236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Lecture 3 (Part 1)

Disjoint unions and concatenation

Finite Automata

Regular Languages

The Buchi-Elgot-Trakhtenbrot Theorem
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Disjoint unions of structures, I

There are several ways of looking at disjoint unions of structures.
The most general version generally used might be:

Ao a 7o-Structure, A1 a m-structure,
o=T1oU7T U {Po,Pl}

B = Ay U A1 is the o-structure with

B = Apg U Aq, B(B = A, and
for R € 75, R(B) = R(A;)

Remark: For o = 71 = 7 one puts often R(B) = R(Ap) U R(A1).
Sometimes the predicates P; are ommitted.

Only with the definition above are the parts A; definable from the disjoint
union.
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Disjoint unions of structures, II

Theorem:(Feferman, Vaught, Ehrenfeucht)
(i) If Ag N%SOL Bo and A; N%SOL B1 so Ap U A4 N%SOL Bo U B1.

(ii) If hq,v(Ao) = hq,v(Bo) and hq,v(Al) = hq,v(Bl)
SO also
hq,v(.Ao LA = hq,U(Bo L B1).
In other words:

The (g,v)-Hintikka sentence of a disjoint union is uniquely determined by the
(g,v)-Hintikka sentence of its parts.
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Concatenation, 1

The concatenation of two words over an alphabet > is a special case of a
disjoint union of ordered structures, where the second part follows the first.

We denote, for a word w € >* the corresponding structure by A,,.

We denote by A, e A, the structure corresponding to the word vw.
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Concatenation, II

Theorem:(Bichi, Ehrenfeucht)
(i) If Ao N%SOL Bo and .Al N(%}SOL Bl SO Ao ° Al N%SOL BO o Bl.

(ii) If hgo(Ao) = hgo(Bo) and hg (A1) = hg(B1) SO
hq,v(AO L4 Al) — hq,v(BO o Bl) (+)
In other words:

The (¢,v)-Hintikka sentence of a concatenation is uniquely determined by the
(g,v)-Hintikka sentence of its parts.
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Finite Automata, I

We have deterministic and non-deterministic finite automata (Turing ma-
chines without work tape).

We one-directional and two-directional
finite automata.

Let

X € {(det,one), (n — det,one), (det, two), (n — det, two) }.

A language (set of words) L a X — F'A, if it is accepted by some X finite
automaton.

Theorem:(Rabin and Scott, 1959)
LisX—-FAIffLisY —FA

for each X,Y € {(det, one), (n — det, one), (det, two), (n — det, two) }.

The proof was given in the course Automata and Formal Languages

File:buechi.tex 6



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Finite Automata, II

We can also look at

e Multi-tape, k-tape finite automata
with one simultaneous head on the tapes.

¢ Multi-head, k-head finite automata.

e k-pebble finite automata
with pebbles (markers) on the tape.

Theorem:
A language L is k-tape X — FA iff L is 1-tape X — FA.

But there are more languages which are
2-head X — F'A than with one head.
The same even with only one pebble.

File:buechi.tex 7



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Regular Languages, 1

Let > be a finite alphabet.

A denotes the empty word.

> * is the set of all finite words (including ).

> T is the set of all non-empty finite words, (excluding \).

Regular > -expression are
e (), and a for each a € X;

e if r,s are regular expressions,
so are (rUs),(rs) and rT.
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Regular Languages, II

For a regular expression r» we define a language Lang(r).

Assume Lang(r) = R and Lang(s) = S.
e Lang(0) =0, Lang(a) = {a} for a € %.

Lang(rUs) =RUS

Lang(rs) ={uv:u € R,v € S} = RS

We define R* = R and R"*! = R"R, and Rt =J,_, R".
o Lang(rT) = RT.
A language L is regular iff L = Lang(r) for some X-regular expression r.
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Regular Languages, III

Complementation:
For r we form the expression —r with Lang(—r) = X+ — Lang(r).

Theorem:
For every regular expression r lang(—r) is regular.

A an expression is regular plus-free if it is defined inductively by
o 0, {a}
e (ruUs),(rs),(—r)

A regular language is plus-free if it is of the form Lang(r) for some plus-free
expression.
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Finite Automata, III

Theorem:
(Kleene, 1953, Rabin and Scott 1959)

The following are equivalent for languages L:
e [ is regular
e L is (det,one) — FA
e L is (n—det,two) — FA

and also for
(det,two) — FFA and (n — det,one) — FA.

The proof was given in the course Automata and Formal Languages
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Finite Automata, 1V

Theorem:(Biichi-Elgot-Trakhtenbrot)
A set of words L is regular

iff
the set of its structures K, is definable in MSOL

Theorem:(McNaughton)
A set of words L is plus-free regular

iff

the set of its structures Ky, is definable in FOL
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Proof of Buchi’'s Theorem, I

Proof:

If L is regular, it can be defined by a regular expression r.
We use r to construct an MSOL-formula which defines L.
We use induction.

For Vv, concatenation and complement, we use FOL operations. For T we

quantify over sets of positions and relativize the formulas of the induction
hypothesis.

Note that we did not use (r*).
We avoid the empty word \.

How could we include it7?
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Proof of Buchi’'s Theorem, Il

Now assume that K, is defined by ¢ € Fm}159k(r).

We define the the automaton for L.

The states are H, (7).

The transitions are given by (4) of the previous theorem (Biichi-Ehrenfeucht)

with the second word a singleton.

The accepting states are the (g, v)-Hintikka formulas the disjunction of which
IS equivalent to ¢.

This works both for FOL and MSOL with the according modifications.
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Hintikka sentences

are used to define

a finite automaton |
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Lecture 3 (Part II)

Pumping Lemma

Proving non-definability in MSOL

Translation schemes
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Pumping Lemma, I

Theorem: Let A be a finite
(deterministic, one-directional)
finite automaton with n states
and defining the language L(A).

Let w € L(A) with length /(w) > n.
Then there exists words z,y, z such that

e w=2xyz and y = /A and
o for each k € N zyfz € L(A)

A pumping lemma for context free languages was stated first in 1961 by
Bar-Hillel, Perles, Shamir.
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Pumping Lemma, II

We want to apply the Pumping Lemma to MSOL.

Theorem: Let ¢ be a MSOL(T,0ras(s))-S€Ntence over words in =
with quantifier rank ¢ and v variables and defining the language L(¢).

Let nyqx < Yuqx be the number of Hintikka sentences in Fm\>%L(r(X)).

Let w € L(¢) with length ¢(w) > n,,5x. Then there exists words z,y, z such
that

e w=2xyz and y = /A and

e for each k € N zyFz € L(¢)
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Pumping Lemma, III

Examples

The following are not regular

o {a'b':i €N}, {a'b'c’ :i € N},
{a'd’ 14,5 € N,i < 5},

e T he set of prime numbers as binary words.
This follows easily from an easy theorem on primes:

Theorem: For every n € N there are successive primes p;(,), Pi(n)+1 SUch
that pi(n)+1 — Pita) = 1

Hint: Look at the sequence n! 41,1 =2,3,...,n.

A direct proof is in
Michael Harrison, Introduction to Formal Language Theory, Addison-
Wesley 1978, chapter 2.2
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Unary languages

Proposition: A unary language L is regular iff
X = {i:a' e L} is ultimately periodic.

X € N (in increasing order) is ultimately periodic iff there is p such that for i
large enough z;4, = ;.

File:buechi-2.tex 20



236331-2018/9, Computability and Definability Lecture 3: Finite Automata

Non-definability in MSOLq, 1

MSOL; is the MSOL for structures which are graphs of the form G = (V, E)
(E a binary relation).

The following are not MSOLq-definable.

e HALF-CLIQUE: graphs with a cligue of size at least '21‘

e HAM: graphs which have a
hamiltonian cycle.

e EULER: graphs which have an Eulerian circuit.
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Non-definability in MSOLq, 11

Proof for HALF-CLIQUE:

defines HALF-CLIQUE.

For each word w = a't/,i,5 # 0 of length n
we define a graph G, as follows:

V={1,...,n}
E={(u,v) CV?:9y(u,v) = P,(u) A Py(v) Au 7# v}

Clearly Gy in HALF-CLIQUE iff
w = a't! with ¢ < j.

But then let ® be the formula we obtain from substituting E(x,y) in ¢ by
Y(z,y).

w = P iff w = a' with i <j.

By Buchi’'s Theorem, this implies that
{a'® i < j} is regular, a contradiction.
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Non-definability in MSOLq, III

Proof for HAM:
Assume ¢pam € MSOL1 defines HAM.

For each word w = a'¥’,14,j %= 0 of length n
we define a graph G, as follows:

V={1,...,n}
E={(u,v) CV?:9y(u,v) = Py(u) A B,(v)}

Clearly .Gw in HAM iff
w = a't! with ¢+ = 3.

But then let ® be the formula we obtain from substituting E(x,y) in ¢ by
Y (z,y).

w = @ iff w = a'’ with i = j.

By BUchi’s Theorem, this implies that
{a'd" : i € N} is regular, a contradiction.
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Non-definability in MSOLq, IV

Proof for EULER:

A graph is eulerian iff it is connected and all vertices have even degree.
Hence, the complete graph K, is eulerian iff n =2m + 1.

For each word w = a'¥’,4,j %= 0 of length n
we define a graph G, as follows:

V={1,...,n}

E={(u,v) CV?:9Y(u,v) =u# v}
Clearly Gy in EULER iff

w = a't? with 14+ 757 =2m + 1.

Sir_ni_larly as before, this implies that
{a't) 1 i+ j=2m+ 1} is regular.
But it is regular.
THIS PROOF DOES NOT WORK !
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Non-definability in MSOLq, V

The proofs for HALF-CLIQUE and HAM actually show more:

Theorem:
HAM and HALF-CLIQUE are not M SOL-definable even on ordered graphs.

An ordered graph G = (V, E, <) is a graph with a linear order on the vertices.

But EULER is MSOL definable on ordered graphs, because on linear orders
there is a formula ¢even(X) which says that | X | is even.

Note also that on unary words
{a":i=2m}

is ultimately periodic and hence regular.
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Non-definability in MSOLq, V

EXxercise:
To prove that EULER is not MSOLi-definable

Hint:
Use that sets of even cardinality are not MSOL-definable.
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Translation schemes, I

In these proofs we used a technique which we will spell out in full generality:
e For a word w € L we defined a graph Gy,

e defined by an MSOL-formula
actually a FOL-formula

e Then we assumed that the class of graphs K was definable by ¢.
o Put & = substg(o,v(x,y))
e Show that we L iff Gy, € K

e Conclude that L is defined by &.
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We shall develop a formalism for

ranslation schemes

which will play a central role in the sequel of the

course.
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