Lecture 3: Finite Automata

Lecture 3 (Part I)

Disjoint unions and concatenation

Finite Automata

Regular Languages

The Büchi-Elgot-Trakhtenbrot Theorem

Disjoint unions of structures, I

There are several ways of looking at disjoint unions of structures.

The most general version generally used might be:

 $\mathcal{A}_0 \text{ a } \tau_0$ -structure, $\mathcal{A}_1 \text{ a } \tau_1$ -structure, $\sigma = \tau_0 \sqcup \tau_1 \sqcup \{P_0, P_1\}$

 $\mathcal{B} = \mathcal{A}_0 \sqcup \mathcal{A}_1$ is the σ -structure with

 $B = A_0 \sqcup A_1$, $P_i(\mathcal{B} = A_i \text{ and} for R \in \tau_i, R(\mathcal{B}) = R(\mathcal{A}_i)$

Remark: For $\tau_0 = \tau_1 = \tau$ one puts often $R(\mathcal{B}) = R(\mathcal{A}_0) \sqcup R(\mathcal{A}_1)$.

Sometimes the predicates P_1 are ommitted.

Only with the definition above are the parts A_i definable from the disjoint union.

Disjoint unions of structures, II

Theorem: (Feferman, Vaught, Ehrenfeucht)

(i) If $\mathcal{A}_0 \sim_{q,v}^{MSOL} \mathcal{B}_0$ and $\mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_1$ so $\mathcal{A}_0 \sqcup \mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_0 \sqcup \mathcal{B}_1$.

(ii) If
$$h_{q,v}(\mathcal{A}_0) = h_{q,v}(\mathcal{B}_0)$$
 and $h_{q,v}(\mathcal{A}_1) = h_{q,v}(\mathcal{B}_1)$
so also

$$h_{q,v}(\mathcal{A}_0 \sqcup \mathcal{A}_1) = h_{q,v}(\mathcal{B}_0 \sqcup \mathcal{B}_1).$$

In other words:

The (q, v)-Hintikka sentence of a disjoint union is uniquely determined by the (q, v)-Hintikka sentence of its parts.

Lecture 3: Finite Automata

Concatenation, I

The concatenation of two words over an alphabet Σ is a special case of a disjoint union of *ordered structures*, where the second part follows the first.

We denote, for a word $w \in \Sigma^*$ the corresponding structure by \mathcal{A}_w .

We denote by $\mathcal{A}_v \bullet \mathcal{A}_w$ the structure corresponding to the word vw.

Concatenation, **II**

Theorem:(Büchi, Ehrenfeucht)

(i) If
$$\mathcal{A}_0 \sim_{q,v}^{MSOL} \mathcal{B}_0$$
 and $\mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_1$ so $\mathcal{A}_0 \bullet \mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_0 \bullet \mathcal{B}_1$.

(ii) If
$$h_{q,v}(\mathcal{A}_0) = h_{q,v}(\mathcal{B}_0)$$
 and $h_{q,v}(\mathcal{A}_1) = h_{q,v}(\mathcal{B}_1)$ so
$$h_{q,v}(\mathcal{A}_0 \bullet \mathcal{A}_1) = h_{q,v}(\mathcal{B}_0 \bullet \mathcal{B}_1)$$
(+)

In other words:

The (q, v)-Hintikka sentence of a concatenation is uniquely determined by the (q, v)-Hintikka sentence of its parts.

Finite Automata, I

We have **deterministic** and **non-deterministic** finite automata (Turing machines without work tape).

```
We one-directional and two-directional finite automata.
```

Let $X \in \{(det, one), (n - det, one), (det, two), (n - det, two)\}.$ A language (set of words) L a X - FA, if it is accepted by some X finite automaton.

Theorem:(Rabin and Scott, 1959) *L* is X - FA iff *L* is Y - FA

for each $X, Y \in \{(det, one), (n - det, one), (det, two), (n - det, two)\}$.

The proof was given in the course Automata and Formal Languages

Lecture 3: Finite Automata

Finite Automata, II

We can also look at

- **multi-tape**, *k*-**tape** finite automata with one simultaneous head on the tapes.
- **multi-head**, *k*-head finite automata.
- *k*-pebble finite automata with pebbles (markers) on the tape.

Theorem:

A language L is k-tape X - FA iff L is 1-tape X - FA.

But there are **more** languages which are 2-head X - FA than with one head. The same even with **only one** pebble.

Regular Languages, I

Let Σ be a finite alphabet.

- λ denotes the empty word.
- Σ^* is the set of all finite words (including λ).

 Σ^+ is the set of all non-empty finite words, (excluding λ).

Regular Σ -expression are

- \emptyset , and a for each $a \in \Sigma$;
- if r, s are regular expressions, so are $(r \cup s), (rs)$ and r^+ .

Regular Languages, II

For a regular expression r we define a language Lang(r).

Assume Lang(r) = R and Lang(s) = S.

- $Lang(\emptyset) = \emptyset$, $Lang(a) = \{a\}$ for $a \in \Sigma$.
- $Lang(r \cup s) = R \cup S$
- $Lang(rs) = \{uv : u \in R, v \in S\} = RS$
- We define $R^1 = R$ and $R^{n+1} = R^n R$, and $R^+ = \bigcup_{1 \le n} R^n$.
- $Lang(r^+) = R^+$.

A language L is regular iff L = Lang(r) for some Σ -regular expression r.

Regular Languages, III

Complementation: For r we form the expression $\neg r$ with $Lang(\neg r) = \Sigma^+ - Lang(r)$.

Theorem:

For every regular expression $r \ lang(\neg r)$ is regular.

A an expression is *regular plus-free* if it is defined inductively by

- \emptyset , $\{a\}$
- $(r \cup s), (rs), (\neg r)$

A regular language is **plus-free** if it is of the form Lang(r) for some plus-free expression.

Finite Automata, III

Theorem:

(Kleene, 1953, Rabin and Scott 1959)

The following are equivalent for languages L:

- L is regular
- L is (det, one) FA
- L is (n det, two) FA

and also for (det, two) - FA and (n - det, one) - FA.

The proof was given in the course Automata and Formal Languages

Lecture 3: Finite Automata

Finite Automata, IV

Theorem:(Büchi-Elgot-Trakhtenbrot) A set of words *L* is regular

iff

the set of its structures K_L is definable in MSOL

Theorem:(McNaughton) A set of words *L* is plus-free regular

iff

the set of its structures K_L is definable in FOL

Proof of Büchi's Theorem, I

Proof:

If L is regular, it can be defined by a regular expression r.

We use r to construct an MSOL-formula which defines L.

We use induction.

For \lor , concatenation and complement, we use FOL operations. For + we quantify over sets of positions and relativize the formulas of the induction hypothesis.

Note that we did not use (r^*) . We avoid the empty word λ .

How could we include it?

Proof of Büchi's Theorem, II

Now assume that K_L is defined by $\phi \in Fm_{q,v}^{MSOL}(\tau)$.

We define the the automaton for L.

The states are $\mathcal{H}_{q,v}(\tau)$.

The transitions are given by (+) of the previous theorem (Büchi-Ehrenfeucht)

with the second word a singleton.

The accepting states are the (q, v)-Hintikka formulas the disjunction of which is equivalent to ϕ .

This works both for FOL and MSOL with the according modifications.

Lecture 3: Finite Automata

Hintikka sentences

are used to define

a finite automaton !

Lecture 3: Finite Automata

Lecture 3 (Part II)

Pumping Lemma

Proving non-definability in MSOL

Translation schemes

Pumping Lemma, I

Theorem: Let A be a finite (deterministic, one-directional) finite automaton with n states and defining the language L(A).

Let $w \in L(A)$ with length $\ell(w) \ge n$. Then there exists words x, y, z such that

- w = xyz and $y \neq \Lambda$ and
- for each $k \in \mathbb{N}$ $xy^k z \in L(A)$

A pumping lemma for **context free** languages was stated first in 1961 by Bar-Hillel, Perles, Shamir.

Pumping Lemma, II

We want to apply the Pumping Lemma to MSOL.

Theorem: Let ϕ be a $MSOL(\tau_{words(\Sigma)})$ -sentence over words in Σ^+ with quantifier rank q and v variables and defining the language $L(\phi)$.

Let $\eta_{v,q,\Sigma} \leq \gamma_{v,q,\Sigma}$ be the number of Hintikka sentences in $Fm_{q,v}^{MSOL}(\tau(\Sigma))$.

Let $w \in L(\phi)$ with length $\ell(w) \ge \eta_{q,v,\Sigma}$. Then there exists words x, y, z such that

- w = xyz and $y \neq \Lambda$ and
- for each $k \in \mathbb{N}$ $xy^k z \in L(\phi)$

Lecture 3: Finite Automata

Pumping Lemma, III

Examples

The following are not regular

- $egin{aligned} \{a^ib^i:i\in\mathbb{N}\},\ \{a^ib^ic^i:i\in\mathbb{N}\},\ \{a^ib^j:i,j\in\mathbb{N},i\leq j\}, \end{aligned}$
- The set of prime numbers as binary words. This follows easily from an easy theorem on primes:

Theorem: For every $n \in \mathbb{N}$ there are successive primes $p_{i(n)}, p_{i(n)+1}$ such that $p_{i(n)+1} - p_{i(n)} \ge n$.

Hint: Look at the sequence n! + i, i = 2, 3, ..., n.

A direct proof is in Michael Harrison, Introduction to Formal Language Theory, Addison-Wesley 1978, chapter 2.2

Lecture 3: Finite Automata

Unary languages

Proposition: A unary language L is regular iff

 $X = \{i : a^i \in L\}$ is ultimately periodic.

 $X \in \mathbb{N}$ (in increasing order) is ultimately periodic iff there is p such that for i large enough $x_{i+p} = x_i$.

Non-definability in $MSOL_1$, I

 $MSOL_1$ is the MSOL for structures which are graphs of the form $G = \langle V, E \rangle$ (*E* a binary relation).

The following are not $MSOL_1$ -definable.

- HALF-CLIQUE: graphs with a clique of size at least $\frac{|V|}{2}$
- HAM: graphs which have a hamiltonian cycle.
- EULER: graphs which have an Eulerian circuit.

Non-definability in $MSOL_1$, II

Proof for HALF-CLIQUE:

Assume $\phi_{half-clique} \in MSOL_1$ defines HALF-CLIQUE.

For each word $w = a^i b^j$, $i, j \neq 0$ of length nwe define a graph G_w as follows:

 $V = \{1, \dots, n\}$ $E = \{(u, v) \subseteq V^2 : \psi(u, v) = P_b(u) \land P_b(v) \land u \neq v\}$

```
Clearly G_w in HALF-CLIQUE iff w = a^i b^j with i \leq j.
```

But then let Φ be the formula we obtain from substituting E(x,y) in ϕ by $\psi(x,y)$.

 $w \models \Phi$ iff $w = a^i b^j$ with $i \leq j$.

By Büchi's Theorem, this implies that $\{a^i b^j : i \leq j\}$ is regular, a **contradiction**.

Non-definability in $MSOL_1$, III

Proof for HAM:

Assume $\phi_{ham} \in MSOL_1$ defines HAM.

For each word $w = a^i b^j$, $i, j \neq 0$ of length n we define a graph G_w as follows:

 $V = \{1, \dots, n\}$ $E = \{(u, v) \subseteq V^2 : \psi(u, v) = P_a(u) \land P_b(v)\}$

Clearly G_w in HAM iff $w = a^i b^j$ with i = j.

But then let Φ be the formula we obtain from substituting E(x,y) in ϕ by $\psi(x,y)$.

 $w \models \Phi$ iff $w = a^i b^j$ with i = j.

By Büchi's Theorem, this implies that $\{a^ib^i : i \in \mathbb{N}\}$ is regular, a **contradiction**.

Non-definability in $MSOL_1$, IV

Proof for EULER:

A graph is eulerian iff it is connected and all vertices have even degree. Hence, the complete graph K_n is eulerian iff n = 2m + 1.

For each word $w = a^i b^j$, $i, j \neq 0$ of length n we define a graph G_w as follows:

 $V = \{1, \dots, n\}$ $E = \{(u, v) \subseteq V^2 : \psi(u, v) = u \neq v\}$

Clearly G_w in EULER iff $w = a^i b^j$ with i + j = 2m + 1.

Similarly as before, this implies that $\{a^ib^j: i+j=2m+1\}$ is regular. But it is regular.

THIS PROOF DOES NOT WORK !

Non-definability in $MSOL_1$, V

The proofs for HALF-CLIQUE and HAM actually show more:

Theorem:

HAM and HALF-CLIQUE are not *MSOL*-definable even on ordered graphs.

An ordered graph $G = \langle V, E, \langle \rangle$ is a graph with a linear order on the vertices.

But EULER is MSOL definable on ordered graphs, because on linear orders there is a formula $\phi_{even}(X)$ which says that |X| is even.

Note also that on unary words

 $\{a^i: i=2m\}$

is ultimately periodic and hence regular.

Non-definability in $MSOL_1$, V

Exercise:

To prove that EULER is not $MSOL_1$ -definable

Hint:

Use that sets of even cardinality are not MSOL-definable.

Translation schemes, I

In these proofs we used a technique which we will spell out in full generality:

- For a word $w \in L$ we **defined** a graph G_w
- **defined** by an MSOL-formula actually a FOL-formula ψ
- Then we assumed that the class of graphs K was definable by ϕ .
- Put $\Phi = subst_E(\phi, \psi(x, y))$
- Show that $w \in L$ iff $G_w \in K$
- Conclude that L is defined by Φ .

Lecture 3: Finite Automata

We shall develop a formalism for

Translation schemes

which will play a central rôle in the sequel of the course.