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Disjoint unions of structures, I

There are several ways of looking at disjoint unions of structures.

The most general version generally used might be:

A0 a τ0-structure, A1 a τ1-structure,
σ = τ0 t τ1 t {P0, P1}

B = A0 t A1 is the σ-structure with

B = A0 tA1, Pi(B = Ai and
for R ∈ τi, R(B) = R(Ai)

Remark: For τ0 = τ1 = τ one puts often R(B) = R(A0) tR(A1).

Sometimes the predicates P1 are ommitted.

Only with the definition above are the parts Ai definable from the disjoint
union.
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Disjoint unions of structures, II

Theorem:(Feferman, Vaught, Ehrenfeucht)

(i) If A0 ∼MSOL
q,v B0 and A1 ∼MSOL

q,v B1 so A0 t A1 ∼MSOL
q,v B0 t B1.

(ii) If hq,v(A0) = hq,v(B0) and hq,v(A1) = hq,v(B1)

so also

hq,v(A0 t A1) = hq,v(B0 t B1).

In other words:

The (q, v)-Hintikka sentence of a disjoint union is uniquely determined by the
(q, v)-Hintikka sentence of its parts.

File:buechi.tex 3



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Concatenation, I

The concatenation of two words over an alphabet Σ is a special case of a
disjoint union of ordered structures, where the second part follows the first.

We denote, for a word w ∈ Σ? the corresponding structure by Aw.

We denote by Av • Aw the structure corresponding to the word vw.
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Concatenation, II

Theorem:(Büchi, Ehrenfeucht)

(i) If A0 ∼MSOL
q,v B0 and A1 ∼MSOL

q,v B1 so A0 • A1 ∼MSOL
q,v B0 • B1.

(ii) If hq,v(A0) = hq,v(B0) and hq,v(A1) = hq,v(B1) so

hq,v(A0 • A1) = hq,v(B0 • B1) (+)

In other words:

The (q, v)-Hintikka sentence of a concatenation is uniquely determined by the
(q, v)-Hintikka sentence of its parts.
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Finite Automata, I

We have deterministic and non-deterministic finite automata (Turing ma-
chines without work tape).

We one-directional and two-directional
finite automata.

Let
X ∈ {(det, one), (n− det, one), (det, two), (n− det, two)}.
A language (set of words) L a X − FA, if it is accepted by some X finite
automaton.

Theorem:(Rabin and Scott, 1959)
L is X − FA iff L is Y − FA

for each X,Y ∈ {(det, one), (n− det, one), (det, two), (n− det, two)}.

The proof was given in the course Automata and Formal Languages
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Finite Automata, II

We can also look at

• multi-tape, k-tape finite automata
with one simultaneous head on the tapes.

• multi-head, k-head finite automata.

• k-pebble finite automata
with pebbles (markers) on the tape.

Theorem:
A language L is k-tape X − FA iff L is 1-tape X − FA.

But there are more languages which are
2-head X − FA than with one head.
The same even with only one pebble.
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Regular Languages, I

Let Σ be a finite alphabet.

λ denotes the empty word.

Σ? is the set of all finite words (including λ).

Σ+ is the set of all non-empty finite words, (excluding λ).

Regular Σ-expression are

• ∅, and a for each a ∈ Σ;

• if r, s are regular expressions,
so are (r ∪ s), (rs) and r+.
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Regular Languages, II

For a regular expression r we define a language Lang(r).

Assume Lang(r) = R and Lang(s) = S.

• Lang(∅) = ∅, Lang(a) = {a} for a ∈ Σ.

• Lang(r ∪ s) = R ∪ S

• Lang(rs) = {uv : u ∈ R, v ∈ S} = RS

• We define R1 = R and Rn+1 = RnR, and R+ =
⋃

1≤nR
n.

• Lang(r+) = R+.

A language L is regular iff L = Lang(r) for some Σ-regular expression r.
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Regular Languages, III

Complementation:
For r we form the expression ¬r with Lang(¬r) = Σ+ − Lang(r).

Theorem:
For every regular expression r lang(¬r) is regular.

A an expression is regular plus-free if it is defined inductively by

• ∅, {a}

• (r ∪ s), (rs), (¬r)

A regular language is plus-free if it is of the form Lang(r) for some plus-free
expression.

File:buechi.tex 10



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Finite Automata, III

Theorem:
(Kleene, 1953, Rabin and Scott 1959)

The following are equivalent for languages L:

• L is regular

• L is (det, one)− FA

• L is (n− det, two)− FA

and also for
(det, two)− FA and (n− det, one)− FA.

The proof was given in the course Automata and Formal Languages
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Finite Automata, IV

Theorem:(Büchi-Elgot-Trakhtenbrot)
A set of words L is regular

iff

the set of its structures KL is definable in MSOL

Theorem:(McNaughton)
A set of words L is plus-free regular

iff

the set of its structures KL is definable in FOL

File:buechi.tex 12



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Proof of Büchi’s Theorem, I

Proof:

If L is regular, it can be defined by a regular expression r.

We use r to construct an MSOL-formula which defines L.

We use induction.

For ∨, concatenation and complement, we use FOL operations. For + we
quantify over sets of positions and relativize the formulas of the induction
hypothesis.

Note that we did not use (r?).
We avoid the empty word λ.

How could we include it?
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Proof of Büchi’s Theorem, II

Now assume that KL is defined by φ ∈ FmMSOL
q,v (τ).

We define the the automaton for L.

The states are Hq,v(τ).

The transitions are given by (+) of the previous theorem (Büchi-Ehrenfeucht)

with the second word a singleton.

The accepting states are the (q, v)-Hintikka formulas the disjunction of which
is equivalent to φ.

This works both for FOL and MSOL with the according modifications.
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Hintikka sentences

are used to define

a finite automaton !
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Lecture 3 (Part II)

Pumping Lemma

Proving non-definability in MSOL

Translation schemes
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Pumping Lemma, I

Theorem: Let A be a finite
(deterministic, one-directional)
finite automaton with n states
and defining the language L(A).

Let w ∈ L(A) with length `(w) ≥ n.
Then there exists words x, y, z such that

• w = xyz and y 6= Λ and

• for each k ∈ N xykz ∈ L(A)

A pumping lemma for context free languages was stated first in 1961 by
Bar-Hillel, Perles, Shamir.
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Pumping Lemma, II

We want to apply the Pumping Lemma to MSOL.

Theorem: Let φ be a MSOL(τwords(Σ))-sentence over words in Σ+

with quantifier rank q and v variables and defining the language L(φ).

Let ηv,q,Σ ≤ γv,q,Σ be the number of Hintikka sentences in FmMSOL
q,v (τ(Σ)).

Let w ∈ L(φ) with length `(w) ≥ ηq,v,Σ. Then there exists words x, y, z such
that

• w = xyz and y 6= Λ and

• for each k ∈ N xykz ∈ L(φ)
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Pumping Lemma, III

Examples

The following are not regular

• {aibi : i ∈ N}, {aibici : i ∈ N},
{aibj : i, j ∈ N, i ≤ j},

• The set of prime numbers as binary words.
This follows easily from an easy theorem on primes:

Theorem: For every n ∈ N there are successive primes pi(n), pi(n)+1 such
that pi(n)+1 − pi(n) ≥ n.

Hint: Look at the sequence n! + i, i = 2,3, . . . , n.

A direct proof is in
Michael Harrison, Introduction to Formal Language Theory, Addison-
Wesley 1978, chapter 2.2
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Unary languages

Proposition: A unary language L is regular iff

X = {i : ai ∈ L} is ultimately periodic.

X ∈ N (in increasing order) is ultimately periodic iff there is p such that for i
large enough xi+p = xi.
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Non-definability in MSOL1, I

MSOL1 is the MSOL for structures which are graphs of the form G = 〈V,E〉
(E a binary relation).

The following are not MSOL1-definable.

• HALF-CLIQUE: graphs with a clique of size at least |V |
2

• HAM: graphs which have a
hamiltonian cycle.

• EULER: graphs which have an Eulerian circuit.
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Non-definability in MSOL1, II

Proof for HALF-CLIQUE:

Assume φhalf−clique ∈MSOL1

defines HALF-CLIQUE.

For each word w = aibj, i, j 6= 0 of length n
we define a graph Gw as follows:

V = {1, . . . , n}
E = {(u, v) ⊆ V 2 : ψ(u, v) = Pb(u) ∧ Pb(v) ∧ u 6= v}

Clearly Gw in HALF-CLIQUE iff
w = aibj with i ≤ j.

But then let Φ be the formula we obtain from substituting E(x, y) in φ by
ψ(x, y).

w |= Φ iff w = aibj with i ≤ j.

By Büchi’s Theorem, this implies that
{aibj : i ≤ j} is regular, a contradiction.
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Non-definability in MSOL1, III

Proof for HAM:

Assume φham ∈MSOL1 defines HAM.

For each word w = aibj, i, j 6= 0 of length n
we define a graph Gw as follows:

V = {1, . . . , n}
E = {(u, v) ⊆ V 2 : ψ(u, v) = Pa(u) ∧ Pb(v)}

Clearly Gw in HAM iff
w = aibj with i = j.

But then let Φ be the formula we obtain from substituting E(x, y) in φ by
ψ(x, y).

w |= Φ iff w = aibj with i = j.

By Büchi’s Theorem, this implies that
{aibi : i ∈ N} is regular, a contradiction.
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Non-definability in MSOL1, IV

Proof for EULER:

A graph is eulerian iff it is connected and all vertices have even degree.
Hence, the complete graph Kn is eulerian iff n = 2m+ 1.

For each word w = aibj, i, j 6= 0 of length n
we define a graph Gw as follows:

V = {1, . . . , n}
E = {(u, v) ⊆ V 2 : ψ(u, v) = u 6= v}

Clearly Gw in EULER iff
w = aibj with i+ j = 2m+ 1.

Similarly as before, this implies that
{aibj : i+ j = 2m+ 1} is regular.
But it is regular.

THIS PROOF DOES NOT WORK !
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Non-definability in MSOL1, V

The proofs for HALF-CLIQUE and HAM actually show more:

Theorem:
HAM and HALF-CLIQUE are not MSOL-definable even on ordered graphs.

An ordered graph G = 〈V,E,<〉 is a graph with a linear order on the vertices.

But EULER is MSOL definable on ordered graphs, because on linear orders
there is a formula φeven(X) which says that | X | is even.

Note also that on unary words

{ai : i = 2m}
is ultimately periodic and hence regular.
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Non-definability in MSOL1, V

Exercise:

To prove that EULER is not MSOL1-definable

Hint:
Use that sets of even cardinality are not MSOL-definable.
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Translation schemes, I

In these proofs we used a technique which we will spell out in full generality:

• For a word w ∈ L we defined a graph Gw

• defined by an MSOL-formula
actually a FOL-formula ψ

• Then we assumed that the class of graphs K was definable by φ.

• Put Φ = substE(φ, ψ(x, y))

• Show that w ∈ L iff Gw ∈ K

• Conclude that L is defined by Φ.
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We shall develop a formalism for

Translation schemes

which will play a central rôle in the sequel of the

course.
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