Lecture 3 (Part I)

Disjoint unions and concatenation

Finite Automata

Regular Languages

The Büchi-Elgot-Trakhtenbrot Theorem

Disjoint unions of structures, I

There are several ways of looking at disjoint unions of structures.
The most general version generally used might be:
\mathcal{A}_{0} a τ_{0}-structure, \mathcal{A}_{1} a τ_{1}-structure, $\sigma=\tau_{0} \sqcup \tau_{1} \sqcup\left\{P_{0}, P_{1}\right\}$
$\mathcal{B}=\mathcal{A}_{0} \sqcup \mathcal{A}_{1}$ is the σ-structure with
$B=A_{0} \sqcup A_{1}, P_{i}\left(\mathcal{B}=A_{i}\right.$ and
for $R \in \tau_{i}, R(\mathcal{B})=R\left(\mathcal{A}_{i}\right)$
Remark: For $\tau_{0}=\tau_{1}=\tau$ one puts often $R(\mathcal{B})=R\left(\mathcal{A}_{0}\right) \sqcup R\left(\mathcal{A}_{1}\right)$.
Sometimes the predicates P_{1} are ommitted.
Only with the definition above are the parts \mathcal{A}_{i} definable from the disjoint union.

Disjoint unions of structures, II

Theorem:(Feferman, Vaught, Ehrenfeucht)
(i) If $\mathcal{A}_{0} \sim_{q, v}^{M S O L} \mathcal{B}_{0}$ and $\mathcal{A}_{1} \sim_{q, v}^{M S O L} \mathcal{B}_{1}$ so $\mathcal{A}_{0} \sqcup \mathcal{A}_{1} \sim_{q, v}^{M S O L} \mathcal{B}_{0} \sqcup \mathcal{B}_{1}$.
(ii) If $h_{q, v}\left(\mathcal{A}_{0}\right)=h_{q, v}\left(\mathcal{B}_{0}\right)$ and $h_{q, v}\left(\mathcal{A}_{1}\right)=h_{q, v}\left(\mathcal{B}_{1}\right)$ so also

$$
h_{q, v}\left(\mathcal{A}_{0} \sqcup \mathcal{A}_{1}\right)=h_{q, v}\left(\mathcal{B}_{0} \sqcup \mathcal{B}_{1}\right) .
$$

In other words:
The (q, v)-Hintikka sentence of a disjoint union is uniquely determined by the (q, v)-Hintikka sentence of its parts.

Concatenation, I

The concatenation of two words over an alphabet Σ is a special case of a disjoint union of ordered structures, where the second part follows the first.

We denote, for a word $w \in \Sigma^{\star}$ the corresponding structure by \mathcal{A}_{w}.
We denote by $\mathcal{A}_{v} \bullet \mathcal{A}_{w}$ the structure corresponding to the word $v w$.

Concatenation, II

Theorem:(Büchi, Ehrenfeucht)
(i) If $\mathcal{A}_{0} \sim_{q, v}^{M S O L} \mathcal{B}_{0}$ and $\mathcal{A}_{1} \sim_{q, v}^{M S O L} \mathcal{B}_{1}$ so $\mathcal{A}_{0} \bullet \mathcal{A}_{1} \sim_{q, v}^{M S O L} \mathcal{B}_{0} \bullet \mathcal{B}_{1}$.
(ii) If $h_{q, v}\left(\mathcal{A}_{0}\right)=h_{q, v}\left(\mathcal{B}_{0}\right)$ and $h_{q, v}\left(\mathcal{A}_{1}\right)=h_{q, v}\left(\mathcal{B}_{1}\right)$ so

$$
\begin{equation*}
h_{q, v}\left(\mathcal{A}_{0} \bullet \mathcal{A}_{1}\right)=h_{q, v}\left(\mathcal{B}_{0} \bullet \mathcal{B}_{1}\right) \tag{+}
\end{equation*}
$$

In other words:
The (q, v)-Hintikka sentence of a concatenation is uniquely determined by the (q, v)-Hintikka sentence of its parts.

Finite Automata, I

We have deterministic and non-deterministic finite automata (Turing machines without work tape).

We one-directional and two-directional finite automata.

Let
$X \in\{(d e t, o n e),(n-\operatorname{det}$, one $),(d e t, t w o),(n-\operatorname{det}, t w o)\}$.
A language (set of words) L a $X-F A$, if it is accepted by some X finite automaton.

Theorem:(Rabin and Scott, 1959)
L is $X-F A$ iff L is $Y-F A$
for each $X, Y \in\{(\operatorname{det}$, one $),(n-\operatorname{det}$,one $),(\operatorname{det}, t w o),(n-\operatorname{det}, t w o)\}$.
The proof was given in the course Automata and Formal Languages

Finite Automata, II

We can also look at

- multi-tape, k-tape finite automata with one simultaneous head on the tapes.
- multi-head, k-head finite automata.
- k-pebble finite automata with pebbles (markers) on the tape.

Theorem:
A language L is k-tape $X-F A$ iff L is 1-tape $X-F A$.
But there are more languages which are 2-head $X-F A$ than with one head.
The same even with only one pebble.

Regular Languages, I

Let Σ be a finite alphabet.
λ denotes the empty word.
Σ^{\star} is the set of all finite words (including λ).
$\Sigma+$ is the set of all non-empty finite words, (excluding λ).
Regular Σ-expression are

- \emptyset, and a for each $a \in \Sigma$;
- if r, s are regular expressions, so are $(r \cup s),(r s)$ and r^{+}.

Regular Languages, II

For a regular expression r we define a language $\operatorname{Lang}(r)$.
Assume $\operatorname{Lang}(r)=R$ and $\operatorname{Lang}(s)=S$.

- $\operatorname{Lang}(\emptyset)=\emptyset, \operatorname{Lang}(a)=\{a\}$ for $a \in \Sigma$.
- $\operatorname{Lang}(r \cup s)=R \cup S$
- $\operatorname{Lang}(r s)=\{u v: u \in R, v \in S\}=R S$
- We define $R^{1}=R$ and $R^{n+1}=R^{n} R$, and $R^{+}=\bigcup_{1 \leq n} R^{n}$.
- $\operatorname{Lang}\left(r^{+}\right)=R^{+}$.

A language L is regular iff $L=\operatorname{Lang}(r)$ for some Σ-regular expression r.

Regular Languages, III

Complementation:
For r we form the expression $\neg r$ with $\operatorname{Lang}(\neg r)=\Sigma^{+}-\operatorname{Lang}(r)$.

Theorem:

For every regular expression r lang $(\neg r)$ is regular.
A an expression is regular plus-free if it is defined inductively by

- $\emptyset,\{a\}$
- $(r \cup s),(r s),(\neg r)$

A regular language is plus-free if it is of the form $\operatorname{Lang}(r)$ for some plus-free expression.

Finite Automata, III

Theorem:

(Kleene, 1953, Rabin and Scott 1959)
The following are equivalent for languages L :

- L is regular
- L is $(\operatorname{det}, o n e)-F A$
- L is $(n-\operatorname{det}, t w o)-F A$
and also for
(det, two) $-F A$ and $(n-d e t, o n e)-F A$.
The proof was given in the course Automata and Formal Languages

Finite Automata, IV

Theorem:(Büchi-Elgot-Trakhtenbrot)
A set of words L is regular
iff
the set of its structures K_{L} is definable in $M S O L$
Theorem:(McNaughton)
A set of words L is plus-free regular
iff
the set of its structures K_{L} is definable in $F O L$

Proof of Büchi's Theorem, I

Proof:

If L is regular, it can be defined by a regular expression r.
We use r to construct an MSOL-formula which defines L.
We use induction.
For \vee, concatenation and complement, we use $F O L$ operations. For + we quantify over sets of positions and relativize the formulas of the induction hypothesis.

Note that we did not use (r^{\star}).
We avoid the empty word λ.
How could we include it?

Proof of Büchi's Theorem, II

Now assume that K_{L} is defined by $\phi \in F m_{q, v}^{M S O L}(\tau)$.
We define the the automaton for L.
The states are $\mathcal{H}_{q, v}(\tau)$.
The transitions are given by (+) of the previous theorem (Büchi-Ehrenfeucht) with the second word a singleton.

The accepting states are the (q, v)-Hintikka formulas the disjunction of which is equivalent to ϕ.

This works both for $F O L$ and $M S O L$ with the according modifications.

Hintikka sentences

are used to define

a finite automaton!

Lecture 3 (Part II)

Pumping Lemma

Proving non-definability in $M S O L$

Translation schemes

Pumping Lemma, I

Theorem: Let A be a finite (deterministic, one-directional) finite automaton with n states and defining the language $L(A)$.

Let $w \in L(A)$ with length $\ell(w) \geq n$.
Then there exists words x, y, z such that

- $w=x y z$ and $y \neq \Lambda$ and
- for each $k \in \mathbb{N} x y^{k} z \in L(A)$

A pumping lemma for context free languages was stated first in 1961 by Bar-Hillel, Perles, Shamir.

Pumping Lemma, II

We want to apply the Pumping Lemma to $M S O L$.
Theorem: Let ϕ be a $\operatorname{MSOL}\left(\tau_{\text {words }(\Sigma)}\right)$-sentence over words in Σ^{+} with quantifier rank q and v variables and defining the language $L(\phi)$.
Let $\eta_{v, q, \Sigma} \leq \gamma_{v, q, \Sigma}$ be the number of Hintikka sentences in $F m_{q, v}^{M S O L}(\tau(\Sigma))$.
Let $w \in L(\phi)$ with length $\ell(w) \geq \eta_{q, v, \Sigma}$. Then there exists words x, y, z such that

- $w=x y z$ and $y \neq \wedge$ and
- for each $k \in \mathbb{N} x y^{k} z \in L(\phi)$

Pumping Lemma, III
 Examples

The following are not regular

- $\left\{a^{i} b^{i}: i \in \mathbb{N}\right\},\left\{a^{i} b^{i} c^{i}: i \in \mathbb{N}\right\}$, $\left\{a^{i} b^{j}: i, j \in \mathbb{N}, i \leq j\right\}$,
- The set of prime numbers as binary words.

This follows easily from an easy theorem on primes:
Theorem: For every $n \in \mathbb{N}$ there are successive primes $p_{i(n)}, p_{i(n)+1}$ such that $p_{i(n)+1}-p_{i(n)} \geq n$.
Hint: Look at the sequence $n!+i, i=2,3, \ldots, n$.
A direct proof is in
Michael Harrison, Introduction to Formal Language Theory, AddisonWesley 1978, chapter 2.2

Unary languages

Proposition: A unary language L is regular iff
$X=\left\{i: a^{i} \in L\right\}$ is ultimately periodic.
$X \in \mathbb{N}$ (in increasing order) is ultimately periodic iff there is p such that for i large enough $x_{i+p}=x_{i}$.

Non-definability in $M S O L_{1}$, I

$M S O L_{1}$ is the $M S O L$ for structures which are graphs of the form $G=\langle V, E\rangle$ (E a binary relation).

The following are not $M S O L_{1}$-definable.

- HALF-CLIQUE: graphs with a clique of size at least $\frac{|V|}{2}$
- HAM: graphs which have a hamiltonian cycle.
- EULER: graphs which have an Eulerian circuit.

Non-definability in $M S O L_{1}$, II

Proof for HALF-CLIQUE:
Assume $\phi_{\text {half-clique }} \in M S O L_{1}$ defines HALF-CLIQUE.
For each word $w=a^{i} b^{j}, i, j \neq 0$ of length n we define a graph G_{w} as follows:
$V=\{1, \ldots, n\}$
$E=\left\{(u, v) \subseteq V^{2}: \psi(u, v)=P_{b}(u) \wedge P_{b}(v) \wedge u \neq v\right\}$
Clearly G_{w} in HALF-CLIQUE iff $w=a^{i} b^{j}$ with $i \leq j$.
But then let Φ be the formula we obtain from substituting $E(x, y)$ in ϕ by $\psi(x, y)$.
$w \models \Phi$ iff $w=a^{i} b^{j}$ with $i \leq j$.
By Büchi's Theorem, this implies that $\left\{a^{i} b^{j}: i \leq j\right\}$ is regular, a contradiction.

Non-definability in $M S O L_{1}$, III

Proof for HAM:
Assume $\phi_{\text {ham }} \in M S O L_{1}$ defines HAM.
For each word $w=a^{i} b^{j}, i, j \neq 0$ of length n we define a graph G_{w} as follows:
$V=\{1, \ldots, n\}$
$E=\left\{(u, v) \subseteq V^{2}: \psi(u, v)=P_{a}(u) \wedge P_{b}(v)\right\}$
Clearly G_{w} in HAM iff
$w=a^{i} b^{j}$ with $i=j$.
But then let Φ be the formula we obtain from substituting $E(x, y)$ in ϕ by $\psi(x, y)$.
$w=\Phi$ iff $w=a^{i} b^{j}$ with $i=j$.
By Büchi's Theorem, this implies that $\left\{a^{i} b^{i}: i \in \mathbb{N}\right\}$ is regular, a contradiction.

Non-definability in $M S O L_{1}$, IV

Proof for EULER:

A graph is eulerian iff it is connected and all vertices have even degree. Hence, the complete graph K_{n} is eulerian iff $n=2 m+1$.

For each word $w=a^{i} b^{j}, i, j \neq 0$ of length n we define a graph G_{w} as follows:
$V=\{1, \ldots, n\}$
$E=\left\{(u, v) \subseteq V^{2}: \psi(u, v)=u \neq v\right\}$
Clearly G_{w} in EULER iff $w=a^{i} b^{j}$ with $i+j=2 m+1$.

Similarly as before, this implies that $\left\{a^{i} b^{j}: i+j=2 m+1\right\}$ is regular. But it is regular.

THIS PROOF DOES NOT WORK!

Non-definability in $M S O L_{1}, \mathbf{V}$

The proofs for HALF-CLIQUE and HAM actually show more:
Theorem:
HAM and HALF-CLIQUE are not $M S O L$-definable even on ordered graphs.
An ordered graph $G=\langle V, E,<\rangle$ is a graph with a linear order on the vertices.
But EULER is MSOL definable on ordered graphs, because on linear orders there is a formula $\phi_{\text {even }}(X)$ which says that $|X|$ is even.

Note also that on unary words

$$
\left\{a^{i}: i=2 m\right\}
$$

is ultimately periodic and hence regular.

Non-definability in $M S O L_{1}, \mathbf{V}$

Exercise:

To prove that EULER is not $M S O L_{1}$-definable

Hint:

Use that sets of even cardinality are not $M S O L$-definable.

Translation schemes, I

In these proofs we used a technique which we will spell out in full generality:

- For a word $w \in L$ we defined a graph G_{w}
- defined by an $M S O L$-formula
actually a $F O L$-formula ψ
- Then we assumed that the class of graphs K was definable by ϕ.
- Put $\Phi=\operatorname{subst}_{E}(\phi, \psi(x, y))$
- Show that $w \in L$ iff $G_{w} \in K$
- Conclude that L is defined by $Ф$.

We shall develop a formalism for

Translation schemes

which will play a central rôle in the sequel of the course.

