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Abstract

This document comprises miscellaneous notes on various logical topics,
particularly concerned with decision problems.
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1 The Hintikka-Fraı̈ssé Game Normal Form
We give an account of the game normal form largely following [3]. L is some
first-order language with a finite signature, i.e., L has only finitely many constant,
function and predicate symbols. We take⊥, ¬, ∧, ∨, ∀, ∃ as the logical primitives
and assume that implication and bi-implication are defined in the standard way.
Define the quantifier rank qr(ψ) of a formula ψ by induction on the structure of ψ
as follows:

qr(ψ) = 0 if ψ is atomic or ⊥
qr(¬ψ) = qr(ψ)

qr(ψ1 ∧ ψ2) = qr(ψ1 ∨ ψ2) = max{qr(ψ1), qr(ψ2)}
qr(∃x· ψ) = qr(∀x· ψ) = qr(ψ) + 1

A formula φ of L is said to be unnested if function symbols only appear in
subterms of the form y = f(x1, . . . , xn) and constant symbols only appear in
subterms of the form y = c where f is a function symbol, c is a constant symbol
and y and the xi are variables. At the expense of introducing additional quantifiers,
any formula may be converted into a logically equivalent unnested formula with
the same free variables.

We write v1, v2, . . . for some fixed enumeration of the variables of L. Writing
frees(φ) for the set of free variables of a formula φ, define for n ∈ N:

Φ(n) = {φ ∈ L | φ is atomic ∧ φ is unnested ∧ frees(φ) ⊆ {v1, . . . , vn}}.

Then define index sets Xn,r for n, r ∈ N:

Xn,0 = P(Φ(n));
Xn,r+1 = P(Xn,r).

Since L has a finite signature, the sets Xn,r are all finite. We assume given an
effective encoding of L as natural numbers and an effective total ordering of L.
If ψi is any set of formulas indexed by some non-empty finite set I ,

∨
i∈I ψi and∧

i∈I ψi denote the formulas ψi1∨. . .∨ψik and ψi1∧. . .∧ψik respectively where the
ij enumerate the elements of I so that the ψij are listed in order without repetition.
If I is empty,

∨
i∈I ψi and

∧
i∈I ψi denote ⊥ and ¬⊥ respectively.

Define functions γn,r : Xn,r → L for n, r ∈ N (with the argument written as
a subscript) such that for i ∈ Xn,0 = Φ(n) and j ∈ Xn,r+1:

γn,0i =
∧
φ∈i

φ ∧
∧

φ∈Φ(n) \ i

¬φ;
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γn,r+1
j = (

∧
J∈j

∃vn+1· γn+1,r
J ) ∧ (∀vn+1·

∨
J∈j

γn+1,r
J ).

So frees(γn,ri ) ⊆ {v1, . . . , vn} and qr(γn,ri ) = r. We call these formulas γn,ri game
normal atoms. If K is a structure for L and i ∈ Xn,r, write Kn,r

i for the subset of
Kn defined by the formula γn,ri . The following lemma says that, for given n and
r, the non-empty Kn,r

i form a partition of Kn.

Lemma 1 For any structure K for L and any n, r ∈ N, we have

(a) K |=
∧

i,j∈Xn,r

i 6=j

∀v1 . . . vn· ¬(γn,ri ∧ γ
n,r
j )

(b) K |= ∀v1 . . . vn·
∨

i∈Xn,r

γn,ri

Proof: Induction on r: when r = 0 the matrix of the universally quantified for-
mula in both (a) and (b) is an instance of a propositional tautology. So assume
r > 0. For (a), it suffices to consider the case where i \ j 6= {} so that there is
an I ∈ i with I 6∈ j; by the inductive hypothesis, under any given interpretation
of v1, . . . , vn in K, ∃vn+1· γn+1,r

I and ∀vn+1·
∨
J∈j γ

n+1,r
J cannot both be satis-

fied, but γn,ri implies the former and γn,rj implies the latter so γn,ri ∧ γ
n,r
j cannot

hold. For (b), given an interpretation of v1, . . . , vn in K we have to find an i
such that γn,ri holds; let i be the set of I ∈ Xn+1,r such that ∃vn+1· γn+1,r

I holds;
then evidently

∧
I∈i ∃vn+1·γn+1,r

I holds while ∀vn+1·
∨
I∈i γ

n+1,r
I follows from the

inductive hypothesis; but the conjunction of these two formulas is γn,ri . .
We say a formula is game normal or in game normal form if it has the form∨

i∈I γ
n,r
i for some n, r ∈ N and I ⊆ Xn,r. We refer to n and r as the arity

and rank of the game normal formula respectively. We assume given an effective
encoding of the elements of the index sets Xn,r as natural numbers.

The following theorem says that every formula is logically equivalent to one
in game normal form.

Theorem 2 (Game Normal Form) There is primitive recursive algorithm which,
given an unnested formula ψ of L with frees(ψ) ⊆ {v1, . . . , vn} and qr(ψ) = r
finds n′ ≤ n, r′ ≤ r and a subset I of Xn′,r′ such that in any structure K for L
one has:

K |= ψ ⇔
∨
i∈I

γn
′,r′

i .
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Proof: Let us call a formula tiered if each subformula of the form ∃vp·χ or ∀vp·χ
has the property that frees(χ) ⊆ {v1, . . . , vp}. Consider the primitive recursive
function V : N× L → L defined as follows:

V(p, χ) = χ if χ is atomic
V(p,¬χ) = ¬V(p, χ)
V(p, χ ∨ ρ) = V(p, χ) ∨ V(p, ρ)
V(p, χ ∧ ρ) = V(p, χ) ∧ V(p, ρ)
V(p,∃vq· χ) = ∃vr· (V(r + 1, χ)[vr/vq]) where r = max{p, q}
V(p,∀vq· χ) = ∀vr· (V(r + 1, χ)[vr/vq]) where r = max{p, q}

Note that no renaming of bound variables is required when the substitution is
performed in calculating V(r + 1, χ)[vr/vq]. Thus if ψ is the input formula and
m = max{q | q = 0 ∨ vq ∈ frees(ψ)}, then V(m + 1, ψ) is a tiered formula that
is logically equivalent to ψ. Our first step is to replace ψ by V(m + 1, ψ) and
from then on we will work exclusively with tiered formulas. We next replace all
subformulas of the form ∀x· χ by ¬∃x· ¬χ.

From the definition of the γm,0K , the following bi-implication, where φ ∈ Φ(m)
and m ∈ N, is a propositional tautology and hence holds in any structure.

φ ⇔
∨

K∈Xm,0

φ∈K

γm,0K

(1)

We now use (1) to replace each atomic subformula of ψ by an equivalent formula
in game normal form taking m as small as possible in each case. Note that the
game normal atoms are tiered so the resulting formula will be tiered.

We now have a formula that is constructed from game normal atoms using the
propositional connectives and the existential quantifier. We reduce this to game
normal form using a system of rules each based on one or more bi-implications
defined in primitive recursive schemata. These are used as left-to-right rewrite
rules possibly conditional on a primitive recursive test on the subformula being
rewritten. For each rule there is a primitive recursive numeric measure of the
formula that decreases when the rule is applied and that is not increased by any
other rule. This means that the overall process is a primitive recursive function of
the original formula.

We now list the rules and the measures according to the form of the subformula
type rule deals with. The bi-implications used in each rule are easily seen to
be valid in any structure for L using lemma 1 and the definitions of the game
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normal atoms as necessary. Note that there is no rule for universal quantification,
because the only universal quantifiers in the formula are inside subformulas that
are already in game normal form. Once a subformula is in game normal form,
its subformulas are never rewritten, but a rule may eliminate or replace it or an
enclosing formula.

¬-gnf: The bi-implication is the following where m, q ∈ N and I ⊆ Xm,q:

¬
∨
a∈I

γm,qa ⇔
∨

a∈Xm,q \ I

γm,qa (2)

The measure is the number of negations appearing outside a game normal
subformula.

gnf-∨-gnf: For a disjunction between formulas in game normal form with the
same arity and rank, the bi-implication is the following, where m, q ∈ N and
I, J ⊆ Xm,q: ∨

a∈I

γm,qa ∨
∨
b∈J

γm,qb ⇔
∨

a∈I∪J

γm,qa (3)

To avoid an infinite regress, this is not to be used if the left-hand side is already
in game normal form. For a disjunction between formulas in game normal form
where the arities or ranks do not agree we use the following bi-implications, where
m, q ∈ N and j ∈ Xm,q:

γm,qj ⇔
∨

a∈Xm+1,q \Xm,q

γm+1,q
a∪j (4)

γm,qj ⇔ γm,q+1
{j} (5)

These are used only as needed to make the arities and ranks agree.
The measure is the number of disjunctions appearing outside a game normal

subformula.

gnf-∧-gnf: For a conjunction between formulas in game normal form with the
same arity and rank, the bi-implication is the following, where m, q ∈ N and
I, J ⊆ Xm,q:
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∨
a∈I

γm,qa ∧
∨
b∈J

γm,qb ⇔
∨

a∈I∩J

γm,qa (6)

As in the case of disjunction, (4) and (5) are used as necessary to make the arities
and ranks agree.

The measure is the number of conjunctions appearing outside a game normal
subformula.

∃-∨: For an existentially quantified disjunction, the bi-implication is the follow-
ing:

(∃x· χ ∨ ρ) ⇔ (∃x· χ) ∨ (∃x· ρ) (7)

The measure is the sum over all existentially quantified subformulas of the
number of disjunctions in the matrix that appear outside a game normal subfor-
mula.

∃-gnf: For an existentially quantified formula with bound variable vm for some
m ∈ N and a matrix that is a game normal atom γm

′,q
i for some m′, q ∈ N and

i ∈ Xm+1,q. If vm 6∈ frees(γm
′,q

i ) we use the following bi-implication, valid
whenever x 6∈ frees(χ):

(∃x· χ) ⇔ χ (8)

If vm ∈ frees(γm
′,q

i ), then, as the formula is tiered, we must have m′ = m > 0 and
then we use the following bi-implication:

(∃vm· γm,qi ) ⇔
∨

K∈Xm−1,q+1

i∈K

γm−1,q+1
K (9)

The measure is the number of existential quantifiers appearing outside a game
normal subformula.

That completes the list of rules and measures. Clearly all of these rules trans-
form a tiered formula constructed from game normal atoms using the proposi-
tional connectives and the existential quantifier into a formula of the same kind.
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It is easy to see by induction on the construction of such a formula that each mea-
sure is primitive recursive and is decreased by application of the corresponding
rule and is not increased by application of any of the other rules. Moreover if
none of the of the rules is applicable, as will be the case when the algorithm ter-
minates, the result will be in game normal form with arity n′ ≤ n and rank r′ ≤ r
and I , n′ and r′ may be read off from it.
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2 Skolem’s Decision Procedure for Algebras of Sets
S is the language of Skolem’s Klassenkalkül [4]. S has a constant symbol ∅, a
unary function symbol ∼, binary function symbols ∪ and ∩ and a binary relation
symbol ⊆. Given any set X , let P(X) be the structure for S in which the domain
is the power set PX , in which ∅, ∪, ∩ and ∼ are interpreted as the usual set-
theoretic operations (∼ being complementation relative to X , ∼a = X \ a) and
in which ⊆ is interpreted as the subset relation. We call X the universe of the
structure and we write U for ∼∅, so that U denotes the universe. We will give
a quantifier elimination procedure for an expansion S ′ of S that adds for each
n ∈ N, a unary relation symbol Ln intended to be interpreted so that Ln(a) holds
iff a has at least n elements. S ′ is a definitional expansion of S since we have:

L0(a) ⇔ ∅ = ∅
Ln+1(a) ⇔ ∃b· ∅ 6= b ⊆ a ∧ Ln(a ∩ ∼b)

Note that in the structure P(X), L0(a) is always true: L0 is provided only to make
the notation uniform.

If a1, . . . ak is any list of pairwise distinct variables and I ⊆ {1, . . . , k}, define
the term aI of S ′ as follows:

aI =
( ⋂
i∈I

ai
)
∩
( ⋂
i 6∈I

∼ai
)
.

In any structure P(X), aI ∩ aJ = ∅ holds unless I = J . Using de Morgan’s laws
one has that if t is a term of S ′ with frees(t) = {a1, . . . , ak}, there is a unique
index set U ⊆ P{1, . . . , k} such that the following equation holds in P(X) for
any X:

t =
⋃
I∈U

aI

(where we ensure that each summand contains all the free variables using a =
(a ∩ b) ∪ (a ∩ ∼b) as necessary). Here, by convention,

⋃
I∈∅ aI means ∅. Also

when U = P{1, . . . , k}, we can further simplify to get t = U. We call the result
the disjunctive normal form of t; it can clearly be effectively calculated from t.

It will be convenient to define #(X) to be |X| if X is finite and to be the
symbol∞ otherwise. We order and add elements of N ∪ {∞} in the usual way.

Theorem 3 There is an effective quantifier elimination procedure for S ′, i.e., an
effective procedure that calculates for each formula φ a quantifier-free formula
φqf with the same free variables such that φ ⇔ φqf holds in every structure
P(X).
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Proof: By standard arguments for a quantifier elimination process, it is enough to
show that if ψ is a quantifier-free formula with frees(ψ) = {a1, . . . , ak}, then
∃ak· ψ is equivalent to a quantifier-free formula. The following hold for any
a, b, c ∈ PX:

a = b ⇔ a ⊆ b ∧ b ⊆ a
a ⊆ b ⇔ ¬L1(a ∩ ∼b)

Ln((a ∩ c) ∪ (b ∩ ∼c)) ⇔
n∨

m=0

(Lm(a ∩ c) ∧ Ln−m(b ∩ ∼c))

After putting all terms in ψ in disjunctive normal form, we may use the above
equivalences to reduce to the case where the atomic predicates in ψ are all of the
form Ln(∅), Ln(U) or Ln(aI) for I ⊆ {1, . . . , k}. After putting ψ in disjunctive
normal form, moving quantifiers through disjunctions and moving out conjuncts
with no occurrence of ak, we may further assume that ψ is a conjunction of literals
Ln(aI) and ¬Ln(aI).

There are now two cases to consider.
Case (i) k = 1: if ak = a1 is its only free variable, ψ is a conjunction of

literals of the form Ln(a), ¬Ln(a), Ln(∼a) and ¬Ln(∼a), i.e., ψ comprises sets of
lower and upper bounds on the sizes of the sets a1 and ∼a1. E.g., if ψ contains
the conjunct ¬L4(∼a1), then ψ imposes the upper bound #(∼a1) ≤ 3. Let L0

and U0 (resp. L1 and U1) be the sets of lower and upper bounds that ψ imposes on
a (resp. ∼a). Let lp = max({0} ∪ Lp), up = min({∞} ∪ Up), p = 0, 1. ψ then
holds iff the following constraints on the sizes of a1 and ∼a1 are satisfied:

l0 ≤ #(a1) ≤ u0

l1 ≤ #(∼a1) ≤ u1.

Let l = l0 + l1 and u = u0 + u1. If, either l0 > u0 or l1 > u1, then the constraints
are unsatisfiable and ∃a1· ψ is equivalent to ¬L0(∅). If l0 ≤ u0, l1 ≤ u1 and
u = ∞, then the constraints are satisfiable providing the universe has at least l
elements and so ∃a1· ψ is equivalent to Ll(U). Finally, if l0 ≤ u0, l1 ≤ u1 and
u < ∞, then the constraints are satisfiable providing the universe has at least l
elements and at most u elements and so ∃a1·ψ is equivalent to Ll(U)∧¬Lu+1(U).

Case (ii) k > 1: In this case, by grouping together the literals Ln(aI) and
¬Ln(aI) where J ⊆ {1, . . . , k− 1} and I = J or I = J ∪ {k}, we find that there

9



are sets Jpq ⊆ N, p, q = 0, 1, such that we have the following logical equivalence:

∃ak· ψ ⇔ ∃ak·
∧

J⊆{1,...,k−1}


∧
n∈J00 Ln(aJ ∩ ak)

∧
∧
n∈J10¬Ln(aJ ∩ ak)

∧
∧
n∈J01 Ln(aJ ∩ ∼ak)

∧
∧
n∈J11¬Ln(aJ ∩ ∼ak)


Let χ be the formula on the right-hand side of the above formula then, I claim that
in P(X) we have

χ⇔
∧

J⊆{1,...,k−1}

∃ak·


∧
n∈J00 Ln(aJ ∩ ak)

∧
∧
n∈J10¬Ln(aJ ∩ ak)

∧
∧
n∈J01 Ln(aJ ∩ ∼ak)

∧
∧
n∈J11¬Ln(aJ ∩ ∼ak)

 .

For the left-to-right direction is trivial, while, if xJ is a witness for the existential
formula forming the conjunct indexed by J on the right-hand side, then so is
aJ ∩ xJ , and then, as the aJ are pairwise disjoint,

⋃
J(aJ ∩ xJ) is a witness for χ.

So we may assume that for given J ⊆ {1, . . . , k − 1}, ψ is a conjunction of
literals Ln(aJ ∩ ak), ¬Ln(aJ ∩ ak), Ln(aJ ∩ ∼ak) and ¬Ln(aJ ∩ ∼ak). I.e., ψ
comprises sets of lower and upper bounds on the sizes of the sets aJ ∩ ak and
aJ ∩ ∼ak. As in case (i), we can now compute l0, u0, l1, u1 ∈ N ∪ {∞} such that
ψ is equivalent to the following constraints on the sizes of these sets:

l0 ≤ #(aJ ∩ ak) ≤ u0

l1 ≤ #(aJ ∩ ∼ak) ≤ u1.

And then, writing l = l0 + l1 and u = u0 + u1, we see as in case (i) that if either
l0 > u0 or l1 > u1 then ∃ak· ψ is equivalent to ¬L0(∅), while otherwise it is
equivalent to Ll(aJ) if u =∞ or to Ll(aJ) ∧ ¬Lu+1(aJ) if u <∞.

IfC is a set whose elements are cardinals or the symbol∞, we write SC for the
set of sentences of S that are valid in P(X) whenever the universe X has either
|X| ∈ C or #(X) ∈ C. We write S∞ for S{∞}, the set of sentences valid over all
infinite universes. Part (ii) of the following corollary implies that if a sentence φ
fails to hold over some universe, then it fails to hold over some finite universe.

Corollary 4 (i) If C ⊆ N∪{∞} is recursive and #(C) is given, SC is decidable.
(ii) If κ is any infinite cardinal, S∞ = S{κ} =

⋃
n∈N S

{m:N|m≥n}.

Proof: Given a sentence φ ∈ S , the theorem gives us a quantifier-free formula
φqf ∈ S ′ equivalent to φ in P(X) for any X . As in the proof of the theorem,
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we can take φqf to be a conjunction of literals of the form Ln(∅), ¬Ln(∅), Ln(U)
and ¬Ln(U), i.e. in P(X), φqf comprises sets of lower and upper bounds on
#(∅) and #(X). We can therefore find l, u ∈ N ∪ {∞} such that φqf holds iff
l ≤ #(X) ≤ u, since, if the bounds on #(∅) = 0 are consistent, then they can be
ignored, while if not, then we can take l > u. As φqf and φ are equivalent, and φqf
holds iff the universe X has l ≤ #(X) ≤ u, we have φ ∈ SC iff C ⊆ {l, . . . , u}.
Given #(C), it is an easy exercise to give an algorithm to decide this, completing
the proof of (i).

For (ii), note that each of φqf ∈
⋃
n∈N S

{m:N|m≥n}, φqf ∈ S{κ} and φqf ∈ S∞

is equivalent to u =∞.
The proof of the theorem and part (i) of the corollary go through almost un-

changed if we add to S ′ a unary predicate symbol L∞ whose intended interpreta-
tion is such that L∞(a) holds iff a is infinite.

For later use, we define the following shorthand:

Part(a1, . . . , an) :=
n⋃
i=1

ai = U ∧
n−1∧
i=1

n∧
j=i+1

ai ∩ aj = ∅

so that Part(a1, . . . , an) holds iff the ai comprise a partition of the universe into n
pairwise disjoint sets.
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3 The Feferman-Vaught Theorem
Let Ki be a family of structures for a first order language L with i ranging over
some index set I . The direct product

∏
i∈I Ki is a structure for L whose domain

is the set-theoretic product
∏

i∈I domKi, so that an element in the direct product
is a function X : I →

⋃
i∈I domKi, such that X(i) ∈ domKi for all i in I . The

function symbols of L are interpreted pointwise: if f is an n-place function sym-
bol, f(X1, . . . , Xn)(i) = f(X1(i), . . . , Xn(i)) (where, by abuse of notation, the
first f is the interpretation of f in the product and the second is its interpretation
in the i-th factor); similarly, if R is an n-place relation symbol, R(X1, . . . , Xn)
holds in the direct product iff R(X1(i), . . . , Xn(i)) holds in Ki for all i ∈ I; if c is
a constant symbol c is interpreted in the direct product so that its i-th component
c(i) is the interpretation of c in Ki.

If θ(x1, . . . , xn) is a formula of L and X1, . . . , Xn are elements of the direct
product

∏
i∈I Ki, the boolean value of θ(X1, . . . , Xn) is written ||θ(X1, . . . , Xn)||

and is defined by ||θ(X1, . . . , Xn)|| = {i ∈ I | Ki |= θ(X1(i), . . . , Xn(i))}. Thus
θ(X1, . . . , Xn) holds in the direct product iff ||θ(X1, . . . , Xn)|| = I . We can now
state the Feferman-Vaught theorem:

Theorem 5 Let L be any first-order language and let S be the language of the
algebra of sets. There is primitive recursive function that associates with each
formula ζ(x1, . . . , xk) ∈ L a formula Φ(a1, . . . , ap) of S and a list of formulas
ζ1(x1, . . . , xk), . . . , ζp(x1, . . . , xk) such that for any list X = (X1, . . . , Xk) of
elements of the direct product

∏
i∈I Ki the following are equivalent:

(i)
∏
i∈I

Ki |= ζ(X)

(ii) P(I) |= Φ(
∣∣∣∣ζ1(X)

∣∣∣∣ , . . . , ∣∣∣∣θp(X)
∣∣∣∣)

Proof: Table 1 on page 14 illustrates the algorithm described in the following
proof when ζ the sentence ∃x y·x � y∧ y � x (with a slight optimisation that we
will discuss after the proof).

Let us call a sequence (Φ, ζ1, . . . , ζp) with the stated property a determining
sequence for ζ . We first note that if (Ψ, η1, . . . , ηq) is a determining sequence for
η, then we can always arrange for the ηi to be exhaustive and mutually exclusive.
To do this, let r = 2q, enumerate the subsets of {1, . . . , q} as A1, . . . , Ar, let
Bi := {j | i ∈ Aj}, i = 1, . . . , q, and define:

Ω := Ψ(
⋃
i∈B1

ai, . . . ,
⋃
i∈Bq

ai)

θi :=
∧
i∈Ai

ηi ∧
∧
i∈{1,...,q} \Ai

¬ηi i = 1, . . . , r.
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Then (Ω, θ1, . . . , θr) is also a determining sequence for η and, since
∨r
i=1 θi and∧r−1

i=1

∧r
j=i+1 ¬(θi ∧ θj) are both propositional tautologies, the θi are exhaustive

and mutually exclusive.
If ζ is atomic then it is immediate from the definitions that (a1 = U, ζ) is a de-

termining sequence for ζ . It is also easily verified that if ζ is¬η and (Ψ, η1, . . . , ηq)
is a determining sequence for η, then (¬Ψ, η1, . . . , ηq) is a determining sequence
for ζ and that if ζ is η ◦ θ where ◦ is any binary propositional connective and
if (Ψ, η1, . . . , ηq) and (Ω, θ1, . . . , θr) are determining sequences for η and θ then
(Ψ ◦ Ω(aq+1, . . . , aq+r), η1, . . . , ηq, θ1, . . . , θr) is a determining sequence for ζ . If
ζ has the form ∀x· η, we treat it in the same way as ¬∃x· ¬η.

It remains to consider the case when ζ has the form ∃x· η. In this case, we
can assume that it has the form ∃xk+1· η(x1, . . . , xk+1) and, by induction and the
remarks above, that (Ψ, η1, . . . , ηq) is a determining sequence for η, where the ηi
are exhaustive and mutually exclusive. I claim that, if we define:

Φ := ∃b1 . . . bq·
∧q
i=1 bi ⊆ ai ∧ Part(b1, . . . , bq) ∧Ψ(b1, . . . , bq)

ζi := ∃xk+1· θi i = 1, . . . , q

then (Φ, ζ1, . . . , ζq) is a determining sequence for ζ . By induction, ifX1, . . . , Xk+1

are elements of
∏

i∈I Ki and X = (X1, . . . , Xk) then
∏

i∈I Ki |= η(X,Xk+1) iff
P(I) |= Ψ(

∣∣∣∣η1(X,Xk+1)
∣∣∣∣ , . . . , ∣∣∣∣ηp(X,Xk+1)

∣∣∣∣). To complete the proof we
must show that

∏
i∈I Ki |= ζ(X) iff P(I) |= Φ(

∣∣∣∣ζ1(X)
∣∣∣∣ , . . . , ∣∣∣∣ζp(X)

∣∣∣∣).
Assume

∏
i∈I Ki |= ζ(X), i.e.,

∏
i∈I Ki |= ∃xk+1· η(X). Then there is an

Xk+1 such that
∏

i∈I Ki |= η(X1, . . . , Xk+1) and hence, by the inductive hypoth-
esis P(I) |= Ψ(B1, . . . , Bp) where Bi =

∣∣∣∣ηi(X,Xk+1)
∣∣∣∣, for i = 1, . . . , p. Also,∣∣∣∣ζi(X)

∣∣∣∣ ⊇ Bi, since Xk+1(j) provides a witness for ∃xk+1· θi(X, xk+1) for each
j ∈ Bi. As the θi are exhaustive and mutually exclusive the Bi partition I and so
we see that P(I) |= Φ(

∣∣∣∣ζ1(X)
∣∣∣∣ , . . . , ∣∣∣∣ζp(X)

∣∣∣∣) by taking Bi as the witness for
bi, i = 1, . . . , p.

Conversely, write Ai for
∣∣∣∣ζi(X)

∣∣∣∣ and assume P(I) |= Φ(A1, . . . , Ap). Then
there are sets Bi ⊆ Ai that partition I so that for each j ∈ I , there is a unique
i such that j ∈ Bi. But j ∈ Bi implies that j ∈ Si and hence that Ki |=
∃xk+1·θi(X1(i), . . . , Xk(i)). So we may choose an elementXk+1 of

∏
i∈I Ki such

thatKi |= θ(X1(i), . . . , Xk+1(i)) for each i ∈ I , i.e.,
∏

i∈I Ki |= θ(X,Xk+1). But
then as ζ(X) is ∃xk+1· θ(X, xk+1), we have

∏
i∈I Ki |= ζ(X).

We can optimize the procedure of the theorem a little by handling blocks of
bound variables in one step. An example of the optimized procedure applied to the
sentence ∃x y· x � y ∧ y � x is illustrated in table 1 on page 14. This shows how
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θ Φ θ1, . . . , θp

x ≤ y a1 = U x ≤ y
x � y a1 6= U x ≤ y
y ≤ x a1 = U y ≤ x
y � x a1 6= U y ≤ x

x � y ∧ y � x a1 6= U
∧ a2 6= U

x ≤ y,
y ≤ x

x � y ∧ y � x a1 ∪ a2 6= U
∧ a1 ∪ a3 6= U

x ≤ y ∧ y ≤ x,
x ≤ y ∧ y � x,
x � y ∧ y ≤ x,
x � y ∧ y � x

∃x y· x � y ∧ y � x ∃b1 b2 b3 b4· b1 ⊆ a1

∧ b2 ⊆ a2

∧ b3 ⊆ a3

∧ b4 ⊆ a4

∧ Part(b1, b2, b3, b4)
∧ b1 ∪ b2 6= U
∧ b2 ∪ b3 6= U

∃x y· x ≤ y ∧ y ≤ x,
∃x y· x ≤ y ∧ y � x,
∃x y· x � y ∧ y ≤ x,
∃x y· x � y ∧ y � x

Table 1: An example of the Feferman-Vaught procedure

the theorem can give us decision procedures: if the sentence is to be interpreted in
a cartesian product of non-trivial dense total orders (say), we can apply a decision
procedure to calculate ||θ1|| = ||θ2|| = ||θ3|| = U and ||θ4|| = ∅ and infer that θ
holds in the direct product iff Φ(U,U,U, ∅) holds in I . Ad hoc reasoning or the
quantifier elimination procedure of theorem 3 then show that this is the case iff I
has more than one element (as expected: a product of non-trivial total orders is
not total unless there is only one factor).
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