The complexity of $\mathfrak{A} \vDash \phi$

$$
\begin{gathered}
\phi \in F O L \\
\phi \in S O L \\
\phi \in \exists S O L \\
\phi \in \text { HornSOL }
\end{gathered}
$$

We first discuss upper bounds

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, I

Given

- \mathfrak{A}, a τ-structure with $|A|=m$
- $\phi \in F O L(\tau)$ of length n and quantifier depth q
- z an assignment $z: \operatorname{Var}_{F O L} \rightarrow A$

We want to compute inductively the meaning function

$$
\mathcal{M}(\mathfrak{A}, z, \phi)
$$

and estimate its computational complexity with respect to time and space denoted by

$$
\operatorname{TIME}(\mathfrak{A}, z, \phi), S P A C E(\mathfrak{A}, z, \phi)
$$

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, II

Recall that τ is purely relational and terms t are either constants or variables.
Atomic formulas:
$R\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ with $R \in \tau$ and $t_{1} \approx t_{2}$.
Takes one step in a random access look-up table.
Takes m^{r}, resp. m^{2} steps for searching the table.
One bit space for the result.
Boolean operations:
$\phi=\left(\phi_{1} \wedge \phi_{2}\right), \phi=\left(\phi_{1} \vee \phi_{2}\right), \phi=\neg \phi_{1}$
$\operatorname{TIME}(\mathfrak{A}, z, \phi) \leq \operatorname{TIME}\left(\mathfrak{A}, z, \phi_{1}\right)+\operatorname{TIME}\left(\mathfrak{A}, z, \phi_{2}\right)+1$
$\operatorname{SPACE}(\mathfrak{A}, z, \phi) \leq \max \left(S P A C E\left(\mathfrak{A}, z, \phi_{1}\right), \operatorname{SPACE}\left(\mathfrak{A}, z, \phi_{2}\right)\right)$

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, III

Quantifiers:
$\phi=\exists x \phi_{1}(x), \phi=\forall x \phi_{1}(x)$
We search the structure for an element, hence
$\operatorname{TIME}(\mathfrak{A}, z, \phi) \leq m \cdot \operatorname{TIME}\left(\mathfrak{A}, z, \phi_{1}\right)$
We can denote location of search in binary, hence
$S P A C E(\mathfrak{A}, z, \phi) \leq \log m \cdot S P A C E\left(\mathfrak{A}, z, \phi_{1}\right)$

Conclusion:

$\operatorname{TIME}(\mathfrak{A}, z, \phi)=O\left(n \cdot m^{q}\right)$
$S P A C E(\mathfrak{A}, z, \phi)=O(q \cdot \log m)$

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, IV

We have considered two problems for $F O L$:
(i) The combined complexity of $\mathcal{M}(\mathfrak{A}, z, \phi)$ where both \mathfrak{A} and ϕ are the input. This is in PSPACE.
(ii) The complexity of $\mathcal{M}(\mathfrak{A}, z, \phi)$ for fixed ϕ, where only \mathfrak{A} is the input. This is in \mathbf{P} and even in LOGSPACE $\subseteq \mathbf{P}$.

Computing $\mathcal{M}(\mathfrak{A}, z, \phi), \mathbf{V}$

Now we consider $S O L$.
The only change comes from the second order quantifiers:
Now search is over all subsets of A^{r}.
This takes time $2^{m^{r}}$.
The characteristic function of these sets has size m^{r}.

Conclusion:

$\operatorname{TIME}(\mathfrak{A}, z, \phi)=O\left(n \cdot 2^{q \cdot m^{r}}\right)$
$S P A C E(\mathfrak{A}, z, \phi)=O\left(q \cdot \log m^{r}\right)=O(q \cdot r \cdot m)$

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, VI

We consider two problems for $S O L$:
(i) The combined complexity of $\mathcal{M}(\mathfrak{A}, z, \phi)$ where both \mathfrak{A} and ϕ are the input.

This is in PSPACE.
(ii) The complexity of $\mathcal{M}(\mathfrak{A}, z, \phi)$ for fixed ϕ, where only \mathfrak{A} is the input.

This is also in PSPACE.

Computing $\mathcal{M}(\mathfrak{A}, z, \phi)$, VII

We want to use now non-deterministic machines.
We denote by $\exists S O L(\tau)$ the set of $S O L(\tau)$-formulas ψ of the form

$$
\psi=\exists X_{1} \exists X_{2} \ldots \exists X_{k} \phi\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

with $\phi \in \operatorname{FOL}\left(\tau \cup\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}\right)$

Fact:

For fixed $\psi \in \exists S O L$ we have that $\mathcal{M}(\mathfrak{A}, z, \psi)$ is in NP, and for fixed $\psi \in S O L$ we have that $\mathcal{M}(\mathfrak{A}, z, \psi)$ is in $\mathbf{P H}$, the Polynomial Hierarchy.

The Polynomial Hierarchy, I

We look at Oracle Turing Machines OTM. Let X be a problem and C be a class of problems.

We define
$\mathbf{P}^{X}=\{Y: \exists M$ accepts Y using X as oracle $\}$
$\mathbf{P}^{C}=\{Y: \exists M$ accepts Y using $X \in C$ as oracle $\}$
Here M is a deterministic polynomial time OTM.
Similarly,
$\mathbf{N P}^{X}=\{Y: \exists M$ accepts Y using X as oracle $\}$
$\mathbf{N P}^{C}=\{Y: \exists M$ accepts Y using $X \in C$ as oracle $\}$
Here M is a non-deterministic polynomial time OTM.

The Polynomial Hierarchy, II

We define inductively:

$$
\Delta_{0} \mathbf{P}=\Sigma_{0} \mathbf{P}=\Pi_{0} \mathbf{P}=\mathbf{P}
$$

and

Finally,
$\mathbf{P H}=\bigcup_{i \in \mathbb{N}} \Sigma_{i} \mathbf{P}$
Note that $\mathrm{PH} \subseteq P S P A C E$ and $\mathrm{P}=\mathrm{NP}$ iff $\mathrm{P}=\mathrm{PH}$.

Horn formulas, I

A propositional Horn clause is a formula of the form

$$
\neg p_{1} \vee \neg p_{2} \vee \ldots \vee \neg p_{m} \vee q
$$

with atmost one variable unnegated.
Equivalently, we can write

$$
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{m} \rightarrow q\right)
$$

$m=0$ gives true $\rightarrow q$ and the absence of q gives

$$
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{m} \rightarrow \text { false }\right)
$$

or

$$
\neg\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{m}\right)
$$

A $F O L$ Horn clause is obtained by replacing variables by atomic formulas.

Horn formulas, II

The size $s(C)$ of a clause C is the number of variables occurring in Σ.
The size $s(\Sigma)$ of set of clauses Σ is defined as $\sum_{C \in \Sigma} s(C)$
$S A T$ is the problem of deciding whether a set Σ of clauses with n variables of size m is satisfiable.

Theorem:(S. Cook and L. Levin)
$S A T$ can be solved in $\operatorname{TIME}\left(2^{n} \cdot m\right)$ and is NP-complete.
$H O R N S A T$ is like $S A T$ but with Σ a set of Horn clauses.
Theorem: $H O R N S A T$ is in \mathbf{P}.
Proof: Use unit resolution.

Horn formulas, III

The formulas of $\operatorname{Horn} \exists S O L$ are of the form

$$
\Psi=\exists X_{1} \exists X_{2} \ldots \exists X_{j} \forall x_{1} \forall x_{2} \ldots \forall x_{k} \bigwedge_{\ell=1}^{n} \Phi_{\ell}
$$

where each $\Phi_{\text {ell }}$ is a $F O L$-Horn clause.
Theorem:(Grädel)
For Ψ a fixed $\operatorname{Horn} \exists S O L$ formula $\mathcal{M}(\mathfrak{A}, z, \phi)$ is in \mathbf{P}.
We give a proof.

Horn formulas, IV

For simplicity let

$$
\Psi=\exists X \forall x_{1} \forall x_{2} \ldots \forall x_{k} \bigwedge_{\ell=1}^{n} \Phi_{\ell}
$$

a $\tau_{\text {graphs }}$-formula with $X r$-ary.
So each Φ_{ℓ} consists of atomic or negated atomic formulas $x_{i} \approx x_{j}, E\left(x_{i}, x_{j}\right)$ or $X\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$.

Let \mathfrak{A} be a structure with elements a_{1}, \ldots, a_{n}.
There are n_{k} many assignments for the variables x_{i}.
Let h be the length of $\Phi=\bigwedge_{\ell} \Phi_{\ell}$.

Horn formulas, V

We now form the formula

$$
\bigwedge_{z} \operatorname{subst}(\Phi, z)
$$

This formula has exactly $h \cdot n^{k}$ many literals.
In \mathfrak{A} each atomic formula $E\left(a_{i}, a_{j}\right)$ or $a_{i} \approx a_{j}$ is true or false, so we can replace them by true or false respectively.

We replace each $X\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)$ by a propositional variable $p_{a_{i_{1}}, \ldots, a_{i_{r}}}$.
We obtain so a propositional formula $\bar{\psi}$.

Horn formulas, VI

Claim 1:

If $\mathfrak{A} \models \Psi$ then $\bar{\Psi}$ is satisfiable.
Proof: Assume $\mathfrak{A}=\Psi$.
Then there is $U \subset A^{r}$ such that

$$
\mathfrak{A}, U \models \forall x_{1} \forall x_{2} \ldots \forall x_{k} \bigwedge_{\ell=1}^{n} \Phi_{\ell}
$$

We now define an assignement

$$
z\left(p_{\bar{a}}\right)= \begin{cases}1 & \text { if } \bar{a} \in U \\ 0 & \text { if } \bar{a} \notin U\end{cases}
$$

Exercise: Show that this z makes $\bar{\Psi}$ true.

Horn formulas, VII

Claim 2:

If $\bar{\Psi}$ is satisfiable then $\mathfrak{A} \vDash \Psi$.
Proof: Assume z is an assignement which makes $\bar{\psi}$ true.
We define an interpretation U for X by

$$
\bar{a} \in U \text { iff } z\left(p_{\bar{a}}\right)=1
$$

Exercise: Show that

$$
\mathfrak{A}, U \models \forall x_{1} \forall x_{2} \ldots \forall x_{k} \bigwedge_{\ell=1}^{n} \Phi_{\ell}
$$

Horn formulas, VII

Proof of Theorem:

- The construction of $\bar{\Psi}$ from Ψ is done in polynomial time
- The size of $\bar{\Psi}$ is polynomial in the size of Ψ.
- Using the polynomial time algorithm for HORNSAT, we check the satisfiability of $\bar{\Psi}$.
- Using the Iemma, this settles $\mathfrak{A} \models \Psi$.

2SAT

Let Σ be a set of propositional clauses of at most two literals each.
These are sometimes called Krom clauses.
Both Horn and Krom are names of Logicians
$2 S A T$ is the problem of deciding whether such a Σ is satisfiable.
$N L$ denotes the class of problems decidable in non-deterministic logarithmic space.

Theorem: $2 S A T$ is decidable in NL.
$\operatorname{Krom} \exists S O L$ is like $\operatorname{Horn} \exists S O L$ but with clauses of size 2 rather than Horn cluases.

It is now easy to prove that
Theorem: For fixed $\Psi \in \operatorname{Krom} \exists S O L$ the problem $\mathcal{M}(\mathfrak{A}, z \Psi)$ is in NL. The proof is exactly like for Horn $\exists S O L$.

Definability and Complexity, I

Let K be a class of finite τ-structures.
Let $\mathcal{L}(\tau) \subseteq S O L(\tau)$.
Typically $\mathcal{L}(\tau)$ is one of $\operatorname{Krom} \exists S O L(\tau)$, $\operatorname{Horn} \exists S O L(\tau), \exists S O L(\tau), \operatorname{SOL}(\tau), \operatorname{MSOL}(\tau)$,
K is definable in $\mathcal{L}(\tau)$ if there exists $\Psi \in \mathcal{L}(\tau)$ such that

$$
\mathfrak{A} \in K \text { iff } \mathfrak{A} \models \Psi
$$

Let C be a complexity class.
typically LOGSPACE, NL, P, NP, PH, PSPACE
K is in C iff the problem $\mathfrak{A} \in K$ can be decided with the resources allowed in C.

Definability and Complexity, II

We have shown:

- If K is definable in $F O L$ then $K \in L O G S P A C E$.
- If K is definable in $K r o m \exists S O L$ then $K \in \mathbf{N L}$.
- If K is definable in Horn $\exists S O L$ then $K \in \mathbf{P}$.
- If K is definable in $\exists S O L$ then $K \in \mathbf{N P}$.
- If K is definable in $S O L$ then $K \in \mathbf{P H}$.

Definability and Complexity, III

We will show in the sequel for ordered structures

- (Grädel) If $K \in \mathbf{N L}$, then K is definable in $\operatorname{Krom} \exists S O L$.
- (Grädel) If $K \in \mathbf{P}$, then K is definable in Horn $\exists S O L$.

For arbitrary structures we have

- (Fagin, Christen) If $K \in \mathbf{N P}$, then K is definable in $\exists S O L$.
- (Meyer and Stockmeyer) If $K \in \mathbf{P H}$, then K is definable in $S O L$.

LOGSPACE

What about $F O L$-definability and LOGSPSACE?

Exercise:

Show that the set of words of even size is not $F O L$-definable.

Exercise:

Show that the set of words of even size is in LOGSPACE.

Exercise:

Conclude that FOL-definability is weaker than decidability in LOGSPACE.

Questions:

Which logic corresponds to LOGSPACE?
$F O L+$ determinsitic transitive closure
Which complexity class corresponds to FOL?
The circuit complexity class AC_{0}.

