Internal Note \#032
Computational Logic Inc.
July 11, 1988

A Counterexample to the 0-1 Law

 for Existential Monadic Second-Order LogicMatt Kaufmann

A Counterexample to the 0-1 Law for Existential Monadic Second-Order Logic
Matt Kaufmann
Computational Logic, Inc.
1717 W. Sixth Street, Suite 290
Austin, TX 78703

For any sentence ϕ of any logic and any $n>0$, one may define the $\mathbf{n}^{\text {th }}$ probability of ϕ to be the fraction of structure for the vocabulary of ϕ with universe $\{0,1, \ldots, \mathbf{n} \mathbf{1}\}$ which satisfy ϕ. The the limit probability of ϕ is the limit of the $n^{\text {th }}$ probability of ϕ as n goes to infinity, which may or may not exist. Fagin [1] and independently Glebskii, Kogan, Liogon'kii, and Talanov [2] proved that the limit probability of a first-order sentence is always 0 or 1 . In the paper [3] it was shown that this " $0-1$ law" fails badly for monadic second-order logic, i.e. that part of second-order logic in which the only second-order quantifiers are over unary relations (though a vocabulary may still contain relation symbols of any finite arity). In this note we show that this law still fails when one further restricts the logic to extend first-order logic only by allowing formulas of the form $\left(\exists P_{1}\right) \ldots\left(\exists P_{n}\right) \phi$ where ϕ is first-order, which we will refer to as existential monadic second-order logic.

Acknowledgements. I thank Phokion Kolaitis for bringing the question for existential monadic second-order logic to my attention.

Theorem 1. There is a sentence of existential monadic second-order logic which has no limit probability.

Theorem 2. For every rational number \mathbf{r} in the interval $[0,1]$ there is a sentence of existential monadic second-order logic which has limit probability r.

The main lemma for the proofs of these theorems will be the following, whose proof we'll defer for the moment.

Main Lemma. There is a first-order formula $\phi(\mathbf{x}, \mathbf{y})$ in a vocabulary which includes a sequence of unary relation symbols $\overline{\mathbf{P}}$ such that the following sentence has limit probability 1 :
$(\exists \bar{P}) \quad " \phi(x, y)$ defines a linear order of the universe"

Given the Main Lemma, we may prove the theorems as follows. For the first, we simply use the following sentence, where ϕ is as in the Main Lemma. Notice that it simply says of a finite structure that its universe has an odd number of elements.
$(\exists \bar{P}) \quad(\exists \mathrm{Q})$
[" $\phi(x, y)$ defines a linear order of the universe such that Q contains every other element, including the first and last"]

Now notice that we can get a sentence of limit probability $1 / 2$ simply by modifying this sentence to say that \mathbf{Q} contains every other element of the restriction of this linear order to an arbitrary set \mathbf{s} (here \mathbf{s} is a unary relation symbol of the vocabulary), including the first and last elements of \mathbf{s}. The extension of this idea to complete the proof of the second theorem is simple; given a fraction \mathbf{p} / \mathbf{q}, simply say that for some \mathbf{Q} contained in \mathbf{s}, \mathbf{Q} contains every $\mathbf{q}^{\text {th }}$ element of \mathbf{s} starting with the first, and there are exactly p elements left over at the end. We omit the details of showing that the limit probability is indeed p/q.

To prove the Main Lemma we start with some notation and definitions regarding the notion of coding subsets.

Definitions. Let A and B be subsets of a structure ($C ; R, \ldots$), where R is binary (and we also use R for the symbol that it interprets).
(i) For $\mathbf{b} \in \mathbf{B}$, we say that $\mathbf{b} \mathbf{R}$-codes $\{\mathbf{a} \in \mathbf{A}$: <a,b> $\in \mathbf{R}\}$ with respect to \mathbf{A}. (We omit the "with respect to" part when it is clear from context, which is always, and we also say "codes" in place of "R-codes" when \mathbf{R} is clear from context or unimportant to specify.)
(ii) We say that \mathbf{B} codes distinct subsets of \mathbf{A} if no two elements of \mathbf{B} code the same subset of \mathbf{A}.
(iii) We say that \mathbf{B} codes the power set of \mathbf{A} if \mathbf{B} codes distinct subsets of \mathbf{A} and moreover every subset of \mathbf{A} is coded by an element of \mathbf{B}.

The following lemma shows that the power set of a small enough set is probably coded.

Lemma 1. If $\mathbf{S} \subseteq \mathbf{T} \subseteq \mathbf{A}$, where $(\mathbf{A} ; \mathbf{R}, \ldots$) is a finite structure, and if $|\mathbf{T}| \geq|\mathbf{S}|$ ${ }_{2}|\mathbf{s}|$ then with limit probability 1 , some subset of \boldsymbol{T} codes the power set of \mathbf{S}.

Proof. It is enough to show that with probability 1, every subset of \mathbf{s} is coded by an element of \mathbf{T}. The probability of failure is less than or equal to the sum over all subsets \mathbf{S}^{\prime} of \mathbf{S} of the probability that \mathbf{S}^{\prime} is not coded by an element of \mathbf{T}. This individual probability is the product over all elements t of T of the (independent) probabilities that t does not code s^{\prime}, each of which is ($1-1 / 2|s|$). Thus, the probability of failure is at most

$$
2|s| \cdot(1-1 / 2|s|)|s| \cdot 2|s|
$$

But the second factor is asymptotic with $1 / \mathrm{e}|\mathrm{s}|$, so the limit is 0 . - |

Lemma 2. Suppose that \boldsymbol{S} and \boldsymbol{T} are subsets of a structure ($\mathbf{A} ; \mathbf{R}, \mathbf{S}, \mathbf{T}, \ldots$) in which which \boldsymbol{T} codes distinct subsets of \boldsymbol{S} and such that there is a first-order definable total order < on S. Then there is a first-order definable total order on \mathbf{T}. In fact, this definition is constructible from the given definition of < (independently of the particular choice of \mathbf{S} and \mathbf{T}).

Proof. One simply uses the lexicographic order on $\boldsymbol{\tau}$ (viewed as a family of subsets of \mathbf{S}). That is, define a total order \ll on \mathbf{T} as follows: $\mathbf{x} \ll \boldsymbol{y}$ if and only if $\mathbf{x} \neq \mathbf{y}$ and for a equal to the <-least member of the symmetric difference of the sets coded by \mathbf{x} and $\mathbf{y}, \mathbf{a} \notin \mathbf{x}$. -

Lemma 3. Let R be an arbitrary binary relation on $\{0,1, \ldots, \mathbf{k}-1\}$, and let n be an integer greater than $\mathbf{k}^{\mathbf{2}} \cdot \mathbf{4}^{\mathbf{k}}$. Let \mathbf{p} be the probability that some substructure of a random model of the form (\{0,...,n-1\}; \mathbf{R}^{\prime}) contains an isomorphic copy of $(\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}, \mathrm{R})$. Then p approaches 1 as \mathbf{k} approaches infinity (uniformly over such \mathbf{n}).

Proof. Imagine that one tries to build the requisite isomorphic embedding as follows. Let $\mathbf{a}=\mathbf{k} \cdot \mathbf{4}^{\mathbf{k}}$. Partition the universe into \mathbf{k} pieces each of size \mathbf{a} (plus possibly one extra piece containing all elements left over, since \mathbf{n} may exceed $\mathbf{a} \cdot \mathbf{k}$). At each stage $\mathbf{i}<\mathbf{k}$, attempt to extend the embedding by mapping \mathbf{i} to some element of the $i^{\text {th }}$ piece of the partition. Then the probability of failure is bounded above by the sum over i of the probabilities that there is no element of the $i^{\text {th }}$ piece which lies in the appropriate relation to the $\mathbf{i}-1$ elements of the range so far. The $\mathbf{i}^{\text {th }}$ such probability is (1 - $\left.1 / \mathbf{4}^{\mathbf{i - 1}}\right)^{\text {a }}$. Hence the probability of failure is bounded above by $\mathbf{k}\left(\mathbf{1}-\mathbf{1 / 4} \mathbf{4}^{\mathbf{k}}\right.$. Recalling that $\mathbf{a}=\mathbf{k} \cdot \mathbf{4}^{\mathbf{k}}$, it is easy to see that this bound approaches 0 as \mathbf{k} approaches infinity. -|

Proof of Main Lemma. Fix a structure $\left(A ; R, R_{0}, R_{1}, R_{2}\right)$, and pick \mathbf{k} greatest such that $|\mathbf{A}| \geq \mathbf{2}^{\mathbf{k}} \cdot \mathbf{2}^{\mathbf{2}^{\mathbf{k}}}$. By Lemma 3, we may (with limit probability 1) choose $\mathrm{P}_{0} \subseteq \mathbf{A}$ of power \mathbf{k} such that the restriction of \mathbf{R} to \mathbf{P}_{0} is a total order. (Notice that $\mathbf{2}^{\mathbf{2}^{\mathbf{k}}}$ exceeds $\mathbf{k}^{\mathbf{2}} \cdot \mathbf{4}^{\mathbf{k}}$ for sufficiently large \mathbf{k}.) Next, by Lemma 1, we may (with limit probability 1) choose $\mathbf{P}_{1} \subseteq \mathbf{A}$ which \mathbf{R}_{0}-codes the power set of \mathbf{P}_{0}, and then $\mathbf{P}_{\mathbf{2}} \subseteq \mathbf{A}$ which R_{1}-codes the power set of \mathbf{P}_{1}. Since $|\mathbf{A}|<2^{\mathbf{k + 1}} \cdot \mathbf{2}^{2^{k+1}}$, an easy calculuation shows that with limit probability $1, \mathbf{A} \mathbf{R}_{\mathbf{2}}$-codes distinct subsets of $\mathbf{P}_{\mathbf{2}}$. To summarize: If we let \mathbf{P}_{3} be \mathbf{A}, then we have that $\mathbf{P}_{\mathbf{i + 1}} \quad \mathbf{R}_{\mathbf{i}}$-codes distinct subsets of $\mathbf{P}_{\mathbf{i}}$ for $\mathbf{i}=0,1,2$. Thus by successive application of Lemma 2, there is a formula in the vocabulary $\left\{R_{1}, R_{0}, R_{1}, R_{2}, P_{0}, P_{1}, P_{2}\right\}$ (not depending on the particular choices of the sets P_{i}) which defines a total order of the universe, and this is the desired formula $\phi(\mathbf{x}, \mathbf{y})$. -

A Counterexample to the 0-1 Law for Existential Monadic Second-Order Logic Internal Note \#032

References

[1] Fagin, R., "Probabilities on Finite Models", J. Symbolic Logic, Vol. 41, 1976, pp. 50-58.
[2] Y. V. Glebskii, D. I. Kogan, M. I. Liogon'kii and V. A. Talanov, "Range and Degree of Realizability of Formulas in the Restricted Predicate Calculus", Cybernetics, Vol. 5, 1969, pp. 142-154 (translated 1972).
[3] Kaufmann, M. and Shelah, S., "On Random Models of Finite Power and Monadic Logic", Discrete Mathematics, Vol. 54, 1985, pp. 285-293.

