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Lecture 6

Translation Schemes:

Main definitions and examples

• The framework of translation schemes

– The induced maps

– The fundamental lemma

– Reductions

• The Museum of examples
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Definition 1 (Translation Schemes Φ)

• Let τ and σ = {R1, . . . , Rm} be two
vocabularies with ρ(Ri) be the arity of Ri.

• Let L be a fragment of SOL, such as FOL, MSOL, ∃MSOL, etc.

• Let Φ = 〈φ, ψ1, . . . , ψm〉 be formulae of L(τ) such that φ has exactly k
distinct free first order variables and each ψi has kρ(Ri) distinct free first
order variables.
We say that Φ is k–feasible
(for σ over τ).

• A k-feasible Φ = 〈φ, ψ1, . . . , ψm〉 is called a k–τ–σ–L–translation scheme
or, in short, a translation scheme, if the parameters are clear in the
context.
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Distinctions

If k = 1 we speak of scalar or non–vectorized translation schemes.

If k ≥ 2 we speak of vectorized translation schemes.

If φ is such that ∀x̄φ(x̄) is a tautology (always true) the translation scheme
is not relativized otherwise it is relativized.

A translation scheme is simple if it is neither relativized nor vectorized.
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Example 2 (τwords3
and τgraphs)

τwords3
consists of {R<, P0, P1, P2} for three letters {0,1,2}.

τgraphs consists of {E}

Put k = 1,
φ1(x) = (P0(x) ∨ P1(x)) and
ψE(x, y) = (P0(x) ∧ P1(y))

Φ1 = 〈φ1(x), ψE(x, y)〉
is a scalar and relativized translation scheme in FOL.

If instead we look at φ2(x) = (x ≈ x) then

Φ2 = 〈φ2(x), ψE(x, y)〉
is a simple translation scheme.
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Example 3 (τwords2
and τgrids)

τwords2
consists of {R<, P0, P1}

τgrids consists of {ENS, EEW}

Put k = 2,
φ(x) = ((x ≈ x) ∧ (y ≈ y))
ψENS

(x1, x2, y1, y2) = (R<(x1, x2) ∧ y1 ≈ y2)
ψEES

(x1, x2, y1, y2) = (R<(y1, y2) ∧ x1 ≈ x2)

Φ3 =

〈φ(x, y), ψENS
(x1, x2, y1, y2), ψEEW

(x1, x2, y1, y2)〉
is a vectorized but not relativized translation scheme in FOL.
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Definition 4 (The induced transduction Φ?)

Given a translation scheme Φ

Φ? : Str(τ)→ Str(σ)

is a (partial) function from τ–structures to
σ–structures defined by Φ?(A) = AΦ and

(i) the universe of AΦ is the set
AΦ = {ā ∈ Ak : A |= φ(ā)};

(ii) the interpretation of Ri in AΦ is the set

AΦ(Ri) = {ā ∈ AΦ
ρ(Ri)·k : A |= ψi(ā)}.

AΦ is a σ–structure of cardinality at most | A |k.

As Φ is k–feasible for σ over τ , Φ?(A) is defined iff A |= ∃x̄φ.
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Example 5 (Words and graphs)

Let is compute Φ?
1.

For the word

1001020102001022111

we get the graph

0 1

• •
• •
• •
• •
• •
• •
• •
•

(1)

File:trans-1-2018.tex 7



236331-2018/9, Computability and Definability Lecture 6: Translation Schemes

Example 6 (Words and grids)

Let is compute Φ?
3.

For a word

0110101001

we get

• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •
• → • → • → • → • → • → • → • → • → •

This is independent of the letters ¶0,1}.
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Definition 7 (The induced translation Φ])

Given a translation scheme Φ we define a function Φ] : L(σ) → L(τ) from
L(σ)–formulae to L(τ)–formulae inductively as follows:

• For Ri ∈ σ and θ = Ri(x1, . . . , xm) let xj,h be new variables with i ≤ m and
h ≤ k and denote by x̄i = 〈xi,1, . . . , xi,k〉. We put

Φ](θ) =

(
ψi(x̄1, . . . , x̄m) ∧

∧
i

φ(x̄i)

)

• This also works for equality and relation variables U instead of relation
symbols R.
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Definition 7 (Continued: booleans)

For the boolean connectives, the translation distributes, i.e.

• if θ = (θ1 ∨ θ2) then

Φ](θ) = (Φ](θ1) ∨Φ](θ2))

• if θ = ¬θ1 then

Φ](θ) = Φ](¬θ1)

• similarly for ∧ and →.
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Definition 7 (Continued: quantification)

• For the existential quantifier, we use relativization to φ:
If θ = ∃yθ1, let ȳ = 〈y1, . . . , yk〉 be new variables. We put

θΦ = ∃ȳ(φ(ȳ) ∧ (θ1)Φ).

This concludes the inductive definition for first order logic FOL.

• For second order quantification of variables U of arity ` and ā a vector
of length ` of first order variables or constants, we translate U(ā) by
treating U as a relation symbol above and put

θΦ = ∃V (∀v̄(V (v̄)→
(φ(v̄1) ∧ . . . φ(v̄`) ∧ (θ1)Φ)))
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Example 8 (Computing Φ]
1)

Recall

Φ1 = 〈φ1(x), ψE(x, y)〉
with k = 1,
φ1(x) = (P0(x) ∨ P1(x)) and
ψE(x, y) = (P0(x) ∧ P1(y))

Let θconn be the formula which says the graph is connected:

¬ (∃U (∃x¬U(x) ∧ ∀x∀y(U(x) ∧ E(x, y)→ U(y))))
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Example 8 (Continued)

• U(x) is replaced by

(φ1(x) ∧ U(x)) = ((P0(x) ∨ P1(x)) ∧ U(x))

• E(x, y) is replaced by

(φ1(x) ∧ φ1(y) ∧ E(x, y)) =

((P0(x) ∨ P1(x)) ∧ (P0(y) ∨ P1(y)) ∧ E(x, y))

• (x ≈ y) is replaced by

(φ1(x) ∧ φ1(y) ∧ (x ≈ y)) =

((P0(x) ∨ P1(x)) ∧ (P0(y) ∨ P1(y)) ∧ (x ≈ y))

• Then we proceed inductively.

(x ≈ y) does not occur in θconn.
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Proposition 9

(Preservation of tautologies I)

Let L be First Order Logic FOL.

Φ = 〈φ, ψ1, . . . , ψm〉
be a k–(τ − σ)—L–translation scheme, which is not relativizing, i.e. ∀x̄φ(x̄)
is a tautology. Let θ a σ-formula.

• If θ is a tautology (not satisfiable), so is Φ](θ).

• If φ is not a tautology, this is not true.

• There are formulas θ which are not tautologies (are satsifiable), such
that Φ](θ) is a tautology (is not satisfiable).
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Proof of proposition 9

Proof:
For FOL, the first two parts are by straight induction using the completeness
theorem. What we observe is that proof sequences translate properly using
Φ].

Generalizing to other logics needs regularity conditions.

If φ is not a tautology, ∃x(x = x) is a tautology, but Φ](∃x(x = x)) =
∃xφ(x) ∧ x = x is not a tautology.

Now let Φ = 〈ψR, ψS〉 be defined by

ψR(x) = P (x) and ψS(x) = ¬P (x).

∃xθ1 be R(x)∧ S(x) and ∃xθ2 be R(x)∨ S(x) are both satisfiable but not tau-
tolgies. But
Φ](θ1) is not satisfiable and
Φ](θ2) is a tautology. Q.E.D.
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Theorem 10 (Fundamental Property)

Let Φ = 〈φ, ψ1, . . . , ψm〉 be a k–(τ − σ)–translation scheme in a logic L. Then
the transduction Φ? and the translation Φ] are in linked in L.

In other words, given

• A be a τ-structure and

• θ be a L(σ)–formula.

Then

A |= Φ](θ) iff Φ?(A) |= θ
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Translation Scheme and its induced maps

in the Fundamental Property of theorem 10

Translation scheme
Φ

Φ?

τ-structure −→ σ-structure

A Φ?(A)

τ-formulae ←− σ-formulae
Φ]

Φ](θ) θ

A |= Φ](θ) iff Φ?(A) |= θ
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Definition 11 (L–Reductions)

Let L be a regular logic and Φ be a (τ1 − τ2) translation scheme. We are
given

• two classes K1,K2 of τ1(τ2)-structures closed under isomorphism

We say

(i) Φ? is a weak reduction of K1 to K2 if for every τ1-structure A with A ∈ K1

we have Φ?(A) ∈ K2.

(ii) Φ? is a reduction of K1 to K2 if for every τ1-structure A, A ∈ K1 iff
Φ?(A) ∈ K2.

File:trans-1-2018.tex 18



236331-2018/9, Computability and Definability Lecture 6: Translation Schemes

Definition 11(Continued)

(iii) Φ? of K1 to K2 is onto if (additionally) for every B ∈ K2 there is an
A ∈ K1 with Φ?(A) isomorphic to B.

(iv) By abuse of language we say Φ? is a translation of K1 onto K2 also if Φ?

is not a weak reduction but only K2 ⊆ Φ?(K1).

(v) We say that Φ induces a reduction (a weak reduction) of K1 to K2, if
Φ? is a reduction (a weak reduction) of K1 to K2. For simplicity, we also
say Φ is a reduction (a weak reduction) instead of saying that Φ induces
a reduction (a weak reduction).
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Definition 12 (L–Reducibility)

(i) Let k ∈ N.
We say that K1 is L-k-reducible to K2

(K1 /L−k K2), if there is a L-k-translation scheme Φ for τ2 over τ1, such
that Φ? is a reduction of K1 to K2.

(ii) We say that K1 is L-reducible to K2

(K1 /LK2), if K1 /L−k K2 for some k ∈ N.

(iii) We say that K1 is L-bi-reducible to K2 and write K1 ./L K2, if K1 /L−kK2

and
K2 /L−k K1 for some k ∈ N.
Clearly, bi-reducibility is a symmetric
relation.
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Theorem 13 (Definability and Reducibility)

Let Φ? be an L-reduction of K1 to K2.
If K2 is L-definable then K1 is -definable.

Recall that a class of τ-structures K2 is L-definable if there is a L(τ)-sentence
θ such that K2 = Mod(θ).

Proof:

We use the Fundamental Property of Φ.

If K2 is defined by θ, so K1 is defined by Φ](θ).
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Proposition 14

Hamiltonian graphs are not MSOL-definable

(both in τgraphs1
and τgraphs2

).

Proof:

We use Φ2 from example 2.

Φ?
2 is a reduction from words 0n1m over {0,1} to complete bipartite graphs

Kn,m, which are MSOL-defined by θco−bi.

Kn,m is Hamiltonian iff n = m.

So, if θhamil defined all Hamiltonian graphs,

Φ]
2(θhamil ∧ θco−bi)

defined the language {0n1n}.

But {0n1n} is not regular, and hence, by Büchi’s theorem, not MSOL-definable.

Q.E.D.
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Proposition 15

Eulerian graphs are not MSOL-definable
(both in τgraphs1

and τgraphs2
).

Proof: Let SET be the class of finite sets and
ODD ⊆ SET those of odd cardinality.
Let CLIQUE be the class of complete graphs.
CLIQUE is FOL-definable by some θclique.

Let the simple FOL translation scheme Φ be given by
φ(x) = (x ≈ x) and ψE(x, y) = (¬x ≈ y).

Φ? is a reduction from SET to CLIQUE.

Now assume that there is θeuler ∈MSOL,
with EULER = Mod(θeuler).
Put θ = (θclique ∧ θeuler).
Φ](θ) is equivalent to θodd ∈MSOL .

But this contradicts the fact that ODD (EV EB) is not MSOL-definable.

Q.E.D.
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Proof of theorem 10

We use induction over the construction of θ.

• If all the formulas φ, ψi of Φ and θ are atomic,
both Φ?(A) = A and
Φ](θ) = θ.

• Next we keep θ atomic and assume

Φ = 〈φ(x̄), ψS1
(x̄), . . . ψSm(x̄)〉

Φ?(A) |= Si(ā) iff A |= ψSi(ā)
by definition of Φ?.

• Now the induction on θ uses that Φ] commutes with the logical con-
structs.

Q.E.D.
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Proposition 16

(Preservation of tautologies II)

Let L be First Order Logic FOL.

Φ = 〈φ, ψ1, . . . , ψm〉
be a k–(τ − σ)—L–translation scheme. Let θ a σ-formula.

Assume that Φ? is onto all σ-structures, i.e.
for every σ-structure B there is a τ-structure A such that Φ?(A) = congB

• If θ is a tautology, so is Φ](θ).

• If additionally ∃x̄φ(x̄) is a tautology and Φ](θ) is a tautology then θ is a
tautology.

Proof:
Use the fundamental property. Q.E.D.
Note that here the proof is semantical.
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Example 17 (Renaming)

One of the simplest translations encountered in logic is the renaming of basic
relations.

Let τ1 = {Ri : i ≤ k} and τ2 = {Si : i ≤ k},
where Ri and Si are of the same arity,
respectively.

Let Φ be the (τ1, τ2) translation scheme given by Φ = 〈x = x,R1(ū), . . . , Rk(v̄)〉.

Such a translation scheme and as well as its induced maps Φ? and Φ] are
called renaming.
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Example 18 (Cartesian Product)

Let us consider one example of vectorized translation scheme that defines
Cartesian Product.

For simplicity, we assume that k = 2.

Let τ1 = {R1(x1, x2)} with R1 binary
and τ2 = {R2(x1, x2)} with R2 binary.

Φ = 〈(x1 = x1 ∨ x2 = x2),

(R1(x1, x2) ∧R2(x3, x4))〉

It is easy to see that Φ?(A) is isomorphic to the Cartesian product A2.

The n-hold Cartesian product is defined in the same way.
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Example 19 (Graphs)

Graphs1 is the class of structures of the form 〈V,E〉 where E is a binary ir-
reflexiv relation on the set of vertices V .

Graphs2 is the class of structures of the form 〈V tE;Src(v, e), T gt(v, e)〉 with
the universe
consisting of disjoint sets of vertices and edges and Src(v, e) (Tgt(v, e)) indi-
cates that v is the source (target) of the directed edge e.

For a graph G we denote its representations by Gi for Gi ∈ Graphsi respec-
tively.

We define a scalar translation scheme
Φ = 〈φ, ψE〉 from Graphs2 to Graphs1 by

φ(v) = (∃e(Src(v, e) ∨ eTgt(v, e))∨
(v = v ∧ ¬∃x(Src(x, v) ∨ Tgt(x, v))

φE(x, y) = ∃e ((Src(x, e) ∧ Tgt(y, e))

Clearly, for every graph G we have

Φ?(G2) ∼= G1

File:trans-1-2018.tex 29



236331-2018/9, Computability and Definability Lecture 6: Translation Schemes

Theorem 20 (Complexity of transductions)

If Φ is in FOL (or ∃HornSOL)
then Φ? is computable in polynomial time.

Proof:

We test all k-tuples ā in A of size n for

A |= φ(ā)

This takes nk · TIME(A, φ) time.

But we know that TIME(A, φ) is a polynomial in n.

For the ψSi this is the same.

Q.E.D.

By a theorem of Grädel, this also holds for HornSOL, cf. the project page.
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The Feferman-Vaught Theorem

and its algorithmic uses

Lecture originally prepared for the Tarski Centennial Conference

Warsaw, Poland, May, 2001
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Vocabularies, structures and theories

Let τ vocabulary
(or a similarity type as Tarski used to call it)

given by a set of relation symbols, but no function symbols nor constants.

FOL(τ) denotes the set of τ-formulas in First Order Logic.

SOL(τ) and MSOL(τ) denote the set of τ-formulas in
Second Order and Monadic Second Order Logic.

For a class of τ-structures K
ThFOL(K) is the set of
sentences of FOL(τ) true in all A ∈ K.
We write ThFOL(A) for K = {A}.

Similarly, ThSOL(K) and ThMSOL(K)
for SOL and MSOL.
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A. Tarski and E.W. Beth

Tarski published four short abstracts on model theory in 1949
(in the Bulletin of the AMS, vol. 55) and sent his manuscript for

Contribution to the theory of models, I

to E.W. Beth for publication.

Alfred Tarski (1901-1983) Evert Willem Beth (1908-1964)

Inspired by these, E.W. Beth published two papers on model theory. In one

of them he showed that
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Beth’s Theorem

Let A = 〈A <A〉 and Let B = 〈B <B〉 be two linear orders.

We denote by C = A t< B their ordered disjoint union,
defined by C = A tB, the disjoint union of A and B, and

<C=<A tB ∪A×B

Theorem:(Beth 1952)

ThFOL(C) is uniquely determined by
ThFOL(A) and ThFOL(B).

In other words:
If ThFOL(A) = ThFOL(A′) and ThFOL(B) = ThFOL(B′) and C′ = A′ t< B′ then
ThFOL(C) = ThFOL(C′)
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In Tarski’s school it was asked in the early 1950ties

Let A,B be τ-structures,
A×B their Cartesian product and
A tB their disjoint union.

Assume we are given ThFOL(A) and ThFOL(B).

What can we say about ThFOL(A×B) and ThFOL(A tB) ?

What happens in the case of infinite sums and products?

This triggered many landmark papers.

It also lead to the study of ultraproducts.
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Tarski’s pupils dealing with this question

A. Mostowski A. Morel S. Feferman R. Vaught J. Keisler

1938 Andrzei Mostowski
A. Mostowski, On direct product theories, JSL 17 (1952), pp. 1-31

1952 Anne Morel
T.E. Frayne, A.C. Morel and D.S. Scott, Reduced direct products, Fundamenta Math-
ematicae 51 (1962), pp.195-228

1954 Robert Vaught

1957 Solomon Feferman
S. Feferman and R.L. Vaught, The first order properties of algebraic systems, Funda-
menta Mathematicae 47 (1959), pp. 57-103

1961 Jerome Keisler
Many papers exploiting ultraproducts
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Feferman and Vaught answered

Theorem A:(Feferman and Vaught, 1959)

ThFOL(A×B) and ThFOL(A tB) are uniquely determined by

ThFOL(A) and ThFOL(B).

• By combining it with transductions and interpretations this remains true for a wide
variety of generalized products.

• Also true for infinite generalized sums and products,
provided the index structures are sufficiently MSOL indistinguishable.

• For MSOL still true for disjoint unions A tB over infinite index sets,
(Ehrenfeucht, Läuchli, Shelah, Gurevich),
but not true for SOL.

A. Ehrenfeucht H. Läuchli S. Shelah Y. Gurevich
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Ehrenfeucht’s proof theorem A

Use Ehrenfeucht-Fräıssé Games

This gives actually more:

Let q ∈ N
and let FOLq(τ) denote the sentences of FOL of quantifier rank at most q.

Put ThqFOL(A) = ThFOL(A) ∩ FOLq(τ).

Theorem B:(Feferman and Vaught, 1959)

ThqFOL(A×B) and ThqFOL(A tB)
are uniquely determined by ThqFOL(A) and ThqFOL(B).

For MSOL still true for A tB.
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Feferman and Vaught’s proof

Use Reduction Sequences

Here one proves by induction, say for disjoint union

Theorem C:(Feferman and Vaught, 1959)

For every formula φ ∈ FOLq(τ) one can compute a sequence of formulas

〈ψA1 , . . . ψAm, ψB1 , . . . ψBm〉 ∈ FOLq(τ)2m

and a Boolean function
Bφ : {0,1}2m → {0,1} such that

A tB |= φ

iff

Bφ(bA1 , . . . b
A
m, b

B
1 , . . . b

B
m) = 1

where bAj = 1 iff A |= ψAj and bBj = 1 iff B |= ψBj

Similarly for MSOL
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Algorithmic problems on finite structures

From 1970 on interest in computing focused on

computing on finite structures:

• NP-complete problems and complexity hierarchies.

• Graph algorithms and other finite data structures.

• Generalizing finite automata to trees and beyond.

In all these fields Use Ehrenfeucht-Fräıssé Games

and the Feferman-Vaught Theorem play crucial rôles.
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Operations on coloured, (un)-directed graphs.

Instead for the disjoint union we can prove
theorem B and C for the following operations:

• Concatenation of words, v ◦ w.

• Joining two trees
at a new common root, T1 • T2.

• H-sums of graphs: For i = 1,2
let Gi = 〈V (Gi), E(Gi)〉 and
V (G1) ∩ V (G2) = V (H) and
E(H) = E(G1) ∩ V (H)2 = E(G2) ∩ V (H)2.

Then G = G1 ⊕H G2 is given by
V (G) = V (G1) ∪ V (G2) and
E(G) = E(G1) ∪ E(G2).

and similarly for edge and vertex coloured graphs
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MSOL-smooth operations

We generalize the previous operations to operations satisfying theorem B or
C:

Definition:
A n-ary operation O on τ-structures
is MSOL-smooth if
for every q ∈ N and every A1,A2, . . . ,An

ThqMSOL (O(A1, . . . ,An))

depends only on ThqMSOL(Ai) for 1 ≤ i ≤ n.

O is effectively MSOL-smooth if there is an algorithm which computes for
every φ ∈ MSOL(τ) a reduction sequence, i.e. a sequence of formulas as
described in theorem C.
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Examples of MSOL-smooth operations

• The disjoint union is effectively MSOL-smooth.

• Quantifier free MSOL-transductions are
effectively MSOL-smooth.

• The fusion operation fusP
i.e. identifying all elements which satisfy
a given unary predicate P
is MSOL-smooth, but we don’t know whether it is effectively so.

Open problem:
Are there more examples?
Are there MSOL-smooth operations which are not effectively MSOL-smooth
?
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MSOL-inductive classes

(graph grammars)

Definition:

A class K of τ-structures is MSOL-inductive if it is defined inductively using
a finite set of MSOL-smooth operations.

K is effectively MSOL-inductive if it is defined inductively using a finite set
of effectively MSOL-smooth operations.

Open problem:
Are there MSOL-inductive classes K which are not effectively MSOL-inductive
?
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Effectively MSOL-inductive classes of structures

• Words Σ? are defined inductively by
(i) the empty word is a word
(ii) one letter words are words
(iii) words are closed under concatenation

• Coloured trees (forests) are defined
similarly:
(i) one leave trees are trees
(ii) trees are closed under root joining
(iii) forests are closed under disjoint unions

• Series-parallel (SP) graphs are defined by
(i) one edge graphs are SP.
(ii) SP graphs are closed under disjoint unions
(iii) SP graphs are closed under H-sums for

all H with at most two vertices.
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More effectively MSOL-inductive classes

• Graphs of tree width at most k TWk can be defined inductively by looking
at vertex coloured graphs with at most k + 1 colours:
(i) All graphs with at most k + 1 vertices are in TWk.
(ii) TWk is closed under disjoint union.
(iii) TWk is closed under renaming of colours.
(iv) TWk is closed under fusion, i.e. contraction of

all vertices of a specific colour into one vertex.

• Similarly, for graphs of clique width at most k CWk

(i) All graphs with at most 1 vertex are in CWk.
(ii) CWk is closed under disjoint union.
(iii) CWk is closed under renaming of colours.
(iv) CWk is closed under adding all possible edges

between to sets of differently coloured edges.
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Decidable theories, I

R. Büchi M. Rabin

The following were shown to be decidable by R. Büchi and M. Rabin respec-
tively:

• The MSOL theory of words

• The MSOL theory of trees

We can use theorem C to show that the following MSOL theories are decidable.

• The MSOL-theory SP-graphs

• The MSOL-theory graphs of bounded tree width
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Decidable theories, II

We can generalize this to

Theorem D:(Courcelle and M., 2001)

Let K be MSOL-inductive using disjoint unions, fusions and quantifier free
MSOL-transductions.
Then ThMSOL(K) is decidable.

Proof idea:

One shows that an MSOL-inductive class K is always an MSOL-transduction
of a class of trees.

Then one applies Rabin’s theorem for trees.

Seese 1991 showed it for K of bounded tree width.
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Representation of structures

in MSOL-inductive classes

We can represent the structure A
by its relational table
or by a parse term tA
which displays why it is in K.

In general, finding tA is NP-complete.

Theorem E:(Courcelle and M., 2001)
Let K be an MSOL-inductive class of τ-structures and φ ∈MSOL(τ).

Given a parse term tA for A, then the problem of deciding

A |= φ

can be decided in linear time
(in the size of tA).
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Model checking, I

Model checking is the problem to check

A |= φ

for A a finite τ structure and φ ∈ SOL(τ).

We measure the problem in the size of A and φ (combined case) or for specific
φ.

Theorem:(M. and Pnueli, 1996)
Even for MSOL there are φ such that the
problem is arbitrarily high in the polynomial hierarchy.

Theorem:(Vardi, 1982)
The combined problem is PSpace-complete
even for FOL.
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Model checking, II

We want to do model checking on MSOL-inductive classes K.

We can represent the structure A by its relational table
or by a parse term tA which displays why it is in K.

In general, finding tA is NP-complete.

Theorem E:(Courcelle and M., 2001)
Let K be an MSOL-inductive class of τ-structures and φ ∈MSOL(τ).

Given a parse term tA for A, then the problem of deciding

A |= φ

can be decided in linear time
(in the size of tA).
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Proof of theorem E

MSOLq(τ) is finite for every finite relational τ .

If all the operations are effectively MSOL-smooth, there is an algorithm which
computes for every φ the look-up table (using theorem C).

Otherwise, we don’t have such an algorithm, but still for each φ the look-up
table for complete MSOLq(τ)-types is finite (using theorem B).

Now we can compute along tA, in the style of dynamic programming.
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Moshe Vardi Bruno Courcelle Yachin Pnueli
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