
236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

The complexity of A |= φ

φ ∈ FOL

φ ∈ SOL

φ ∈ ∃SOL

φ ∈ HornSOL

We first discuss upper bounds

File:modelchecking.tex 1

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), I

Given

• A, a τ-structure with | A |= m

• φ ∈ FOL(τ) of length n
and quantifier depth q

• z an assignment z : V arFOL → A

We want to compute inductively the meaning function

M(A, z, φ)

and estimate its computational complexity with respect to time and space
denoted by

TIME(A, z, φ), SPACE(A, z, φ)

File:modelchecking.tex 2

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), II

Recall that τ is purely relational and terms t are either constants or variables.

Atomic formulas:
R(t1, t2, . . . , tr) with R ∈ τ and t1 ≈ t2.

Takes one step in a random access look-up table.

Takes mr, resp. m2 steps for searching the table.

One bit space for the result.

Boolean operations:
φ = (φ1 ∧ φ2), φ = (φ1 ∨ φ2), φ = ¬φ1

TIME(A, z, φ) ≤ TIME(A, z, φ1) + TIME(A, z, φ2) + 1
SPACE(A, z, φ) ≤ max(SPACE(A, z, φ1), SPACE(A, z, φ2))

File:modelchecking.tex 3

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), III

Quantifiers:
φ = ∃xφ1(x), φ = ∀xφ1(x)

We search the structure for an element, hence
TIME(A, z, φ) ≤ m · TIME(A, z, φ1)

We can denote location of search in binary, hence

SPACE(A, z, φ) ≤ logm · SPACE(A, z, φ1)

Conclusion:

TIME(A, z, φ) = O(n ·mq)

SPACE(A, z, φ) = O(q · logm)

File:modelchecking.tex 4

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), IV

We have considered two problems for FOL:

(i) The combined complexity ofM(A, z, φ) where both A and φ are the input.

This is in PSPACE.

(ii) The complexity of M(A, z, φ) for fixed φ, where only A is the input.

This is in P and even in LOGSPACE ⊆ P.

File:modelchecking.tex 5

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), V

Now we consider SOL.

The only change comes from the second order quantifiers:

Now search is over all subsets of Ar.

This takes time 2m
r

.

The characteristic function of these sets has size mr.

Conclusion:

TIME(A, z, φ) = O(n · 2q·mr

)

SPACE(A, z, φ) = O(q · logmr) = O(q · r ·m)

File:modelchecking.tex 6

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), VI

We consider two problems for SOL:

(i) The combined complexity ofM(A, z, φ) where both A and φ are the input.

This is in PSPACE.

(ii) The complexity of M(A, z, φ) for fixed φ, where only A is the input.

This is also in PSPACE.

File:modelchecking.tex 7

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Computing M(A, z, φ), VII

We want to use now non-deterministic machines.

We denote by ∃SOL(τ) the set of SOL(τ)-formulas ψ of the form

ψ = ∃X1∃X2 . . . ∃Xkφ(X1, X2, . . . , Xk)

with φ ∈ FOL(τ ∪ {X1, X2, . . . , Xk})

Fact:

For fixed ψ ∈ ∃SOL we have that M(A, z, ψ) is in NP, and

for fixed ψ ∈ SOL we have that M(A, z, ψ) is in PH,

the Polynomial Hierarchy.

File:modelchecking.tex 8

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

The Polynomial Hierarchy, I

We look at Oracle Turing Machines OTM . Let X be a problem and C be
a class of problems.

We define

PX = {Y : ∃M accepts Y using X as oracle }
PC = {Y : ∃M accepts Y using X ∈ C as oracle }
Here M is a deterministic polynomial time OTM .

Similarly,

NPX = {Y : ∃M accepts Y using X as oracle }
NPC = {Y : ∃M accepts Y using X ∈ C as oracle }
Here M is a non-deterministic polynomial time OTM .

File:modelchecking.tex 9

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

The Polynomial Hierarchy, II

We define inductively:

∆0P = Σ0P = Π0P = P

and

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = CoNPΣiP

Finally,

PH =
⋃
i∈N ΣiP

Note that PH ⊆ PSPACE and
P = NP iff P = PH.

File:modelchecking.tex 10

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, I

A propositional Horn clause is a formula of the form

¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pm ∨ q
with atmost one variable unnegated.

Equivalently, we can write

(p1 ∧ p2 ∧ . . . ∧ pm → q)

m = 0 gives true→ q and the absence of q gives

(p1 ∧ p2 ∧ . . . ∧ pm → false)

or

¬(p1 ∧ p2 ∧ . . . ∧ pm)

A FOL Horn clause is obtained by replacing variables by atomic formulas.

File:modelchecking.tex 11

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, II

The size s(C) of a clause C is the number of variables occurring in Σ.
The size s(Σ) of set of clauses Σ is defined as

∑
C∈Σ s(C)

SAT is the problem of deciding whether a set Σ of clauses with n variables
of size m is satisfiable.

Theorem:(S. Cook and L. Levin)

SAT can be solved in TIME(2n ·m) and is NP-complete.

HORNSAT is like SAT but with Σ a set of Horn clauses.

Theorem: HORNSAT is in P.

Proof: Use unit resolution.

File:modelchecking.tex 12

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, III

The formulas of Horn∃SOL are of the form

Ψ = ∃X1∃X2 . . . ∃Xj∀x1∀x2 . . . ∀xk
n∧
`=1

Φ`

where each Φell is a FOL-Horn clause.

Theorem:(Grädel)

For Ψ a fixed Horn∃SOL formula M(A, z, φ) is in P.

We give a proof.

File:modelchecking.tex 13

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, IV

For simplicity let

Ψ = ∃X∀x1∀x2 . . . ∀xk
n∧
`=1

Φ`

a τgraphs-formula with X r-ary.

So each Φ` consists of atomic or negated atomic formulas xi ≈ xj, E(xi, xj)
or X(xi1, . . . , xir).

Let A be a structure with elements a1, . . . , an.

There are nk many assignments for the variables xi.

Let h be the length of Φ =
∧
` Φ`.

File:modelchecking.tex 14

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, V

We now form the formula ∧
z

subst(Φ, z)

This formula has exactly h · nk many literals.

In A each atomic formula E(ai, aj) orai ≈ aj is true or false, so we can replace
them by true or false respectively.

We replace each X(ai1, . . . , air) by a propositional variable pai1,...,air.

We obtain so a propositional formula Ψ̄.

File:modelchecking.tex 15

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, VI

Claim 1:
If A |= Ψ then Ψ̄ is satisfiable.

Proof: Assume A |= Ψ.
Then there is U ⊂ Ar such that

A, U |= ∀x1∀x2 . . . ∀xk
n∧
`=1

Φ`

.

We now define an assignement

z(pā) =

{
1 if ā ∈ U
0 if ā 6∈ U

Exercise: Show that this z makes Ψ̄ true.

File:modelchecking.tex 16

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, VII

Claim 2:
If Ψ̄ is satisfiable then A |= Ψ.

Proof: Assume z is an assignement which makes Ψ̄ true.

We define an interpretation U for X by

ā ∈ U iff z(pā) = 1

.

Exercise: Show that

A, U |= ∀x1∀x2 . . . ∀xk
n∧
`=1

Φ`

.

File:modelchecking.tex 17

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Horn formulas, VII

Proof of Theorem:

• The construction of Ψ̄ from Ψ is done in polynomial time

• The size of Ψ̄ is polynomial in the size of Ψ.

• Using the polynomial time algorithm for HORNSAT , we check the sat-
isfiability of Ψ̄.

• Using the lemma, this settles A |= Ψ.

File:modelchecking.tex 18

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

2SAT

Let Σ be a set of propositional clauses of at most two literals each.
These are sometimes called Krom clauses.
Both Horn and Krom are names of Logicians

2SAT is the problem of deciding whether such a Σ is satisfiable.

NL denotes the class of problems decidable in non-deterministic logarithmic
space.

Theorem: 2SAT is decidable in NL.

Krom∃SOL is like Horn∃SOL but with clauses of size 2 rather than Horn
cluases.

It is now easy to prove that

Theorem: For fixed Ψ ∈ Krom∃SOL the problem M(A, zΨ) is in NL.
The proof is exactly like for Horn∃SOL.

File:modelchecking.tex 19

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Definability and Complexity, I

Let K be a class of finite τ-structures.

Let L(τ) ⊆ SOL(τ).
Typically L(τ) is one of Krom∃SOL(τ), Horn∃SOL(τ), ∃SOL(τ), SOL(τ), MSOL(τ),

K is definable in L(τ) if there exists Ψ ∈ L(τ) such that

A ∈ K iff A |= Ψ

Let C be a complexity class.
typically LOGSPACE, NL, P, NP, PH, PSPACE

K is in C iff the problem A ∈ K can be decided with the resources allowed in
C.

File:modelchecking.tex 20

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Definability and Complexity, II

We have shown:

• If K is definable in FOL
then K ∈ LOGSPACE.

• If K is definable in Krom∃SOL
then K ∈ NL.

• If K is definable in Horn∃SOL
then K ∈ P.

• If K is definable in ∃SOL
then K ∈ NP.

• If K is definable in SOL
then K ∈ PH.

File:modelchecking.tex 21

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

Definability and Complexity, III

We will show in the sequel
for ordered structures

• (Grädel) If K ∈ NL, then K is definable in Krom∃SOL.

• (Grädel) If K ∈ P, then K is definable in Horn∃SOL.

For arbitrary structures we have

• (Fagin, Christen) If K ∈ NP, then K is definable in ∃SOL.

• (Meyer and Stockmeyer) If K ∈ PH, then K is definable in SOL.

File:modelchecking.tex 22

236331-2018/9, Computability and Definability Lecture 5: Complexity of Model Checking

LOGSPACE

What about FOL-definability and LOGSPSACE?

Exercise:
Show that the set of words of even size is not FOL-definable.

Exercise:
Show that the set of words of even size is in LOGSPACE.

Exercise:
Conclude that FOL-definability is weaker than decidability in LOGSPACE.

Questions:
Which logic corresponds to LOGSPACE?
FOL+determinsitic transitive closure

Which complexity class corresponds to FOL?
The circuit complexity class AC0.

File:modelchecking.tex 23

