/0401307v2

Contents

1 Introduction 3

2 Background 6
2.1 Arithmetics . 6
2.2 Graphs . 6
2.3 Logic . 6

2.3.1 Formulas . 6
2.3.2 Structures . 9
2.3.3 Computability . 9
2.3.4 The Bernays-Schönfinkel class of formulas and the Ramsey

theorem . 9
2.3.5 Definability . 10

3 The Ehrenfeucht game 11

4 A superrecursive gap: Simulating a Turing machine 14
4.1 Gadgets . 15

4.1.1 Ordering . 15
4.1.2 Coordinatization . 16
4.1.3 New functional and constant symbols 16

4.2 Capturing a computation by a formula 17
4.2.1 Definition of a Turing machine 17
4.2.2 Formula AM . 17
4.2.3 Proof of the Simulation Lemma 19

5 Other consequences of the Simulation Lemma 19
5.1 There are succinct definitions by prenex formulas 19
5.2 The set of defining sentences is undecidable 20
5.3 D0(G) and D(G) are not recursively related 20
5.4 An undecidable fragment of the theory of finite graphs 23

6 The succinctness function over trees: Upper bound 24
6.1 Rooted trees . 24
6.2 Diverging trees . 25
6.3 Spoiler’s strategy . 25

7 The succinctness function over trees: Zero alternations 29
7.1 Ranked trees . 29
7.2 Spoiler’s strategy . 31

8 The succinctness function over trees: Lower bound 34

9 The smoothed succinctness function 36

10 Depth vs. length 37

11 Open questions 39

2

1 Introduction

We study sentences about graphs expressible in the laconic first order language with
two relation symbols ∼ and = for, respectively, the adjacency and the equality re-
lations. The first order means that we are allowed to quantify only over vertices,
in opposite to second order logic where we can quantify over sets of vertices. The
difference between the first order and the second order worlds is essential. In the
first order language we cannot express many basic properties of graphs, as the con-
nectedness, the property of being bipartite etc (see, e.g., [24, theorems 2.4.1 and
2.4.2]). On the other hand, the crucial for us fact is that the first order language is
powerful enough to define any individual finite graph up to isomorphism. Indeed,
a graph G with vertex set V (G) = {1, . . . , n} and edge set E(G) is defined by the
formula

∃x1 . . .∃xn∀xn+1

(

∧

1≤i<j≤n

¬(xi = xj) ∧
∨

i≤n

xn+1 = xi

∧
∧

{i,j}∈E(G)

xi ∼ xj ∧
∧

{i,j}/∈E(G)

¬(xi ∼ xj)
)

.
(1)

This fact, though very simple, highlights a fundamental difference between the finite
and the infinite: There are non-isomorphic countable graphs satisfying precisely the
same first order sentences (see, e.g., [24, theorem 3.3.2]).

The question we address is how succinctly a graph G on n vertices can be defined
by first order means. We consider two natural measures of succinctness — the length
of a first order formula and its quantifier rank. The latter is the maximum number
of nested quantifiers in the formula. Let D(G) be the minimum quantifier rank of a
closed first order formula defining G, that is, being true on G and false on any other
graph non-isomorphic to G. The sentence (1) ensures that D(G) ≤ n + 1. This
bound generally cannot be improved as D(G) = n + 1 for G being the complete or
the empty graph on n vertices. However, for all other graphs we have D(G) ≤ n.
Thus, it is reasonable to try to lower the trivial upper bound of n + 1 to some
u(n) ≤ n and explicitly describe all exceptional graphs with D(G) > u(n). This is
done in [19] with u(n) = n/2 + O(1) (see also [20] for a generalization to arbitrary
structures). More precisely, let us call two vertices of a graph similar if they are
simultaneously adjacent or not to any other vertex. This is an equivalence relation
and each equivalence class spans a complete or an empty subgraph. Let σ(G) denote
the maximum number of pairwise similar vertices in G. Then, as shown in [19],

σ(G) + 1 ≤ D(G) ≤ max
{

n + 5

2
, σ(G) + 2

}

.

It seems doubtful that results of this sort are possible to obtain with upper bound
u(n) = cn + O(1) for each constant c < 1/2. The known Cai-Fürer-Immerman
construction [2] gives graphs with linear D(G) that may serve as counterexamples
to most natural conjectures in this direction.

While the paper [19] addresses the definability of n-vertex graphs in the worst

3

case, in [12] we treat the average case. Let G be a random graph distributed uni-
formly among the graphs with vertex set {1, . . . , n}. Then, as shown in [12],

|D(G) − log2 n| = O(log2 log2 n)

with probability 1 − o(1).
We now consider another extremal case of the graph definability problem. How

succinct can be a first order definition of a graph on n vertices in the best case?
Namely, we address the succinctness function q(n) defined as the minimum D(G)
over n-vertex G. We also define L(G) to be the minimum length of a sentence
defining G and s(G) to be the minimum L(G) over n-vertex G. Trivially, q(n) <
s(n). Our first result is that s(n) and q(n) may be so small that for no general
recursive function f we can have f(s(n)) ≥ n for all n.

The proof is based on simulation of a Turing machine M by a first order for-
mula AM in which a computation of M determines a graph satisfying AM and vise
versa. Such techniques were developed in the classic research on Hilbert’s Entschei-
dungsproblem by Turing, Trakhtenbrot, Büchi and other researchers (see [1] for
survey and references). The novel feature of our simulation is that it works if we
restrict the class of structures to graphs. The key ingredient of our proof is a gadget
allowing us to impose an order relation on the vertex set of a graph.

As a by-product, we obtain another proof of Lavrov’s result [14] that the first
order theory of finite graphs is undecidable. Our proof actually shows the undecid-
ability of the ∀∗∃p∀s∃t-fragment of this theory for some p, s, and t.

From the fact that q(n) and n are not recursively linked, it easily follows that, if a
general recursive function l(n) is monotone nondecreasing and tends to the infinity,
then

q(n) < l(n) for infinitely many n. (2)

Our next result establishes a general upper bound

q(n) < log∗ n + 5 for all n. (3)

Here log∗ n equals the minimum number of iterations of the binary logarithm suffi-
cient to lower n below 1. It turns out that this is the best possible monotonic upper
bound for q(n). Let q∗(n) = maxi≤n q(i), which is the least monotone nondecreasing
function bounding q(n) from above. We prove that

q∗(n) ≥ log∗ n − log∗ log∗ n − O(1). (4)

As the upper bound (3) is monotonic, we obtain

q∗(n) = (1 + o(1)) log∗ n. (5)

Comparing (5) to (2) with l(n) = log∗ n, we conclude that q(n) infinitely often
deviates from its “smoothed” version q∗(n) and, in particular, is essentially non-
monotonic.

Proving (3) and (4), we use a robust technical tool given by the Ehrenfeucht
game [5] (these techniques were also developed by Fräıssé [7] in a different setting).

4

As a matter of fact, we prove the upper bound (3) under the restriction of the
class of graphs to trees only, that is, we have q(n) ≤ q(n; trees) < log∗ n + 5. Recall
that, by (2), q(n) is infinitely often so small that we cannot bound it from below
by any “regular” function. The proof of this fact cannot be carried through for
q(n; trees) because, as a well-known corollary of the Rabin theorem [21], the first
order theories of both all and finite trees are decidable and hence a Turing machine
computation cannot be simulated by a first order sentence about trees. In fact, for
q(n; trees) we establish a matching lower bound thereby determining this function
asymptotically, namely,

q(n; trees) = (1 + o(1)) log∗ n.

We pay a special attention to defining sentences having a restricted structure.
For a non-negative integer a, let Da(G) and qa(n) denote the analogs of D(G) and
q(n) for defining formulas in the negation normal form with at most a quantifier
alternations in any sequence of nested quantifiers. The superrecursive gap between
s(n) and n is actually shown even under the restriction of the alternation number to
3. Note also that, as follows from a result in [12], q3(n) ≤ log∗ n + O(1) and hence
(5) holds with alternation number 3.

On the other hand, we show a superrecursive gap between D0(G) and D3(G)
and hence between D0(G) and D(G). Despite it, for q0(n) we also have a kind of
log-star upper bound: q0(n) ≤ 2 log∗ n + O(1) for infinitely many n. It is worth
noting that this is not the first case that we have close results for the alternation
number 0 and for the unbounded alternation number. In [12] we prove that for
a random graph D(G) and D0(G) are not so far apart from each other. Namely,
D0(G) ≤ (2 + o(1)) log2 n with probability 1 − o(1). Yet another result showing
the same phenomenon is obtained in [19]. Given non-isomorphic graphs G and G′,
let D(G, G′) (resp. D0(G, G′)) denote the minimum quantifier rank of a sentence
(resp. in the negation normal form with no quantifier alternation) which is true on
exactly one of the graphs. As shown in [19], if both G and G′ have n vertices,
then D(G, G′) ≤ D0(G, G′) ≤ (n + 5)/2 and there are simple examples of such G
and G′ with D(G, G′) ≥ (n + 1)/2. Note that logical distinguishing non-isomorphic
graphs with equal number of vertices has close connections to graph canonization
algorithms (see, e.g., [2, 8, 19] and a monograph [10]).

Relating D(G) and L(G) to one another, we show that

D(G) ≥ (1 − o(1)) log∗ L(G).

Using the bound (3), we show that this relationship is tight.
Focusing on defining formulas of restricted structure, we also consider prenex

formulas. A superrecursive gap between s(n) and n can actually be shown under the
restriction to this class. Nevertheless, prenex formulas generally are not competetive
against defining formulas with no restriction on structure. We observe that graphs
showing a huge gap between D(G) and L(G) at the same time show a huge gap
between D(G) and its version for prenex defining formulas.

In conclusion, note that all of our results carry over to general structures over any
relational vocabulary with at least one non-unary relation symbol. For the upper

5

bounds this claim is straightforward because graphs can be viewed as a subclass of
such structures which is distinguishable by a single first order sentence. The lower
bounds hold true with minor changes in the proofs.

2 Background

2.1 Arithmetics

We define the tower function T (i) by T (0) = 1 and T (i) = 2T (i−1) for each subsequent
i. Sometimes this function will be denoted by Tower (i). Given a function f , by f (i)

we will denote the i-fold composition of f . In particular, f (0)(x) = x. By log n we
always mean the logarithm base 2. The inverse of the tower function, the log-star
function log∗ n, is defined by log∗ n = min { i : T (i) ≥ n}. For a real x, the notation
⌈x⌉ (resp. ⌊x⌋) stands for the integer nearest to x from above (resp. from below).

2.2 Graphs

Given a graph G, we denote its vertex set by V (G) and its edge set by E(G). The
order of G, the number of vertices of G, will be sometimes denoted by |G|, that is,
|G| = |V (G)|. The neighborhood of a vertex v consists of all vertices adjacent to v.
A set S ⊆ V (G) is called independent if it contains no pair of adjacent vertices. If
X ⊆ V (G), then G[X] denotes the subgraph induced by G on X (or spanned by X
in G). If u ∈ V (G), then G−u = G[V (G) \ {u}] is the result of removal from G the
vertex u along with all incident edges.

The distance between vertices u and v, the minimum length of a path connecting
the two vertices, is denoted by d(u, v). If u and v are in different connected com-
ponents of a graph, then d(u, v) = ∞. The eccentricity of a vertex v is defined by
e(v) = maxu∈V (G) d(v, u). The diameter and the radius of a graph G are defined by
d(G) = maxv∈V (G) e(v) and r(G) = minv∈V (G) e(v) respectively. A path in a graph
is diametral if its length is equal to the diameter of the graph. A vertex v is central
if e(v) = r(G).

Proposition 2.1 [17, Theorem 4.2.2] Let T be a tree. If d(T) is even, then T
has a unique central vertex c and all diametral paths go through c. If d(T) is odd,
then T has exactly two central vertices c1 and c2 and all diametral paths go through
the edge {c1, c2}.

2.3 Logic

2.3.1 Formulas

First order formulas are assumed to be over the set of connectives {¬,∧,∨}. A
sequence of quantifiers is a finite word over the alphabet {∃, ∀}. If S is a set of such
sequences, then ∃S (resp. ∀S) means the set of concatenations ∃s (resp. ∀s) for all

6

s ∈ S. If s is a sequence of quantifiers, then s̄ denotes the result of replacement of
all occurrences of ∃ to ∀ and vise versa in s. The set S̄ consists of all s̄ for s ∈ S.

Given a first order formula A, its set of sequences of nested quantifiers is denoted
by Nest(A) and defined by induction as follows:

1) Nest(A) = {ǫ} if A is atomic; here ǫ denotes the empty word.

2) Nest(¬A) = Nest(A).

3) Nest(A ∧ B) = Nest(A ∨ B) = Nest(A) ∪ Nest(B).

4) Nest(∃xA) = ∃Nest(A) and Nest(∀xA) = ∀Nest(A).

The quantifier rank of a formula A, denoted by qr(A) is the maximum length of a
string in Nest(A).

We adopt the notion of the alternation number of a formula (cf. [18, Definition
2.8]). Given a sequence of quantifiers s, let alt(s) denote the number of occurrences
of ∃∀ and ∀∃ in s. The alternation number of a first order formula A, denoted
by alt(A), is the maximum alt(s) over s ∈ Nest(A). The alternation number has
an absolutely clear meaning for formulas in the negation normal form, where the
connective ¬ occurs only in front of atomic subformulas. This number is defined for
any formula A so that, if A is reduced to an equivalent formula A′ in the negation
normal form, then alt(A) = alt(A′).

Viewing a formula A as a string of symbols over the countable first order alphabet
(where each variable and each relation is denoted by a single symbol), we denote the
length of A by |A|. Note that if one prefers, in a natural way, to encode variable and
relation symbols in a finite alphabet, then the length will increase but stay within
|A| log |A|.

We call A an ∃-formula (resp. ∀-formula) if any sequence in Nest(A) with max-
imum number of quantifier alternations starts with ∃ (resp. ∀). We denote the set
of formulas in the negation normal form with alternation number at most m by Λm.
By Λ∃

m (resp. Λ∀
m) we denote the subset of Λm consisting of formulas in Λm−1 and

∃-formulas (resp. ∀-formulas) in Λm \ Λm−1. We will call formulas in Λ∃
0 and Λ∀

0

existential and universal respectively.
A prenex formula is a formula with all its quantifiers up front. In this case there

is a single sequence of nested quantifiers and the quantifier rank is just the number
of quantifiers occurring in a formula. Let Σ1 and Π1 denote, respectively, the sets
of existential and universal prenex formulas. Furthermore, let Σm (resp. Πm) be the
extension of Σm−1 ∪ Πm−1 with prenex formulas in Λ∃

m−1 (resp. Λ∀
m−1). Note that

the classes of formulas Λm, Λ∃
m, Λ∀

m, Σm, and Πm are defined so that they are closed
with respect to subformulas.

The following lemma is an immediate consequence of the standard reduction of
a formula to the prenex form.

Lemma 2.2 The conjunction of Σm-formulas (resp. Πm-formulas) is effectively re-
ducible to an equivalent Σm-formula (resp. Πm-formula). The same holds for the
disjunction.

7

We write A ≡ B if A and B are logically equivalent formulas and A
.
= B if A

and B are literally the same.

Lemma 2.3

1) Any formula in Λ∃
m is effectively reducible to an equivalent formula in Σm+1.

2) Any formula in Λ∀
m is effectively reducible to an equivalent formula in Πm+1.

3) Any formula in Λm is effectively reducible to an equivalent formula in Σm+2

or, as well, to an equivalent formula in Πm+2.

Proof. Item 3 follows from Items 1 and 2 as Λm is included both in Λ∃
m+1 and Λ∀

m+1.
To prove Items 1 and 2, we proceed by induction on m.

Consider the base case of m = 0. Assume that A ∈ Λ∃
0 and let t = t(A) denote

the total number of quantifiers and connectives ∧, ∨ in A. We prove that A has an
equivalent formula A′ ∈ Σ1 using induction on t. If t = 0, then A is quantifier-free
and hence in Σ0. Let t ≥ 1. Assume that A

.
= ∃xB. Since t(B) = t(A) − 1, the

assumption of induction on t applies to B. Therefore B reduces to an equivalent
formula B′ ∈ Σ1 and we set A′ = ∃xB′. Assume that A

.
= B ∧ C (the case that

A
.
= B ∨ C is similar). Neither of t(B) and t(C) exceeds t(A) − 1 and, by the

assumption of induction on t, for B and C we have equivalents B′ and C ′ in Σ1.
Then A ≡ B′ ∧ C ′ reduces to an equivalent in Σ1 by Lemma 2.2.

The reducibility of Λ∀
0 to Π1 is proved similarly.

Let m ≥ 1 and assume that Items 1 and 2 of the lemma are true for the preceding
value of m. Given A ∈ Λ∃

m, we show how to find an equivalent formula A′ ∈ Σm+1

(the reduction of Λ∀
m to Πm+1 is similar). We again use induction on t = t(A). If

t = 0, then A is in Σ0. Let t ≥ 1. If A
.
= ∀xB, then A ∈ Λ∀

m−1 and, by the
assumption of induction on m, A has an equivalent A′ ∈ Πm ⊂ Σm+1. If A

.
= ∃xB,

A
.
= B ∧ C, or A

.
= B ∨ C, then B, C ∈ Λ∃

m and both t(B) and t(C) are smaller
than t(A). We are done by the assumption of induction on t and Lemma 2.2.

A formula with all variables bound is called a closed formula or a sentence.

Lemma 2.4 If A is a closed prenex formula of quantifier rank q with occurrences
of h binary relation symbols, then it can be rewritten in an equivalent form A′ with
the same quantifier prefix so that |A′| = O(hq22hq2

).

Proof. Let B(x1, . . . , xq) be the quantifier-free part of A. The B is a Boolean

combination of m = h
(

q
2

)

atomic subformulas and hence is representible as a DNF

of length O(m2m).

8

2.3.2 Structures

A relational vocabulary σ is a finite set of relation symbols augmented with their
arities. We always assume the presence of the binary relation symbol = standing for
the equality relation and do not include it in σ. The only exception will be Subsection
5.4 where the presence or the absence of equality will be stated explicitly.

A structure over vocabulary σ (or an σ-structure) is a set along with relations
that are named by symbols in σ and have the corresponding arities. We mostly
deal with the vocabulary of a single binary relation symbol. A structure over this
vocabulary can be viewed as a directed graph (or digraph). We treat graphs as
structures with a single binary relation which is symmetric and anti-relexive. This
relation will be called the adjacency relation and denoted by ∼.

If all relation symbols of a sentence A are from the vocabulary σ and G is an
σ-structure, then A is either true or false on G. In the former case G is called a
model of A. We also say that G satisfies A. We call A valid if all σ-structures satisfy
A. We call A (finitely) satisfiable if it has a (finite) model. Clearly, A is valid iff ¬A
is unsatisfiable.

2.3.3 Computability

Whenever we say that something can be done effectively, we mean that this can
be implemented by an algorithm. No restrictions on running time or space are
assumed. Professing Church’s thesis, we here do not specify any definition of the
algorithm. Nevertheless, we will refer to Turing machines (see Subsection 4.2.1) and
recursive functions in Sections 4 and 5. As a basic fact, these two computational
models are equally powerful, under an effective bijection between binary words and
non-negative integer numbers.

Let X be a set of words over a finite alphabet. The decision problem for X is
the problem of recognition whether or not a given word belongs to X. If there is an
algorithm that does it, the decision problem is solvable (or X is decidable).

The halting problem is the problem of deciding, for given Turing machine M and
input word w, whether M eventually halts on w or runs forever. This is a basic
unsolvable problem. It is well known that, if we fix w to be the empty word, the
restricted problem remains unsolvable.

The (finite) satisfiability problem is the problem of recognizing whether or not
a given sentence is (finitely) satisfiable (we here assume any natural encoding of
formulas in a finite alphabet). Settling Hilbert’s Entscheidungsproblem, Church and
Turing proved that the satisfiability problem is unsolvable. The unsolvability of the
finite satisfiability problem was shown by Trakhtenbrot [25].

A general recursive function is an everywhere defined recursive function.

2.3.4 The Bernays-Schönfinkel class of formulas and the Ramsey theo-
rem

A class of formulas has the finite model property if every satisfiable formula in the
class has a finite model. By the completeness of the predicate calculus with equality,

9

the set of valid sentences is recursively enumerable. From here it is not hard to
conclude that, if a class of formulas has the finite model property, the satisfiability
and the finite satisfiability problems for this class are solvable.

The Bernays-Schönfinkel class consists of prenex formulas in which the existen-
tial quantifiers all precede the universal quantifiers, that is, this is another name
for Σ2.

Proposition 2.5 (The Ramsey theorem [22]1) For each vocabulary σ there is
a general recursive function f : N → N such that the following is true: Assume that
a σ-sentence A with equality is in the Bernays-Schönfinkel class. If A has a model
of some cardinality at least f(qr(A)) (possibly infinite), then it has a model in every
cardinality at least f(qr(A)). As a consequence, the Bernays-Schönfinkel class of
formulas with equality has the finite model property and hence both the satisfiability
and the finite satisfiability problems restricted to this class are solvable.

2.3.5 Definability

Let G and G′ be non-isomorphic graphs and A be a first order sentence with equality
over vocabulary {∼}. We say that A distinguishes G from G′ if A is true on G but
false on G′. By D(G, G′) (resp. Dk(G, G′)) we denote the minimum quantifier rank
of a sentence (with alternation number at most k resp.) distinguishing G from G′.

We say that a sentence A defines a graph G (up to isomorphism) if A distin-
guishes G from any non-isomorphic graph G′. To ensure that A has no other models
except graphs, we will tacitly assume that A has form A

.
= ∀x(x 6∼ x ∧ ∀y(x ∼ y →

y ∼ x)) ∧ B. By D(G) (resp. Da(G)) we denote the minimum quantifier rank of
a sentence defining G (with alternation number at most a resp.). By L(G) (resp.
La(G)) we denote the minimum length of a sentence defining G (with alternation
number at most a resp.).

A sentence is called defining if it defines a graph. Note that any defining sentence
must contain the equality symbol. Let us stress that graphs G′ in the above definition
may have any cardinality.

Lemma 2.6 All finite graphs and only finite graphs posses defining sentences.

Proof. Any finite graph is indeed definable as it has at least the wasteful defini-
tion (1). By the Upward Löwenheim-Skolem theorem (see [16, corollary 2.35]), if a
sentence with equality has an infinite model, it has a model of any infinite cardi-
nality. By this reason, no infinite graph has defining sentence in the sence of our
definition.

Lemma 2.7 The class of defining Λ∃
1-sentences is decidable.

Proof. Suppose that we are given a sentence A ∈ Λ∃
1. By Lemma 2.3 (1), we can

reduce it to an equivalent formula in the Bernays-Schönfinkel class and apply the
Ramsey theorem. We are able to recognize if A is defining in four steps.

1The combinatorial Ramsey theorem, a cornerstone of Ramsey theory, appeared in this paper
as a technical tool.

10

1) Check if A is finitely satisfiable.

2) If so, trying graphs one by one, we eventually find a graph of the smallest order
n satisfying A (this is actually done in the first step, if it is based directly on
the Ramsey theorem).

3) Check if there is any other graph of order n satisfying A.

4) If not, check if a Λ∃
1-sentence A ∧ ∃x1,...,xn+1(

∧

1≤i<j≤n+1 xi 6= xj) is satisfiable.

If not, and only in this case, A is defining.

3 The Ehrenfeucht game

In this section we borrow a lot of material from [24, section 2]. To make our ex-
position self-contained, we sketch some proofs that can be found in [24] in more
detail.

The Ehrenfeucht game is played on a pair of structures of the same vocabulary.
We give the definition conformable to the case of graphs.

Let G and H be graphs with disjoint vertex sets. The k-round Ehrenfeucht game
on G and H , denoted by Ehrk(G, H), is played by two players, Spoiler and Dupli-
cator, with k pairwise distinct pebbles p1, . . . , pk, each given in duplicate. Spoiler
starts the game. A round consists of a move of Spoiler followed by a move of Du-
plicator. At the i-th move Spoiler takes pebble pi, selects one of the graphs G or
H , and places pi on a vertex of this graph. In response Duplicator should place the
other copy of pi on a vertex of the other graph. It is allowed to place more than one
pebble on the same vertex.

Let ui (resp. vi) denote the vertex of G (resp. H) occupied by pi, irrespectively
of who of the players placed the pebble on this vertex. If

ui = uj iff vi = vj for all 1 ≤ i < j ≤ k,

and the component-wise correspondence (u1, . . . , uk) to (v1, . . . , vk) is a partial iso-
morphism from G to H , this is a win for Duplicator; Otherwise the winner is Spoiler.

The a-alternation Ehrenfeucht game on G and H is a variant of the game in
which Spoiler is allowed to switch from one graph to another at most a times during
the game, i.e., in at most a rounds he can choose the graph other than that in the
preceding round.

Let 0 ≤ s ≤ k, r = k − s, and assume that at the start of the game the
pebbles p1, . . . , ps are already on the board at vertices ū = u1, . . . , us of G and
v̄ = v1, . . . , vs of H . The r-round game with this initial configuration is denoted by
Ehrr(G, ū, H, v̄). We write G, ū≡k H, v̄ if Duplicator has a winning strategy in this
game.

It is not hard to check that ≡k is an equivalence relation. The k-Ehrenfeucht
value of a graph G with vertices u1, . . . , us marked by pebbles is the equivalence

11

class it belongs to under ≡k. We let Ehrv (k, s) denote the set of all possible k-
Ehrenfeucht values for graphs with s marked vertices. Let Ehrv (k) = Ehrv (k, 0)
denote the set of k-Ehrenfeucht values for graphs (with no marked vertex).

Lemma 3.1 Assume that s < k. Let ū = u1, . . . , us and S(G, ū) denote the set of
≡k-equivalence classes of G with s+1 marked vertices ū, u for all u ∈ G\{u1, . . . , us}.
Then G, ū ≡k H, v̄ iff S(G, ū) = S(H, v̄).

Proof. Consider the game Ehrk−s(G, ū, H, v̄). Suppose that S(G, ū) 6= S(H, v̄),
for example, there is u ∈ V (G) such that G, ū, u 6≡k H, v̄, v for any v ∈ V (H). Let
Spoiler select this u and let v denote Duplicator’s response. From now on the players
actually play Ehrk−s−1(G, ū, u, H, v̄, v), where Spoiler has a winning strategy.

Suppose that S(G, ū) = S(H, v̄). If Spoiler selects, for example, a vertex u ∈
V (G), then Duplicator responds with v ∈ V (H) such that G, ū, u ≡k H, v̄, v and
hence has a winning strategy in the remaining part of the game.

Lemma 3.2 [24, theorem 2.2.1] For any s and k, Ehrv (k, s) is a finite set. Fur-
thermore, let f(k, s) = |Ehrv (k, s)|. Then

f(k, k) ≤ 4(k

2), (6)

f(k, s) ≤ 2f(k,s+1) (7)

for s < k.

Proof. The bound (6) holds because the ≡k-equivalence class of G with marked
u1, . . . , uk is determined by the equality relation on the sequence u1, . . . , uk and the
induced subgraph G[{u1, . . . , uk}]. The bound (7) holds because the ≡k-equivalence
class of an arbitrary G with marked ū = u1, . . . , us is, according to Lemma 3.1,
determined by S(G, ū), a subset of Ehrv (k, s + 1).

As a consequence, we obtain the following bound.

Lemma 3.3 [24, theorem 2.2.2] |Ehrv (k)| ≤ T (k + 2 + log∗ k) + O(1).

We say that a formula A(x1, . . . , xs) with s free variables defines an Ehrenfeucht
value α ∈ Ehrv (k, s) if A is true on a graph G with variables x1, . . . , xs assigned
vertices u1, . . . , us for exactly those G, u1, . . . , us which are in α.

Lemma 3.4 [24, theorem 2.3.2] For any α ∈ Ehrv (k, s) there is a formula Aα

with qr(Aα) = k − s that defines α. Moreover,

|Aα| ≤ 18

(

k

2

)

if s = k and (8)

|Aα| ≤ f(k, s + 1) (max { |Aβ| : β ∈ Ehrv (k, s + 1)} + 10) if s < k. (9)

12

Proof. The bound (8) holds because every α ∈ Ehrv (k, k) is defined by a formula
of the type

∧

1≤i<j≤k

(∗(xi = xj) ∧ ⋆(xi ∼ xj)),

where ∗ and ⋆ is ¬ for some of (i, j) and nothing for the others, depending on
adjacencies among the marked vertices of a G, u1, . . . , uk in α.

Let s < k and assume that every β ∈ Ehrv (k, s + 1) has a defining formula
Aβ(x1, . . . , xs, x) of quantifier rank k − s − 1. Consider an α ∈ Ehrv (k, s) and
choose a representative G, ū of α. Define S(α) = S(G, ū), where the right hand side
is as in Lemma 3.1. By this lemma, the definition does not depend on a particular
choice of G, ū. We set

Aα(x1, . . . , xs)
.
=

∧

β∈S(α)

∃xAβ(x1, . . . , xs, x) ∧
∧

β /∈S(α)

¬∃xAβ(x1, . . . , xs, x).

It is clear that G with designated ū = u1, . . . , us satisfies Aα iff the set of Ehrenfeucht
values with additional designated u is equal to S(α). By Lemma 3.1, the latter
condition is true iff G, ū has Ehrenfeucht value α.

Proposition 3.5 Suppose that G and H are non-isomorphic graphs.

1) Let R(G, H) denote the minimum k such that G and H have different k-
Ehrenfeucht values. Then D(G, H) = R(G, H). In other words, D(G, H)
equals the minimum k such that Spoiler has a winning strategy in Ehrk(G, H).

2) Da(G, H) equals the minimum k such that Spoiler has a winning strategy in
the a-alternation Ehrk(G, H).

We refer the reader to [24, Theorem 2.3.1] for the proof of the first claim and to [18]
for the second claim.

Proposition 3.6

D(G) = max {D(G, H) : H and G are non-isomorphic} ,

Da(G) = max {Da(G, H) : H and G are non-isomorphic} .

The first equality can be restated as follows: D(G) equals the minimum k such that
the k-Ehrenfeucht value of G contains only graphs isomorphic to G.

Proof. We give a proof of the first equality that can be easily adopted for the second
equality. Denote the maximum in the right hand side by k. We have k ≤ D(G) as
a matter of definition. Conversely, let α ∈ Ehrv (k) be the class containing G. By
Proposition 3.5, G is, up to isomorphism, the only member of α. For each β 6= α
in Ehrv (k), fix a representative Hβ. Let Cβ be a sentence of quantifier rank at
most k distinguishing G from Hβ. We use Lemma 3.2 saying that Ehrv (k) is finite.
The conjunction of all Cβ defines G and has quantifier rank k. Thus, D(G) ≤ k.
(Alternatively, we could use the known fact that, over a finite vocabulary, there are
only finitely many inequivalent sentences of bounded quantifier rank, cf. Lemma
5.6.)

13

4 A superrecursive gap: Simulating a Turing ma-

chine

Definition 4.1 We define the succinctness function s(n) (for formula length) by

s(n) = min
|G|=n

L(G).

The variants with bounded alternation number are defined by

sa(n) = min
|G|=n

La(G)

for each a ≥ 0.

It turns out that s(n) can be so small with respect to n that the gap between
the two numbers cannot be bounded by any recursive function.

Theorem 4.2 There is no general recursive function f such that

f(s3(n)) ≥ n for all n. (10)

Lemma 4.3 (Simulation Lemma) Given a Turing machine M with k states, one
can effectively construct a sentence AM with single binary relation symbol ∼ and
equality so that the following conditions are met.

1) qr(AM) = k + 16.

2) |AM | = O(k2).

3) alt(AM) = 3.

4) AM is effectively reducible to an equivalent prenex formula PM whose quantifier
prefix has length k + O(1), begins with k existential quantifiers, and has 3
quantifier alternations.

5) Any model of AM is a graph. If M halts on the empty input word, then AM

has a unique model GM and the order of GM is bigger than the running time
of M .

6) M halts on the empty input word iff AM has a finite model.

Proof of Theorem 4.2. Let g(k) denote the longest running time on the empty
input word ǫ of a k-state Turing machine (non-halting machines are excluded from
consideration). Recognition whether or not a given Turing machine with k states
halts on ǫ easily reduces to computation of g(k). As this variant of the halting
problem is well known to be undecidable, the function g(k) cannot be bounded from
above by any general recursive function. For each k, fix a machine Mk with k states
whose running time attains g(k). Let AMk

be as in the Simulation Lemma, Gk be

14

the model of AMk
, and nk be the order of Gk. Let l(k) = ck2 be the upper bound

for |AMk
| ensured by the lemma. Note that AMk

defines Gk.
Suppose on the contrary that (10) is true for some general recursive f . Since

s3(nk) ≤ |AMk
| ≤ l(k), for every k we have

g(k) < nk ≤ f(s3(nk)) ≤ max
i≤l(k)

f(i),

a contradiction.

The proof of the Simulation Lemma takes the rest of this section.

4.1 Gadgets

We enrich our language with connectives → and ↔ for the implication and the
equivalence. Since the alternation number was defined for formulas with connectives
¬,∧,∨, we should stress that → and ↔ are used as shorthands for their standard
definitions through ¬,∧,∨. We introduce the new uniqueness quantifier ∃! by

∃!xF (x)
.
= ∃xF (x) ∧ ∀x∀y(F (x) ∧ F (y) → x = y)

for any formula F with a free variable x and with no free occurrences of y. Note
that one occurrence of the uniqueness quantifier contributes 2 in the quantifier rank
and 1 in the alternation number. We use relativized versions of the existential and
the universal quantifiers in the standard way:

∃C(x)F (x)
.
= ∃x(C(x) ∧ F (x)),

∀C(x)F (x)
.
= ∀x(C(x) → F (x)).

To ensure that any model of AM is a graph, we put in AM the two graph axioms
(the irreflexivity and the symmetry of the relation ∼).

4.1.1 Ordering

We give a formula P (x, x′) with two free variables x and x′ that, in any model,
shall determine an order on the neighborhood of x. Let X = {y : y ∼ x} and
X ′ = {z : z ∼ x′}. Then P (x, x′) is the conjunction of the following:

(P1) {x, x′}, X, X ′ are all disjoint and each of them is independent.

(P2) ∀y∈X∃z∈X′ y ∼ z

(P3) ∃y∈X∃!z∈X′ y ∼ z

(P4) ∃y∈X∀z∈X′ y ∼ z

(P5) ∀y1∈X∀y2∈X [∀z∈X′(y1 ∼ z → y2 ∼ z) ∨ ∀z∈X′(y2 ∼ z → y1 ∼ z)]

(P6) ∀y1∈X∀y2∈X [y1 6= y2 → ∃z∈X′(y1 ∼ z ↔ y2 6∼ z)]

15

(P7) ∀y∈X [∃z∈X′ y 6∼ z → ∃y+∈X∃!z∈X′(y+ ∼ z ∧ y 6∼ z)]

(P8) ∀y∈X [∃!z∈X′ y ∼ z ∨ ∃y−∈X∃!z∈X′(y ∼ z ∧ y− 6∼ z)]

Note that qr(P) = 4, alt(P) = 2 (contributed by (P7) and (P8)), and |P | = O(1).
Consider finite models of P (x, x′). For y ∈ X let N∗(y) be those z ∈ X ′ ad-

jacent to y. The N∗(y) are distinct (P6), linearly ordered under inclusion (P5),
are nonempty (P2), include a singleton (P3) and all of X ′ (P4), and the set of all
cardinalities |N∗(y)| has no gaps (either (P7) or (P8)). So we must have |X| = |X ′|
and the elements can be ordered x1, . . . , xs, x′

1, . . . , x
′
s so that xi, x

′
j are adjacent

precisely when j ≤ i. We induce on X a binary relation ≤ defined by

y1 ≤ y2
.
= ∀z∈X′(y1 ∼ z → y2 ∼ z).

In any model (even infinite) the properties (P1)–(P8) assure that ≤ is a linear
order with a least and greatest element. Furthermore, every y has a successor y+

and a predecessor y− except when y is the last or first element of X respectively.

4.1.2 Coordinatization

We now give a formula COOR(x, x′, t, t′, z) that shall coordinatize the neighborhood
of z. Let X, X ′, T, T ′, Z denote the neighborhoods of x, x′, t, t′, z respectively. Then
COOR is the conjunction of the following:

(C1) x, x,′ , t, t′, z, X, X ′, T, T ′, Z are all disjoint. Z is an independent set. All
neighbors of Z are in {z} ∪ X ∪ T . There is no edge between X ∪ X ′ and
T ∪ T ′.

(C2) P (x, x′) ∧ P (t, t′)

(C3) ∀z∈Z(∃!x∈Xz ∼ x ∧ ∃!t∈T z ∼ t)

(C4) ∀x∈X∀t∈T∃!z∈Z(z ∼ x ∧ z ∼ t)

Thus, each z ∈ Z has a unique pair of coordinates (x, t) and each (x, t) corresponds
to a unique z. Note that qr(COOR) = qr(P) = 4 and alt(COOR) = alt(P) = 2.

4.1.3 New functional and constant symbols

To facilitate further description of AM , we will use new functional symbols. In
particular, this will allow us to have new constant symbols as symbols of nullary
functions.

Writing v̄, we will mean a finite sequence of variables v1, v2, As soon as a
statement ∀ȳ∃!xF (x, ȳ) is put in AM or is derivable from what is already put in AM ,
we may want to denote this unique x by φ(ȳ) and use φ as a new functional symbol
in the standard way. Namely, if Q(u, z̄) is a formula with free variables u, z̄, then

Q(φ(ȳ), z̄)
.
= ∃x(F (x, ȳ) ∧ Q(x, z̄)) or

Q(φ(ȳ), z̄)
.
= ∀x(F (x, ȳ) → Q(x, z̄)).

16

Both variants are admissible and an appropriate choice of one of them may reduce
the alternation number of a formula. Furthermore, in this way we can express
compositions of several functions (e.g. [16, section 2.9]).

In particular, in any model of COOR(x, x′, t, t′, z) we let 1, 2 denote the first two
elements of X (under ≤) and 0 (it will represent time zero) the first element of T .
The same character ω will be used for the last element of X or T , dependent on
context. For v in X or T , v− and v+ are respectively its predecessor and successor
(when defined). The notation (x, t) will be used as a binary function symbol with
meaning as explained in the preceding subsection.

4.2 Capturing a computation by a formula

4.2.1 Definition of a Turing machine

By technical reasons, we prefer to use the model of a Turing machine where the tape
is infinite in one direction. It is known (e.g. [13, section 41]) that it is equivalent to
the model with the tape infinite in both directions. At the start the tape consists of
the special “Left End of Tape” symbol L, followed by an input word written down
in the binary alphabet {a, b}, and followed onward by all “blank” symbols B. A
symbol occupies one cell. Let s1, . . . , sk be states of a Turing machine M , with s1

the inital state and sk the final state. At the start M is in state s1 and its head is
at the first B. A machine is defined by a set of instructions of the following type,
where α, β ∈ {L, a, b, B}.

siαβsj: If in state si reading a symbol α, overwrite β and go to state sj.

siαRight sj: If in state si reading a symbol α, move the head one cell to the right
and go to state sj .

siαLeft sj: If in state si reading a symbol α, move the head one cell to the left and
go to state sj.

If α = L in an instruction of the first type, then β = L. This is the only case when
β = L. There is no instruction of the third type (“move to the left”) for α = L.
With this exception, for every i < k and α there is a unique instruction what to do
in state si reading α. The machine halts immediately after coming to state sk. If M
halts, its running time is the number of instructions executed before termination.

4.2.2 Formula AM

For notation simplicity, we use the same name for variables and corresponding se-
mantical objects (ingredients of M and vertices of a graph GM). The vertex H
below shall be used to keep track of the tape header. AM is the conjunction of the
two graph axioms and a long formula of the form

∃x,x′,t,t′,z,s1,...,sk,a,b,B,L,HBM(x, x′, t, t′, z, s1, . . . , sk, a, b, B, L, H).

17

The formula BM whose all free variables are listed above is the conjunction of the
following subformulas, where X, X ′, T, T ′, Z denote, as before, the neighborhoods of
x, x′, t, t′, z respectively.
(A1) x, x′, t, t′, z, s1, . . . , sk, a, b, B, L, H, X, X ′, T, T ′, Z are disjoint and consist of
all the vertices of the graph.
(A2) COOR(x, x′, t, t′, z)
(A3) All of the neighbors of a, b, B, L, H are in Z.
(A4) For all x ∈ X and t ∈ T the vertex (x, t) is adjacent to precisely one of
a, b, B, L. We will write VAL(x, t) for this value, which represents the symbol on
the Turing Machine at position (cell of the tape) x and time t. Note that, as
VAL(x, t) ranges over four possible values L, a, b, B, using this functional symbol
requites no extra quantification. For example, the formula VAL(x, t) = α reads just
(x, t) ∼ α.
(A5) All neighbors of H are in Z. For all t ∈ T there is a unique x ∈ X for
which (x, t) is adjacent to H . We write HP(t) for this x, which represents the
header position. Thus, HP(t) = x reads (x, t) ∼ H . We shall write VAL(t) =
VAL(HP(t), t), the symbol that the header is looking at time t. If HP is used within
VAL, it takes one extra quantifier. Note that a subformula VAL(t) = α has quantifier
rank 2 and alternation number 0. Furthermore, VAL(t+) = α has quantifier rank 4
and can be written with alternation number 0.
(A6) The neighbors of s1, . . . , sk are all in T . For all t ∈ T precisely one of s1, . . . , sk

is adjacent to t. We write ST(t) for this si, which represents the state at time t.
Note that ST(t) = s

.
= t ∼ s.

We want the Turing machine to start in the standard position:
(A7) VAL(1, 0) = L ∧ ∀x 6=1VAL(x, 0) = B ∧ HP(0) = 2 ∧ ST(0) = s1

We want the Turing Machine to end in the final state and not be there before that:
(A8) ∀t∈T (ST(t) = sk ↔ t = ω)
We want values on the tape not to change except (possibly) at the header position:
(A9) ∀t∈T,t6=ω∀x∈X(x 6= HP(t) → VAL(x, t+) = VAL(x, t))
We want the rightmost spot on the tape to be used. (We need this for uniqueness
of the model, we don’t want to allow superfluous blanks.)
(A10) ∃t∈T VAL(ω, t) 6= B
We need that the instructions would not push the Turing Machine to the right of
x = ω. For every si, α such that when at state si and value α the instruction push
the header to the right we have:
(A11) ¬∃t∈T (VAL(t) = α ∧ ST(t) = si ∧ HP (t) = ω)

We are down to the core workings of the Turing Machine. For each instruction
of the first type we have:
(A12) ∀t∈T∀x∈X(ST(t) = si ∧HP(t) = x∧VAL(t) = α → ST(t+) = sj ∧VAL(t+) =
β ∧ HP(t+) = x)
For each instruction of the second type we have:
(A13) ∀t∈T∀x∈X(ST(t) = si ∧ HP(t) = x ∧ VAL(t) = α → ST(t+) = sj ∧ HP(t+) =
x+ ∧ VAL(x, t+) = α)
For each instruction of the third type we have:
(A14) ∀t∈T∀x∈X(ST(t) = si ∧ HP(t) = x ∧ VAL(t) = α → ST(t+) = sj ∧ HP(t+) =

18

x− ∧ VAL(x, t+) = α)

4.2.3 Proof of the Simulation Lemma

A straightforward inspection shows that qr(BM) = 6, contributed, for example, by
(A9). This gives Item 1 of the lemma. Since we treat a variable as a single symbol,
(A1) and (A6) have length O(k2), (A11)–(A14) have length O(k), and all the others
have constant length. This gives Item 2. A straightforward inspection shows that
alt(BM) = 2, contributed by (A2). This gives Item 3.

Item 4 requires a bit of extra work. As AM ∈ Λ∃
3, Lemma 2.3 implies that AM

is reducible to an equivalent prenex formula with quantifier prefix ∃∗∀∗∃∗∀∗. We
make a stronger claim that one can achieve the prefix ∃∗∀O(1)∃O(1)∀O(1). Note that
BM has a constant number of conjunctive members with constant length and hence
those contribute a constant number of quantifiers. (A1) and (A6), though have
length dependent on k, contain a constant number of quantifiers. The remaining
(A11)–(A14) should be tackled with more care as every of these components, though
has constant number of quantifiers, occurs in BM in O(k) variants for various pairs
si, α. Fortunately, all these occurrences can be replaced by a single formula with
constantly many quantifiers. For example, introducing two new variables s and c,
we can replace the conjunction of all variants of (A11) by

¬∃t∈T∃s∃c[
∨

si,α

(s = si ∧ c = α) ∧ VAL(t) = c ∧ ST(t) = s ∧ HP (t) = ω],

where the disjunction is over the specified pairs si, α.
Let us turn to Items 5 and 6. It should be clear that, if M halts, its computation

is converted to a graph satisfying AM , whose order exceeds the running time. Such
a graph is unique up to isomorphism because the adjacencies of any finite model of
AM must mirror the actions of the Turing machine. By the same reason, any finite
model of AM is converted into a halting computation of M and hence, if AM has
a finite model, then M halts on the empty input. It remains to notice that, if M
halts, then AM has no infinite model. Let m be the running time of M . In any
model of AM , the first m values of t must simulate m steps of M ’s computation.
By (A8), the set T is therefore finite. By (A10), the cardinality of X cannot exceed
the cardinality of T and hence X is finite too. It immediately follows that the other
components of the model, X ′, T ′, and Z, are finite as well. The proof is complete.

5 Other consequences of the Simulation Lemma

5.1 There are succinct definitions by prenex formulas

Due to (1), any graph of order n is definable by a prenex formula of quantifier rank
n + 1 with alternation number 1. Though the class of prenex formulas may appear
rather restrictive, it turns out that, if one allows to increase the alternation number
to 3, then there are graphs definable by prenex formulas with very small quantifier
rank.

19

Definition 5.1 Let Lprenex
a (G) denote the minimum length of a closed prenex for-

mula with alternation number at most a that defines a graph G. Furthermore,

sprenex
a (n) = min

|G|=n
Lprenex

a (G).

Theorem 5.2 There is no general recursive function f such that f(sprenex
3 (n)) ≥ n

for all n.

Proof. We proceed precisely as in the proof of Theorem 4.2 but using, instead
of AM , the prenex formula PM given by the Simulation Lemma. We will need a
recursive bound |PMk

| ≤ l(k). We can take l(k) = ck24k2
owing to Lemma 2.4.

5.2 The set of defining sentences is undecidable

Theorem 5.3 The class of defining sentences is undecidable.

Proof. Given a Turing machine M , consider a sentence AM as in the Simulation
Lemma. If M halts on the empty input, AM is defining. Suppose that M never
halts. Then either AM has no model or it has an infinite model. By Lemma 2.6,
AM is not defining in both cases. We therewith have reduced the halting problem
(for the empty input) to the decision problem for the set of defining sentences.

Note a partial positive result given by Lemma 2.7.

5.3 D0(G) and D(G) are not recursively related

Obviously, D(G) ≤ D0(G) for all graphs G. How far apart from each other can be
these two values? Is there a converse relation D0(G) ≤ f(D(G)), for any general
recursive function f? The answer is “no”. We will actually prove a stronger fact.
Let D1/2(G) denote the minimum quantifier rank of a Λ∃

1-sentence that defines G.
Notice the hierarchy

D(G) ≤ D3(G) ≤ D2(G) ≤ D1(G) ≤ D1/2(G) ≤ D0(G).

We are able to show a superrecursive gap even between D3(G) and D1/2(G).

Theorem 5.4 There is no general recursive function f such that

D1/2(G) ≤ f(D3(G))

for all graphs G.

Lemma 5.5 The finite satisfiability of a Λ∃
1-sentence is decidable.

Proof. By Lemma 2.3, a Λ∃
1-sentence effectively reduces to an equivalent formula

in the Bernays-Schönfinkel class. The finite satisfiability of the latter is decidable
by the Ramsey theorem.

20

The next lemma is related to the well-known fact that, over a finite vocabulary,
there are only finitely many pairwise inequivalent sentences of bounded quantifier
rank (cf. [2, lemma 4.4]).

Lemma 5.6 Given m ≥ 0, one can effectively construct a finite set Um consisting
of Λ∃

1-sentences of quantifier rank m so that every Λ∃
1-sentence of quantifier rank m

has an equivalent in Um.

Proof. Any sentence A of quantifier rank m can be rewritten in an equivalent form
A′ so that A′ uses at most m variables, where different occurrences of the same
variable are not counted (see e.g. [19, proposition 2.3]). Referring to this fact, we
will put in Um only sentences over the variable set {x1, . . . , xm}. We now prove the
lemma in a stronger form saying that, for each m and k such that 0 ≤ k ≤ m,
one can construct a finite set Um,k which is universal for the class of Λ∃

1-formulas of
quantifier rank k over the variable set {x1, . . . , xm} with precisely k variables bound.

We proceed by induction on k. Consider the base case of k = 0. There are
a = 2

(

m
2

)

atomic formulas xi ∼ xj and xi = xj . Any quantifier-free formula is a

Boolean combination of these and can be represented by a perfect DNF (except the
totally false formula for which we fix representation x1 = x1 ∧ x1 6= x1). The set
Um,0 consists of all 22a

such expressions.
Um,k will consist of two parts, U∃

m,k and U∀
m,k, the former for formulas with at least

one existential quantifier and the latter for formulas with no existential quantifier.
If k = 0, we have U∃

m,0 = ∅ and U∀
m,0 = Um,0. Assume that k ≥ 1 and Um,k−1 has

been already constructed. We construct Um,k in four steps.

1) Put in U∃
m,k the formulas ∃xiA for all A ∈ Um,k−1 and i ≤ m such that no

occurrence of xi in A is bound.

2) Put in U∀
m,k the formulas ∀xiA for all A ∈ U∀

m,k−1 and i ≤ m such that no
occurrence of xi in A is bound.

3) Put in U∃
m,k all monotone Boolean combinations of formulas from U∃

m,k and
U∀

m,k as constructed in Steps 1 and 2 with at least one formula from U∃
m,k

involved.

4) Put in U∀
m,k all monotone Boolean combinations of formulas from U∀

m,k as
constructed in Step 2.

Finally, to obtain Um exactly as claimed in the lemma, we set Um = Um,m.

Proof of Theorem 5.4. Suppose on the contrary that a such f exists. Using the f ,
we will design an algorithm for the halting problem, contradicting the unsolvability
of the latter.

Given a Turing machine M , we construct the sentence AM as in the Simulation
Lemma. Recall that

• alt(AM) = 3;

21

• if M halts on the empty input, then AM defines a finite graph GM ;

• if M does not halt, then AM has no finite model.

Denote k = qr(AM) and m = maxi≤k f(i). Thus, if GM exists, then D3(GM) ≤ k
and, by the assumption, D1/2(GM) ≤ m.

Construct Um as in Lemma 5.6 and add to every sentence in Um the two graph
axioms. We know that Um contains a sentence defining GM and this will help us
to construct this graph (if it exists). Remove from Um all finitely unsatisfiable
formulas. This task is tractable by Lemma 5.5. For every remaining sentence, by
brute-force search we eventually find a finite graph satisfying it (we need one model
for every sentence and do not care that some sentences may have other models). Let
G1, . . . , Gl be the list of these graphs.

If M halts, one of the Gi’s coincides with GM and satisfies AM . If M does not,
none of the Gi’s satisfies AM . Thus, the verification if AM is true on one of the Gi’s
allows us to recognize if M halts on the empty input.

Corollary 5.7

1) There is no general recursive function f such that D0(G) ≤ f(D(G)) for all
graphs G.

2) There is no general recursive function f such that D0(G, G′) ≤ f(D(G, G′))
for all non-isomorphic G and G′.

Proof. 1) Suppose on the contrary that a such f exists. Then we would have
D1/2(G) ≤ D0(G) ≤ f(D(G)) ≤ maxi≤D3(G) f(i), contradictory to Theorem 5.4.

2) Again, suppose that a such f exists. By Proposition 3.6, D0(G) = D0(G, G′)
for some G′. It follows that D0(G) ≤ f(D(G, G′)) ≤ maxi≤D(G) f(i), contradictory
to Item 1.

It is also worthy to note the following fact.

Theorem 5.8 D0(G) and D1/2(G) are computable functions of graphs.

Proof. We prove the theorem for D1/2(G); For D0(G) the proof is similar. Starting
from m = 2, we trace through the universal set Um given by Lemma 5.6 and, for
each sentence A ∈ Um, check whether G satisfies A and, if so, whether A is defining.
The latter can be done on the account of Lemma 2.7. If no such A is found, we
conclude that D1/2(G) > m and increase m by 1.

Remark 5.9 A variant of Theorem 5.4 for the formula length is also true, even
with a simpler proof (no reference to Lemma 5.6 is needed).

22

5.4 An undecidable fragment of the theory of finite graphs

Given a class of σ-structures C, let Sat (C) (resp. Sat=(C)) be the set of formulas
over σ without equality (resp. with equality) that have a model in C. Furthermore,
let Satfin(C) (resp. Sat=

fin(C)) be the set of formulas over σ without equality (resp.
with equality) that have a finite model in C. If X is one of the aforementioned sets
and F is a class of formulas over σ, we call the intersection F ∩ X the F -fragment
of X. We will be interested in the case that F is a prefix class, that is, consists
of prenex formulas whose quantifier prefix agrees with a given pattern. Describing
such a pattern, we use ∀∗ or ∃∗ to denote a string of all ∀ or all ∃ of any length.

Let D (resp. I and S) denote the class of structures consisting of a single binary
relation (resp. irreflexive binary relation and symmetric binary relation). In other
words, D is the class of directed graphs. By G we denote the class of graphs, i.e.,
structures consisting of a single irreflexive symmetric relation.

Based on Church’s and Turing’s solution of Hilbert’s Entscheidungsproblem,
Kalmár [11] proved that Sat (D) is undecidable. Following the Kalmár result and
the Trakhtenbrot theorem [25], Vaught [26] proved that the set Satfin(D) and the
set of formulas not in Sat (D) are recursively inseparable, that is, no decidable set
contains the former and is disjoint with the latter. In particular, both Satfin(D) and
Sat (D) are undecidable. Currently a complete classification of prefix fragments of
Sat (D), Satfin(D), Sat=(D), and Sat=

fin(D) is known (see [1], a reference book on
the subject).

Gurevich [9] shows that the ∀3∃∗-fragment of Sat (I) is undecidable while the
∀2∃∗-fragment is decidable (cf. [1, corollary 6.2.35]). Church and Quine [3] estab-
lished the undecidability of Sat (S). Note that this result is easily extended to
Sat=(G). The undecidability of Sat (G) was proved by Rogers [23]. Lavrov [14]
(see also [6, theorem 3.3.3]) improved this by showing the recursive inseparability of
Satfin(G) and the set of formulas not in Sat (G).

Lavrov’s proof provides us with a reduction of the decision problem for D to the
decision problem for G. If combined with the known results on undecidable fragments
of Satfin(D), this gives us some undecidable fragments of Satfin(G), for example,
∀9∃∗∀∗∃∗. However, this method apparently cannot give undecidable fragments with
less than two star symbols. Our Simulation Lemma has relevance to this circle of
questions.

Theorem 5.10 For some l, m, and n, the ∃∗∀l∃m∀n-fragment of Sat=
fin(G) is unde-

cidable.

Proof. By the Simulation Lemma, a Turing machine M halts on the empty input
iff the formula AM has a finite graph as a model. Thus, the conversion of AM to a
prenex formula according to Item 4 of the Simulation Lemma reduces this variant of
the halting problem to the satisfiability problem for ∃∗∀l∃m∀n-formulas over finite
graphs.

The theorem should be contrasted with the decidability of the ∃∗∀∗-fragment,
which follows from the Ramsey theorem and the fact that the class of graphs is

23

definable by a ∃∗∀∗-formula. We do not try to specify numbers l, m, n since the
values derivable from our proof are, though not so big, surely improvable by extra
technical efforts. Note that a variant of the theorem for Satfin(D) is known to be
true with best possible l = m = n = 1 (see [1, theorem 3.3.2], which is Surányi’s
theorem extended to the finite satisfiability by Gurevich).

Note another equivalent form of Theorem 5.10. Let Th=
fin(G) denote the first

order theory of finite graphs with equality, i.e., the set of first order sentences with
relation symbols ∼ and = that are true on all finite graphs. Observe that a sentence
A is in Th=

fin(G) iff ¬A is not in Sat=
fin(G). It follows that the ∀∗∃l∀m∃n-fragment of

Th=
fin(G) is undecidable.

6 The succinctness function over trees: Upper

bound

We define a variant of the succinctness function for a class of graphs C (with respect
to the quantifier rank) by

q(n; C) = min {D(G) : G ∈ C, |G| = n} .

We here prove a log-star upper bound for the class of trees.

Theorem 6.1 q(n; trees) < log∗ n + 5.

The proof takes the rest of this section.

6.1 Rooted trees

A rooted tree is a tree with one distinguished vertex, which is called the root. If T
is a tree and v ∈ V (T), then Tv denotes the tree T rooted at v. An isomorphism of
rooted trees should not only preserve the adjacency relation but also map one root
to the other. Thus, for distinct u, v ∈ V (T), rooted trees Tu and Tv, though have
the same underlying tree T , may be non-isomorphic.

An automorphism of a rooted tree is an isomorphism from it onto itself. Obvi-
ously, any automorphism leaves the root fixed. We call a rooted tree asymmetric if
it has no non-trivial automorphisms, that is, no automorphisms except the identity.

The depth of a rooted tree Tv, which is denoted by depth Tv, is the eccentricity
of its root. If (v, . . . , u, w) is a path in Tv, then w is called a child of u. We define
the relation of being a descendant to be the transitive and reflexive closure of the
relation of being a child.

If w ∈ V (Tv), then Tv(w) denotes the subtree of Tv spanned by the set of all
descendants of w and rooted at w. If w is a child of u ∈ V (Tv), then Tv(w) is called
a u-branch of Tv.

24

6.2 Diverging trees

We call Tv diverging if, for every vertex u ∈ V (Tv), all u-branches of Tv are pairwise
non-isomorphic.

Lemma 6.2 A rooted tree Tv is diverging iff its v-branches are pairwise non-
isomorphic and each of them is diverging.

Proof. Assume that Tv is diverging. Its v-branches are pairwise non-isomorphic
by the definition. Furthermore, let Tv(w) be a v-branch of Tv and u ∈ V (Tv(w)).
Note that any u-branch of Tv(w) is also a u-branch of Tv. Therefore, all of them are
pairwise non-isomorphic and Tv(w) is diverging.

For the other direction, consider a non-root vertex u of Tv and let Tv(w) be the
v-branch of Tv containing u (w = u is possible). Note that any u-branch of Tv is
also a u-branch of Tv(w). Therefore, all of them are pairwise non-isomorphic and
we conclude that Tv is diverging.

Lemma 6.3 A rooted tree Tv is diverging iff it is asymmetric.

Proof. We proceed by induction on d = depth Tv. The base case of d = 0 is trivial.
Let d ≥ 1.

Assume that Tv is diverging. By Lemma 6.2, no automorphism of Tv can map one
v-branch onto another v-branch. By the same lemma and the induction assumption,
no non-trivial automorphism can map a v-branch onto itself. Thus, Tv has no non-
trivial automorphism.

Assume now that Tv is asymmetric. Hence all v-branches are pairwise non-
isomorphic and each of them is asymmetric. By the induction assumption, each
v-branch is diverging. By Lemma 6.2 we conclude that Tv is diverging.

We now carry over the notion of a diverging tree to (unrooted) trees. Clearly, any
automorphism of a tree T either leaves central vertices c1 and c2 fixed or transposes
them (c1 = c2 if the diameter d(T) is even). If d(T) is odd, Lemma 6.3 implies that
Tc1 and Tc2 are simultaneously diverging or not. This makes the following definition
correct: A tree T is diverging if the rooted tree Tc for a central vertex c is diverging.
It is not hard to see that T is diverging iff one of the following conditions is met:

1) T has no non-trivial automorphism.

2) T has exactly one non-trivial automorphism and this automorphism transposes
two central vertices of T .

6.3 Spoiler’s strategy

In this section we exploit the characterization of the quantifier rank of a distinguish-
ing formula as the length of the Ehrenfeucht game (see Proposition 3.5).

25

Lemma 6.4 Suppose that in the Ehrenfeucht game on (G, G′) some two vertices
x, y ∈ V (G) at distance k were selected so that their counterparts x′, y′ ∈ V (G′) are
at a strictly larger distance (possibly infinity).

Then Spoiler can win in at most ⌈log k⌉ extra moves, playing all the time inside G.

Proof. Spoiler sets u1 = x, u2 = y, v1 = x′, v2 = y′, and places a pebble on the
middle vertex u in a shortest path from u1 to u2 (or either of the two middle vertices
if d(u1, u2) is odd). Let v ∈ V (G′) be selected by Duplicator in response to u. By
the triangle inequality, we have d(u, um) < d(v, vm) for m = 1 or m = 2. For such
m Spoiler resets u1 = u, u2 = um, v1 = v, v2 = vm and applies the same strategy
once again. Therewith Spoiler ensures that, in each round, d(u1, u2) < d(v1, v2).
Eventually, unless Duplicator loses earlier, d(u1, u2) = 1 while d(v1, v2) > 1, that is,
Duplicator fails to preserve adjacency.

To estimate the number of moves made, notice that initially d(u1, u2) = k and
for each subsequent u1, u2 this distance becomes at most f(d(u1, u2)), where f(α) =
(α + 1)/2. Therefore the number of moves does not exceed the minimum i such
that f (i)(k) < 2. As (f (i))−1(β) = 2iβ − 2i + 1, the latter inequality is equivalent to
2i ≥ k, which proves the bound.

Note that the bound of Lemma 6.4 is tight, more precisely, it cannot be improved
to ⌈log k⌉ − 1. For example, let Cn denote a cycle of length n and 2Cn the disjoint
union of two such cycles. It is known (e.g. [24, Proof of Theorem 2.4.2] or [4, Example
2.3.8]) that Duplicator can survive in the Ehrenfeucht game on C2k+1 and C2k+2 in
more than log k + 1 rounds for any strategy of Spoiler, in particular, when Spoiler
begins with selecting two antipodal vertices in C2k+2. Furthermore, if d(x′, y′) = ∞,
Duplicator can be persistent as well. For example, she can survive in the game on
C2k and 2C2k during ⌊log(2k − 1)⌋ rounds for any strategy of Spoiler, in particular,
when Spoiler’s first move is in one component of 2C2k and his second move is in the
other component of 2C2k (e.g. [4, Example 2.3.8]).

Lemma 6.5 If graphs G and G′ have different diameters (including the case that
G is connected and G′ is disconnected), then D1(G, G′) ≤ ⌈log d(G)⌉ + 2.

Proof. Assume that d(G) < d(G′). Spoiler begins with selecting two vertices at
distance d(G) + 1 in G′, then jumps to G, and uses the strategy of Lemma 6.4.

Lemma 6.6 If G is a tree, G′ is a connected non-tree, and d(G) = d(G′), then
D0(G, G′) < ⌈log d(G)⌉ + 4.

Proof. Denote k = d(G) = d(G′). Let C be a shortest cycle in G′. Notice that
C has length at most 2k + 1. Spoiler begins with selecting in C a vertex z′ along
with its neighbors x′ and y′. Let z, x, and y be the corresponding responses of
Duplicator in G. The vertex z cannot be a leaf of G for else Duplicator has lost.
From now on Spoiler plays all the time in H ′ = G′ − z′ and Duplicator is enforced
to play in H = G−z. In these graphs d(x′, y′) ≤ 2k−1 and d(x, y) = ∞. Therefore
the strategy of Lemma 6.4 applies and Spoiler wins in at most ⌈log(2k − 1)⌉ extra
moves.

26

Lemma 6.7 Let T and T ′ be two non-isomorphic diverging trees with d(T) = d(T ′)
(and hence r(T) = r(T ′)). Then D(T, T ′) ≤ r(T) + 1.

Proof. In the first move Spoiler selects x, a central vertex of T . Duplicator’s
response, x′, should be a central vertex of T ′ because otherwise Spoiler selects a
vertex y′ in T ′ with d(x′, y′) > r(T) and applies the strategy of Lemma 6.4. We will
denote the vertices selected by the players in T and T ′ during the i-th round by xi

and x′
i; In particular, x1 = x and x′

1 = x′. Spoiler will play so that (x1, . . . , xi) and
(x′

1, . . . , x
′
i) are always paths. Another condition that will be obeyed by Spoiler is

that Tx(xi) and T ′
x′(x′

i) are non-isomorphic.
Assume that the i-th round has been played. If exactly one of the vertices xi

and x′
i is a leaf (we will call a such situation terminal), then Spoiler prolongs that

path for which this is possible and wins. Assume that neither of xi and x′
i is a

leaf and that Tx(xi) and T ′
x′(x′

i) are non-isomorphic (in particular, this is so for
i = 1). By the definition of a diverging rooted tree, all Tx(u) with u a child of xi

are pairwise non-isomorphic. The same concerns all T ′
x′(u′) with u′ a child of x′

i.
It follows that there is a Tx(u) not isomorphic to any of the T ′

x′(u′)’s or there is a
T ′

x′(u′) not isomorphic to any of the Tx(u)’s. Spoiler selects such u for xi+1 or u′

for x′
i+1. Clearly, Spoiler has an appropriate move until a terminal situation occurs.

The latter occurs in the r(T)-th round at latest.

Lemma 6.8 Let T and T ′ be two trees with d(T) = d(T ′) (and hence r(T) = r(T ′)).
Suppose that T is diverging but T ′ is not. Then D(T, T ′) ≤ r(T) + 2.

Proof. In the first move Spoiler selects x′, a central vertex of T ′. Similarly to the
preceding proof, we may suppose that Duplicator’s response x is a central vertex of
T . Let y′ be a vertex of T ′ such that T ′

x′(y′) is not diverging but, for any child z′ of
y′, T ′

x′(z′) is. Note that y′ must have two children z′1 and z′2 such that T ′
x′(z′1) and

T ′
x′(z′2) are isomorphic.

In subsequent moves Spoiler selects the path P ′ = (x′, . . . , y′, z′1). Let P =
(x, . . . , y, z) be Duplicator’s response in T . If Tx(z) and Tx′(z′1) have different depths
d and d′, say d > d′, then Spoiler prolongs P with d′ + 1 new vertices and wins. It
is clear that the prolonged path has at most r(T) + 1 vertices.

Suppose now that d = d′. If Tx(z) and Tx′(z′1) are non-isomorphic, then Spoiler
adopts the strategy of Lemma 6.7 and wins having made totally at most r(T) + 1
moves. If Tx(z) and T ′

x′(z′1) are isomorphic, then Spoiler selects z′2. In response
Duplicator must select a child of y different from z. Denote it by z∗. The subtree
Tx(z∗) is non-isomorphic to Tx(z) and hence to T ′

x′(z′2). Now Spoiler is able to
proceed with Tx(z∗) and T ′

x′(z′2) as it was described and wins having made totally
at most r(T) + 2 moves (one extra move was made to switch from z′1 to z′2).

Lemma 6.9 Let T be a diverging tree of radius at least 6. Then D(T) ≤ r(T) + 2.

Proof. Let T ′ be a graph non-isomorphic to T . The pair T, T ′ satisfies the condition
of one of Lemmas 6.5–6.8. These lemmas provide us with bound D(T, T ′) ≤ r(T)+2.
By Proposition 3.6, we therewith have the bound for D(T).

27

We have shown that diverging trees are definable with quantifier rank no much
larger than the radius. It remains to show that, given the radius, there are diverging
trees with large order and, moreover, the orders of these large trees fill long segments
of integers.

Lemma 6.10 Given i ≥ 0, let Mi denote the total number of (pairwise non-
isomorphic) diverging rooted trees of depth at most i. Then Mi = T (i).

Proof. Let mi denote the number of diverging rooted trees of depth precisely i.
Thus, m0 = 1 and Mi = m0 + . . . + mi. By Lemma 6.2, a depth-(i + 1) tree Tv is
uniquely determined by the set of its v-branches, which are diverging rooted trees
of depth at most i. Vise versa, any set of diverging rooted trees of depth at most
i with at least one tree of depth precisely i, determines a depth-(i + 1) tree. It
follows that mi+1 = (2mi −1)2Mi−1 , where we put M−1 = 0. By induction, we obtain
mi = T (i) − T (i − 1) and Mi = T (i).

Note that a diverging rooted tree of depth i can have the minimum possible
number of vertices i + 1 (a path).

Lemma 6.11 Let Ni denote the maximum order of a diverging rooted tree of depth
i. Then Ni > T (i − 1).

Proof. The largest diverging rooted tree Tv of depth i has every of Mi−1 diverging
rooted trees of depth at most i − 1 as a v-branch. Thus, Ni > Mi−1 = T (i − 1).

Lemma 6.12 For every n such that i + 1 ≤ n ≤ Ni there is a diverging rooted tree
of depth i and order n.

Proof. We proceed by induction on i. The base case of i = 0 is trivial. Let i ≥ 1.
For n = i+ 1 we are done with a path. We will prove that any diverging rooted tree
Tv of depth i except the path can be modified so that it remains a diverging rooted
tree of the same depth but the order becomes 1 smaller.

Let l be the smallest depth of a v-branch of Tv and fix a branch Tv(w) of this
depth with minimal order. If Tv(w) is a path, we delete its leaf. If not, we reduce it
by the induction assumption.

Lemma 6.13 Let i ≥ 2. For every n such that 2i + 2 ≤ n ≤ 2Ni, there is a
diverging tree of order n and radius i + 1.

Proof. If n = 2m is even, consider the diverging rooted tree Tc with two c-branches,
one of order m, the other of order m − 1, and both of depth i (excepting the case
that n = 2i + 2 when the smaller branch has depth i − 1). Such branches do exists
by Lemma 6.12. If n = 2m+1 is odd, we add the third single-vertex c-branch. Since
the root c is a central vertex of the underlying tree, the latter is diverging.

28

Proof of Theorem 6.1. Let n > 32 = 2T (3) and let i ≥ 3 be such that 2T (i) <
n ≤ 2T (i + 1). By Lemma 6.11, we have 2i + 6 < n < 2Ni+2. Owing to Lemma
6.13, there exists a diverging tree T of order n and radius i + 3. Lemma 6.9 gives
D(T) ≤ i + 5 < log∗ n + 5.

For every n ≤ 32 the required bound is provided by Pn, the path on n vertices.
It is not hard to derive from Lemma 6.5 that D1(Pn) < log n + 3 for all n, which
satisfies our needs for n in the range.

7 The succinctness function over trees: Zero al-

ternations

Theorem 6.1 assumes no restriction on the alternation number. We now prove a
weaker analog of this theorem for q0(n; trees) = min|T |=n D0(T), the succinctness
function over trees with the strongest restriction on the alternation number. This
is somewhat surprising in view of Corollary 5.7 (1) asserting that D0(G) and D(G)
may be very far apart from one another.

Theorem 7.1 For infinitely many n we have q0(n; trees) ≤ 2 log∗ n + O(1).

The proof takes the rest of the section.

7.1 Ranked trees

We will modify the approach worked out in the preceding section. The proof of
Theorem 6.1 was based on Lemmas 6.5–6.8. Note that the alternation number
in Lemma 6.6 is 0. In Lemma 6.5 it is 1, but the bound of this lemma is actually
stronger than we need and, at the cost of some relaxation, we will be able to improve
the alternation number to 0 (see Lemmas 7.6 and 7.8 below). The real source of
non-constant alternation number is Lemma 6.7 (Lemma 6.8 reduces to Lemma 6.7
and itself makes no new complication). To tackle the problem, we restrict the class
of diverging trees so that we will still have relation D0(T) = O(r(T)) and there will
still exist trees with Tower (r(T) − O(1)) vertices.

We begin with introducing some notions and notation concerning rooted trees.
Given a rooted tree Tv, let B(Tv) denote the set of all v-branches of Tv. Given
rooted trees T1, . . . , Tm, we define T = T1 ⊙ · · · ⊙ Tm to be the rooted tree with
B(T) = {T1, . . . , Tm}. By Lemma 6.2, if all Ti are pairwise non-isomorphic and
diverging, then T is diverging as well. Obviously, depth T = 1 + maxi depth Ti.

Let T ′
v′ and Tv be rooted trees. We call T ′

v′ a rooted subtree of Tv if v′ = v and
V (T ′) ⊆ V (T).

For each i ≥ 0, we now define the class of rooted trees R∗
i as follows. Let

R∗
0 = {T ∗

1 , T ∗
2 , T ∗

3 , T ∗
4 }, the set of four rooted trees depicted in Figure 1. Observe the

following properties of this set.

(Z1) |T ∗
i | ≤ 8 for all i.

29

u

u

u

u

u

u

u

u

u

u

uu

u

u

u

u

u

uu

u

u

uuu

uu

u

u

Figure 1: R∗
0.

(Z2) depth T ∗
i = 4 for all i.

(Z3) All T ∗
i are diverging.

(Z4) No T ∗
i is isomorphic to a rooted subtree of any other T ∗

j .

Assume that R∗
i−1 is already specified. We will need a large enough Fi ⊂ 2R∗

i−1 , a
family of subsets of R∗

i−1 which is an antichain with respect to the inclusion (i.e. no
member of Fi is included in any other member of Fi). As one of suitable possibilities
(which actually maximizes |Fi| by Sperner’s theorem), we fix

Fi =

(

R∗
i−1

⌊|R∗
i−1|/2⌋

)

,

the family of all ⌊|R∗
i−1|/2⌋-element subsets of R∗

i−1. Now

R∗
i =

{

⊙

T∈S

T : S ∈ Fi

}

.

Note that |R∗
i | = |Fi|.

It is clear that, if T ∈ R∗
i , then B(T) consists of pairwise non-isomorphic rooted

trees in R∗
i−1. By easy induction, we have the following properties of the class R∗

i

for i ≥ 1.

(R1) If T ∈ R∗
i , then r(T) = depth T = i + 4.

(R2) If T ∈ R∗
i , then d(T) = 2i + 8.

(R3) If T ∈ R∗
i , then the central vertex of T is equal to the root.

(R4) All T ∈ R∗
i are diverging.

(R5) If T and T ′ are different members of R∗
i , then neither B(T) ⊂ B(T ′) nor

B(T ′) ⊂ B(T).

30

We define Ri to be the set of underlying trees of rooted trees in R∗
i . Note that

for different T, T ′ ∈ R∗
i their underlying trees are non-isomorphic. If i = 0, this is

evident. If i ≥ 1, we use the fact that, as any isomorphism between the unrooted
trees takes one central vertex to the other, it is also an isomorphism between the
rooted trees. Note also that trees in Ri are diverging.

We will call trees in R =
⋃∞

i=1 Ri ranked. If T ∈ Ri, we will say that T has rank
i and write rk T = i.

Lemma 7.2 Let Ni denote the minimum order of a tree of rank i. Then Ni ≥
T (i − O(1)).

Proof. Denote Mi = |Ri|. By the construction, we have

M0 = 4, Mi+1 =

(

Mi

⌊Mi/2⌋

)

=

√

2 + o(1)

πMi
2Mi,

and

Ni+1 > 1 +

(

Mi

⌊Mi/2⌋

)

> Mi+1.

The lemma follows by simple estimation.

7.2 Spoiler’s strategy

Consider the Ehrenfeucht game on rooted trees (Tv, T
′
v′). Let xi denote the vertex of

Tv selected in the i-th round. We call a strategy for Spoiler continuous if he plays all
the time in Tv and, for each i, the induced subgraph T [{v, x1, . . . , xi}] is connected.

Lemma 7.3 Let Tv and T ′
v′ be non-isomorphic rooted trees in R∗

i . Then Spoiler
has a continuous winning strategy in Ehri+7(Tv, T

′
v′) and hence D0(Tv, T

′
v′) ≤ i + 7.

Proof. We proceed by induction on i. In the base case of i = 0, Spoiler selects all
non-root vertices of Tv in a continuous manner and wins by Property (Z4). Let i ≥ 1.
In the first move Spoiler selects w, a child of v such that, for any w′, child of v′,
branches Tv(w) and T ′

v′(w
′) are not isomorphic. This is possible owing to Property

(R5). Let w′ denote Duplicator’s response. Both Tv(w) and T ′
v′(w

′) have rank i− 1.
Spoiler now invokes a continuous strategy winning Ehri+6(Tv(w), T ′

v′(w
′)), which

exists by the induction assumption.

Lemma 7.4 Let T , T ′ be trees of the same even diameter and v, v′ be their central
vertices. Assume that Spoiler selects v but Duplicator responds with a vertex dif-
ferent from v′. Then Spoiler is able to win in the next d(T) moves, playing all the
time in T .

Proof. In a continuous manner, Spoiler selects the vertices of a diametral path in
T . Let u 6= v′ be the vertex selected by Duplicator in response to v. Duplicator
should now to exhibit a path of length d(T ′) = d(T) with u at the middle, which is
impossible by Proposition 2.1.

31

Lemma 7.5 Let T and T ′ be non-isomorphic ranked trees of the same rank. Then
D0(T, T ′) ≤ 2 rk T + 9.

Proof. Let v and v′ be central vertices of T and T ′ respectively. Spoiler starts
by selecting v. If Duplicator responds not with v′, Spoiler applies the strategy of
Lemma 7.4 and wins in the next d(T) moves. If Duplicator responds with v′, Spoiler
applies the strategy of Lemma 7.3 and wins in the next rk T + 7 moves. In any case
Spoiler wins in 1 + max{d(T), rk T + 7} = 2 rk T + 9 moves.

Lemma 7.6 Let T be a ranked tree and G be either a tree of different diameter or
a connected non-tree. Then D0(T, G) ≤ 2 rk T + 10.

Proof. If G is a tree, then d(T) + 2 moves are enough for Spoiler to win. In this
case, he selects a path of length min{d(T), d(G)}+1 in the graph of larger diameter.

Suppose that G is not a connected non-tree. If G has a cycle on at most d(T)+2
vertices, Spoiler selects it and wins. Otherwise G must have a cycle on at least
d(T) + 3 vertices. Spoiler wins by selecting a path on d(T) + 2 vertices of this
cycle.

Lemma 7.7 Let T be a ranked tree and G be a non-ranked tree. If d(T) = d(G),
then D0(T, G) ≤ 2 rk T + 9.

Proof. Let v and c denote the central vertices of T and G respectively. The tree
in which Spoiler plays will be specified below. In the first move Spoiler selects the
central vertex of this tree. If Duplicator responds not with the central vertex of
the other tree, he loses in the next d(T) moves by Lemma 7.4. Assume that she
responds with the central vertex. Further play depends on which of three categories
G belongs to. Let k = rk T . For any w ∈ V (G) at distance k from c, we will call
Gc(w) an apex of Gc.

Case 1: Gc has an apex Gc(w) which is not a rooted subtree of any of the four
rooted trees in R∗

0. Spoiler plays in G. In the next k moves he selects the path from
c to w. Duplicator is enforced to select the path from v to a vertex u such that
Tv(u) ∈ R∗

0. Spoiler is now able to win by selecting at most 8 vertices of Gc(w). The
total number of moves does not exceed 1 + k + 8 = k + 9.

Case 2: G has a vertex w such that B(Gc(w)) properly contains B(Hw) for some
Hw ∈ R∗

i , where i = k − d(c, w). Spoiler plays in G. In the next d(c, w) moves
he selects the path from c to w. Let u denote the vertex selected by Duplicator
in response to w and Fu = Tv(u). Clearly, Duplicator must ensure the equality
d(v, u) = d(c, w) and hence Fu ∈ R∗

i .
If Fu and Hw are not isomorphic, then Spoiler restricts further play to Hw follow-

ing a continuous strategy. Of course, Duplicator is enforced to play in Fu. Spoiler
is able to win in the next i + 7 moves according to Lemma 7.3.

Suppose now that Fu and Hw are isomorphic. In the next move Spoiler selects
a child of w which is not in Hw. Duplicator must respond with a child of u in
Fu. Denote it by x and let y be the vertex of Hw corresponding to x under the

32

isomorphism from Fu to Hw. Recall that, by Lemma 6.3, diverging trees are asym-
metric and therefore such isomorphism is unique. In the next move Spoiler selects
y. Duplicator must respond with z, another child of u in Fu. Note that Fu(z) and
Hw(y) are not isomorphic since the latter is isomorphic to Fu(x) but the former is
not. From now on Spoiler restricts play to Fu(z) and Hw(y) using the strategy of
Lemma 7.3, and wins in the next i+ 6 moves. The total number of moves is at most
1 + d(c, w) + i + 8 = k + 9.

Case 3: Neither 1 nor 2. Spoiler plays all the time in T . We will denote
the vertices selected by him in the next k moves by x1, . . . , xk subsequently. Let
y1, . . . , yk denote the corresponding vertices selected in G by Duplicator. Put also
x0 = v and y0 = c. Spoiler will play so that x0, x1, . . . , xk will be a path. Let
1 ≤ i ≤ k. Suppose that the preceding x0, . . . , xi−1 are already selected. Assume
that Tv(xi−1) and Gc(yi−1) are non-isomorphic (note that this is so for i = 1). As we
are not in Case 2, xi−1 has a child x such that Tv(x) /∈ B(Gc(yi−1)). Spoiler takes this
x for xi thereby ensuring that Tv(xi) and Gc(yi) are non-isomorphic again, whatever
yi is selected by Duplicator. The final stage of the game goes on non-isomorphic
Tv(xk) and Gc(yk). Spoiler selects all vertices of Tv(xk).

Note that Tv(xk) ∈ R∗
0 and Gc(yk) is an apex of G. As we are not in Case 1,

Gc(yk) is a rooted subtree of some T ∗
j ∈ R∗

0. If T ∗
j = Tv(xk), Gc(yk) must be a proper

subtree of Tv(xk) and hence Spoiler has won. Otherwise, note that Tv(xk) cannot
be a rooted subtree of Gc(yk) by Property (Z4). Again, this is Spoiler’s win. The
total number of moves equals 1 + k + 7 = k + 8.

In any of the three cases Spoiler wins in max{1+d(T), k +9} = 2k +9 moves.

Note that, if T is a ranked tree of rank k, then Lemmas 7.5–7.7 provide Spoiler
with a winning strategy in the 0-alternation Ehr2k+10(T, G) whenever G is a con-
nected graph non-isomorphic to T .

Lemma 7.8 Let T be a ranked tree and H be a disconnected graph. Then D0(T, H)
≤ 2 rk T + 10.

Proof. We distinguish two cases.
Case 1: No component of H is isomorphic to T .
Subcase 1.1: H has a component G such that Spoiler is able to win Ehr2k+10(T,

G) playing all the time in G. Spoiler plays exactly this game.
Subcase 1.2: H has no such component. In the first move Spoiler selects the

central vertex of T . Suppose that Duplicator’s response is in a component G of
H . By Lemmas 7.5–7.7, we are either in the situation of Lemma 7.6 (with G a
tree of diameter d(G) < d(T)) or in the situation of Lemma 7.7 (namely, in Case
3). In both situations Spoiler has a continuous winning strategy for Ehr2k+10(T, G)
allowing him to play all the time in T starting from the central vertex. Spoiler
applies it and wins as Duplicator is enforced to stay in G.

Case 2: H has a component T ′ isomorphic to T . Spoiler plays in H . His first
move is outside T ′. Let x ∈ V (T) be Duplicator’s response. Let x′ be the counterpart
of x in T ′ (recall that ranked trees are asymmetric and hence x′ is determined
uniquely). Denote the central vertices of T and T ′ by v and v′ respectively. In the

33

second move Spoiler selects v′. If Duplicator responds not with v, Spoiler applies the
strategy of Lemma 7.4 and wins in the next d(T) moves. Assume that Duplicator
responds with v. Starting from the third move, Spoiler selects the vertices on the
path between v′ and x′, one by one, starting from a child of v′. If Duplicator follows
the path from v to x, she loses as x is already selected. Assume that Duplicator
deviates at some point, selecting a vertex y not on the path, and let y′ be the vertex
on the path between v′ and x′ selected in this round by Spoiler. Note that the
rooted subtrees Tv(y) and T ′

v′(y
′) are non-isomorphic. Spoiler therefore can apply

the continuous strategy of Lemma 7.3 and win in the next i + 7 moves, where
i = k−d(v, y). The total number of moves is at most 1+max{1+d(T), 1+d(x, y)+
(i + 7)} = 2k + 10.

Lemma 7.8 completes our analysis: If T is a ranked tree of rank k and G is an
arbitrary graph non-isomorphic to T , then we have a winning strategy for Spoiler
in the 0-alternation Ehr2k+10(T, G). By Proposition 3.6, we conclude that D0(T) ≤
2 rk T + 10.

To complete the proof of Theorem 7.1, let Ti be a tree of rank i and order Ni

as in Lemma 7.2. We have q0(Ni; trees) ≤ D0(Ti) ≤ 2i + 10 ≤ 2 log∗ Ni + O(1), the
latter inequality due to Lemma 7.2.

8 The succinctness function over trees: Lower

bound

Complementing the upper bound given by Theorem 6.1 we now prove a nearly tight
lower bound on q(n; trees).

Theorem 8.1 q(n; trees) ≥ log∗ n − log∗ log∗ n − O(1).

It will be helpful to work with rooted trees. The first order language for this class
of structures has a constant R for the root and the parent-child relation P (x, y). Let
Tv and T ′

u be rooted trees and suppose that Tv ≡k T ′
u. By Proposition 3.5, Tv and

T ′
u satisfy the same sentences of quantifier rank k. Then T ≡k T ′ for the underlying

trees. Indeed, take any sentence in the language for trees and replace the adjacency
x ∼ y with P (x, y) ∨ P (y, x). We get a sentence with the same truth value in the
language of rooted trees.

Let g(k) be the number of ≡k-equivalence classes of rooted trees. Similarly to
Lemma 3.3, we have g(k) ≤ T (k + 2 + log∗ k) + O(1). Set

U(k) =
g(k)−1
∑

i=0

(k g(k))i.

Lemma 8.2 Let Tv be a finite rooted tree. Then, for any k ≥ 1, there exists a
finite rooted tree T ′

u with at most U(k) vertices such that Tv ≡k T ′
u.

34

Proof of Theorem 8.1. Consider an arbitrary tree T of order n and let k = D(T).
Rooting it at an arbitrary vertex v, consider a rooted tree Tv. Let T ′

u be as in Lemma
8.2. Thus, we have T ≡k T ′ and |T ′| ≤ U(k). By the choice of k, T and T ′ must be
isomorphic. We therefore have

n ≤ U(k) < (kg(k))g(k) ≤ T (k + log∗ k + 4) + O(1),

which implies k ≥ log∗ n − log∗ log∗ n − O(1).

Lemma 8.2 follows from a series of lemmas.

Lemma 8.3 Let Tv be a rooted tree and w a non-root vertex of Tv. Suppose that
T ′

w ≡k Tv(w). Let T ′
v be the result of replacing Tv(w) by T ′

w. Then Tv ≡k T ′
v.

Proof. Duplicator wins the Ehrenfeucht game on Tv, T ′
v by playing it on Tv(w), T ′

w

(since the root is a constant symbol she automatically plays root for root) and the
identical vertices elsewhere.

Lemma 8.4 Let Tv be a rooted tree with w1, . . . , ws the children of the root v, and
α1, . . . , αs the k-Ehrenfeucht values of the trees Tv(wi). Then the k-Ehrenfeucht
value of T is determined by the αi’s.

Proof. If Tv and T ′
u have the same α1, . . . , αs we reach T ′

u from Tv in s applications
of Lemma 8.3.

Lemma 8.5 Suppose, in the notation of Lemma 8.4, that some value α appears
as αi more than k times. Let T−

v be Tv but with only k of those subtrees. Then
Tv ≡k T−

v .

Proof. The game has only k moves so Spoiler cannot go in more than k of these
subtrees.

Lemma 8.6 If Tv is a representative of a given ≡k-equivalence class with minimum
possible order, then each vertex of Tv has at most kg(k) children.

Proof. This easily follows from Lemmas 8.5 and 8.4 by induction on the depth.

Lemma 8.7 If Tv is a representative of a given ≡k-equivalence class with minimum
possible order, then it has depth at most g(k) − 1.

Proof. Take a longest path from the root to a leaf. If it has more than g(k) vertices,
it contains two vertices w and u such that u is a descendant of w and Tv(u)≡k Tv(w).
Replacing Tv(w) by Tv(u), we obtain a smaller tree in the same ≡k-class.

Lemma 8.2 immediately follows from Lemmas 8.6 and 8.7.

35

9 The smoothed succinctness function

Let q(n) = q(n; all) denote the succinctness function for the class of all graphs. Since
there are only finitely many pairwise inequivalent sentences of bounded quantifier
rank, q(n) → ∞ as n → ∞. We will show that q(n) grows very slowly and, in a
sense, irregularly. We first summarize an information given by Theorems 4.2 and 6.1.

Corollary 9.1

1) There is no general recursive function f such that f(q(n)) ≥ n for all n.

2) There is no general recursive function l(n) such that l(n) is monotone nonde-
creasing, l(n) → ∞ as n → ∞, and l(n) ≤ q(n) for all n.

3) q(n) < log∗ n + 5.

Proof. 1) Note q(n) ≤ s(n) ≤ s3(n). Now, if there were a general recursive function
f such that f(q(n)) ≥ n, then we would have maxi≤s3(n) f(i) ≥ n contradictory to
Theorem 4.2.

2) Assume that a such l(n) exists. Let f(m) be the first value of i such that
l(i) > m. Then f(q(n)) > n contradictory to Item 1.

3) As any upper bound on q(n; C) is stronger if it is proved for a smaller class of
graphs, this item is an immediate consequence of Theorem 6.1.

Definition 9.2 We define the smoothed succinctness function q∗(n) (for quantifier
rank) to be the least monotone nondecreasing integer function bounding q(n) from
above, that is, q∗(n) = maxm≤n q(m).

Theorem 9.3 log∗ n − log∗ log∗ n − O(1) < q∗(n) < log∗ n + 5.

Proof. Since the upper bound on q(n) given by Corollary 9.1 (3) is monotone,
this is a bound on q∗(n) as well. The lower bound is derivable from Lemma 3.3.
This lemma states that |Ehrv (k)| ≤ T (k + 2 + log∗ k) + c for a constant c. Given
n > c+T (3), let k be such that T (k+2+log∗ k)+c < n ≤ T (k+3+log∗(k+1))+c.
Assuming that n is sufficiently large, we have k > log∗ n− log∗ log∗ n−4. According
to Proposition 3.6, at most |Ehrv (k)| graphs are definable with quantifier rank at
most k. By the pigeonhole principle, there will be some m ≤ |Ehrv (k)| + 1 ≤ n for
which no graph of order precisely m is defined with quantifier rank at most k. We
conclude that q∗(n) ≥ q(m) > k and hence q∗(n) ≥ log∗ n − log∗ log∗ n − 2.

We defined q∗(n) to be the “closest” to q(n) monotone function. Notice that
q(n) itself lacks the monotonicity.

Corollary 9.4 q(i + 1) < q(i) for infinitely many i.

Proof. Set l(n) = log∗ n− log∗ log∗ n− 2. We have just shown that q∗(n) ≥ l(n) for
all n large enough. By Corollary 9.1 (2), we have q(n) < l(n) for infinitely many n.
For each such n, let mn < n be such that q(mn) ≥ l(n). Thus, q(mn) > q(n) and a
desired i must exist between mn and n.

36

For each non-negative integer a and for a = 1/2, define qa(n) = min|G|=n Da(G)
and q∗a(n) = maxm≤n qa(m). As easily seen, Corollary 9.1 (1) holds true for q3(n) as
well. Note a strengthening of Corollary 9.1 (3) that follows from a result in another
our paper. Let G(n, p) denote a random graph on n vertices distributed so that
each edge appears with probability p and all edges appear independently from each
other.

Theorem 9.5 [12] With probability approaching 1 as n goes to the infinity,

D3(G(n, n−1/4)) = log∗ n + O(1).

Corollary 9.6 q3(n) ≤ log∗ n+O(1) and hence log∗ n−log∗ log∗ n−O(1) ≤ q∗3(n) ≤
log∗ n + O(1).

10 Depth vs. length

Theorem 10.1 L(G) ≤ T (D(G) + log∗ D(G) + O(1)).

Proof. Given an Ehrenfeucht value α, let l(α) denote the shortest length of a
formula defining α in the sense of Section 3. Define l(k) to be the maximum l(α)
over α ∈ Ehrv (k) and l(k, s) the maximum l(α) over α ∈ Ehrv (k, s). Of course,
l(k) = l(k, 0). As in Section 3, f(k, s) = |Ehrv (k, s)|.

It is not hard to see that L(G) ≤ l(D(G)) and therefore it suffices to prove the
bound l(k) ≤ T (k + log∗ k + O(1)) for all k ≥ 2.

On the account of Lemma 3.4, we have

l(k, k) < 18

(

k

2

)

and
l(k, s) ≤ f(k, s + 1)(l(k, s + 1) + 10)

if s < k. We will use these relations along with the bounds of Lemma 3.2 for f(k, s).
Set g(x) = x2x+1. A simple inductive argument shows that

f(k, s) ≤ 2g(k−s)(9k2) and l(k, s) ≤ g(k−s)(9k2).

Since g(x) ≤ 4x, we have l(k, 0) ≤ T4(k + 2 + log∗ k) ≤ T (k + log∗ k + O(1)), where
T4 stands for the variant of the tower function built from 4’s instead of 2’s.

Remark 10.2 Theorem 10.1 generalizes to structures over an arbitrary vocabulary.
The proof requires only slight modifications.

We now observe that the relationship between the optimum quantifier rank and
length of defining formulas is nearly tight.

37

Theorem 10.3 There are infinitely many pairwise non-isomorphic graphs G with
L(G) ≥ T (D(G) − 6) − O(1).

Proof. The proof is given by a simple counting argument which can be naturally
presented in the framework of Kolmogorov complexity (applications of Kolmogorov
complexity for proving complexity-theoretic lower bounds can be found in [15]).

Denote the Kolmogorov complexity of a binary word w by K(w). Let 〈G〉 denote
the lexicographically first adjacency matrix of a graph G. Define the Kolmogorov
complexity of G by K(G) = K(〈G〉). Notice that

K(G) ≤ L(G) + O(1).

By Theorem 6.1, there is a graph Gn on n vertices with

D(Gn) < log∗ n + 5. (11)

The bound K(w) < k can hold for less than 2k words. It follows that for some
n ≤ 2k we have K(G) ≥ k for all graphs G on n vertices. For this particular n we
have

L(Gn) ≥ log n − O(1). (12)

Combining (11) and (12), we see that Gn is as required.

Of course, we could run the same argument directly with L(G) in place of K(G).
An advantage of using the Kolmogorov complexity is in avoiding estimation of the
number of formulas of length at most k.

In Section 5.1 we showed that prenex formulas are sometimes unexpectedly effi-
cient in defining a graph. We are now able to show that, nevertheless, they generally
cannot be competetive against defining formulas with no restriction on structure.
Let Dprenex(G) (resp. Lprenex(G)) denote the minimum quantifier rank (resp. length)
of a closed prenex formula defining a graph G.

Theorem 10.4 There are infinitely many pairwise non-isomorphic graphs G with
Dprenex(G) ≥ T (D(G) − 8).

Proof. Let G be as in Theorem 10.3. We have

Lprenex(G) ≥ L(G) ≥ T (D(G) − 6) − O(1).

On the other hand, by Lemma 2.4 we have

Lprenex(G) ≤ f(Dprenex(G)), where f(x) = O(x24x2

).

It follows that

Dprenex(G) ≥
(

1√
2
− o(1)

)

√

T (D(G) − 7) ≥ T (D(G) − 8),

provided D(G) (or the order of G) is sufficiently large.

38

11 Open questions

1. Let D′(G) be the minimum quantifier rank of a first order sentence distinguish-
ing a graph G from any non-isomorphic finite graph G′. Clearly, D′(G) ≤ D(G).
Can the inequality be sometimes strict?

2. Improve on the alternation number in Theorem 4.2. The most interesting case
is that of alternation number 0. By the Ramsey theorem, Turing machines cannot
be simulated by 0-alternation formulas as this would contradict the unsolvability of
the halting problem. Thus, an intriguing question is how small s0(n) and q0(n) can
be.

3. Classify the prefix classes with respect to solvability of the finite satisfiability
problem over graphs. Such a classification does exist by the Gurevich classifiability
theorem [1, section 2.3]. In particular, can the prefix ∃∗∀O(1)∃O(1)∀O(1) in Theorem
5.10 be shortened to ∃∗∀O(1)∃O(1)? Shortening to ∃∗∀∗ is impossible due to the
Ramsey theorem.

Note that for digraphs the complete classification is known (see [1] and references
there). In notation of Section 5.4, the minimal undecidable classes for Sat=

fin(D)
are ∀∗∃, ∀∃∀∗, ∀∃∀∃∗, ∀∃∗∀, ∃∗∀∃∀, ∃∗∀c+1∃, ∀c+1∃∗, while the maximal decidable
classes are ∃∗∀∗ and ∃∗∀c∃∗, where c = 1. For Satfin(D) the classification is the same
but with c = 2. If we consider Sat=(D) instead of Sat=

fin(D) and Sat (D) instead
of Satfin(D), nothing in classification changes. The reasons are that the maximal
decidable classes have the finite model property and that the undecidability of the
minimal undecidable classes is proved by reductions which preserve the finiteness of
models.

4. How close to one another are D1(G) and D0(G)? At least, are they recursively
linked? The same question for D(G) and Da(G) (any a = o(n) is of interest). How
far apart from one another can be D(G) and D1(G)?

5. Estimate the succinctness function q(n; C) for other classes of graphs (in par-
ticular, graphs of bounded degree, planar graphs).

6. Is q(n) a non-recursive function? Is D(G) an incomputable function of graphs
(T. Luczak)? Of course, the former implies the latter. The same can be asked for
qa(n) and Da(G) excepting a ∈ {0, 1/2} (see Theorem 5.8).

7. We know that q∗3(n) = (1 + o(1)) log∗ n. The cases of alternation number 0,
1, and 2 are open.

8. |q(n + 1) − q(n)| = O(1)? Note g(n + 1) − g(n) ≤ 1 but this difference is
negative infinitely often by Corollary 9.4.

9. Can one construct a family of graphs G as in Theorem 10.3 explicitly?

Acknowledgments

We thank Nikolai Vereshchagin for a useful discussion.

39

References

[1] E. Börger, E. Grädel, Y. Gurevich. The classical decision problem. Springer
(1997).

[2] J.-Y. Cai, M. Fürer, N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4):389–410 (1992).

[3] A. Church, W. Quine. Some theorems on definability and decidability. Journal
of Symbolic Logic 17:179–187 (1952).

[4] H.-D. Ebbinghaus, J. Flum. Finite model theory. Springer Verlag, 2nd rev. ed.
(1999).

[5] A. Ehrenfeucht. An application of games to the completeness problem for
formalized theories. Fundam. Math. 49:129–141 (1961).

[6] Y. Ershov, I. Lavrov, A. Taimanov, M. Taitslin. Elementary theories (In Rus-
sian). Uspekhi Matematicheskikh Nauk 20(4):37–108 (1965). English translation
in Russian Math. Surveys 20:35–105 (1965).

[7] R. Fräıssé. Sur quelques classifications des systems de relations. Publ. Sci.
Univ. Alger 1:35–182 (1954).

[8] M. Grohe. Isomorphism testing for embeddable graphs through definability. In:
Proc. of the 32nd ACM Ann. Symp. on Theory of Computing (STOC) 63–72
(2000).

[9] Y. Gurevich. Existential interpretation II. Archiv math. Logik u. Grundlagen-
forschung 22:103–120 (1982).

[10] N. Immerman. Descriptive complexity. Springer-Verlag (1999).

[11] L. Kálmar. Zurc̈kfürung des Entscheidungsproblems auf den Fall von Formeln
mit einer einzigen, binären Funktionsvariablen. Compositio Mathematica 4:137–
144 (1936).

[12] J. H. Kim, O. Pikhurko, J. Spencer, O. Verbitsky. How complex are random
graphs in first order logic? Submitted (2003). Available at
http://arxiv.org/abs/math.CO/0401247

[13] S. C. Kleene. Mathematical logic. John Wiley & Sons (1967).

[14] I. Lavrov. Effective inseparability of the sets of identically true and finitely
refutable formulae for certain elementary theories (In Russian). Algebra i logika
2(1):5–18 (1963).

[15] M. Li, P. M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. 2nd edition, Addison-Wesley (1997).

40

[16] E. Mendelson. Introduction to mathematical logic. D. Van Nostrand Company
(1963).

[17] O. Ore. Theory of graphs. American Mathematical Society (1962).

[18] E. Pezzoli. Computational complexity of Ehrenfeucht-Fräıssé games on finite
structures. In: Proc. of the CSL’98 Conf., G. Gottlob, K. Seyr Eds. Lecture
Notes in Computer Science 1584, Springer-Verlag, 159–170 (1999).

[19] O. Pikhurko, H. Veith, and O. Verbitsky. The first order definability of graphs:
Upper bounds for quantifier ranks. Submitted (2003). Available at
http://arxiv.org/abs/math.CO/0311041

[20] O. Pikhurko, O. Verbitsky. Descriptive complexity of finite structures: saving
the quantifier rank. Submitted (2003). Available at
http://arxiv.org/abs/math.LO/0305244

[21] M.O. Rabin. Decidability of second order theories and automata on infinite
trees. Trans. of the AMS 141:1–35 (1965).

[22] F. Ramsey. On a problem of formal logic. Proc. of the London Math. Soc. 2-nd
series, 30:264–286 (1930).

[23] H. Rogers. Certain logical reductions and decision problems. Annals of Math.
64:264–284 (1956).

[24] J. Spencer. The strange logic of random graphs. Springer Verlag (2001).

[25] B. Trakhtenbrot. The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR 70:596–572 (1950). English translation
in: AMS Transl. Ser. 2 23:1–6 (1963).

[26] R. Vaught. Sentences true in all constructive models. Journal of Symbolic Logic
25:39–58 (1960).

41

