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• Location: Taub 301

• Time: Thursday 9:30-12:30 (including Tirgul)

• Office: Taub 628

• Office hours: Thursday 14:00 or by appointment
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Course requirements

• Prerequisites: Logic and sets, Automata and formal languages or Com-
putability

• Homework

• Final project
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Lecture 1: Prelude

• Complexity

• Definability

• Descriptive complexity

• References
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Computing devices, I

Device: Input → Device D → Output

Machines: Finite Automaton, Turing Machine (with resource bounds),
Register Machine (with resource bounds),

Circuits: Boolean and Algebraic Circuits

Formulas: Formulas of First Order Logic FOL,
Second Order Logic SOL, Monadic Second Order Logic MSOL,
Fixed Point Logic, Temporal logic, etc
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Computing devices, II

Transducer:

In-structure → Device T → Out-structure

Acceptor:

Input → Device A → {0,1}

Counter:

Input → Device C → N
File:prelude.tex 6



236331-2018/9, Computability and Definability Lecture 1: Overview

Combinatorial problems, I

Acceptors: Deciding properties of a graph
Connected, cycle-free, hamiltonian, 3-colorable

Graph → Device A → {0,1}

Transducers: Finding configurations in a graph
Connected component, (hamiltonian) cycle, 3-coloring

Graph → Device T → Graph

Counters: Counting configurations in a graph
Connected components, (hamiltonian) cycles,

Graph → Device C → N
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Input for Devices

• For Finite Automata and Turing Machines the inputs are coded as (fi-
nite) words over some alphabet Σ.

• For Boolean circuits the inputs are coded as
Boolean vectors in

⋃
n{0,1}n.

• For Algebraic circuitS over a field or ring R,
the inputs are coded as vectors over

⋃
nRn.

• For Register Machines we may have specialized registers
for specific data types, including words, natural numbers,
real numbers, finite relations, etc.....

File:prelude.tex 8



236331-2018/9, Computability and Definability Lecture 1: Overview

Complexity theory, I

Each machine type uses resources:

• Computing time

• Number of gates

• Space on tape

• Number of auxiliary registers

• Content size of registers
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Complexity theory, II

Computability: There is a machine which solves the problem.

Complexity: There is a machine which solves the problem
with prescribed resources.

Machine classes: Determinsitic Finite Automata,
Non-determinsitic Finite Automata,
Pushdown Automata, Weighted Automata

Determinsitic Complexity classes: Time(f(n)), Space(f(n)),
PTime = P, LogSpace = L, PSpace.

Non-determinsitic Complexity classes: NTime(f(n)), NSpace(f(n)),
NPTime = NP, NLogSpace = NL,
NPSpace.

L ⊆ NL = CoNL ⊆ P ⊆ NP ⊆ PH ⊆ PSpace ⊆ ExpTime
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Complexity theory, III

Upper bounds: Problem P can be solved in the prescibed resource bounds.

Lower bounds: Problem P cannot be solved in the prescibed resource bounds.

Relative bounds: Problem P needs at least/most the amount of resources
as problem P ′.
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Definability, I

We specify a problem (a set of instances) in a formal language.

Formal languages can be

• Regular expressions for sets of words.

The words over {a, b} where all the a’s come before the b’s.

• First order logic FOL for sets of graphs.

The regular graphs of degree 5.

• Second order logic SOL for sets of graphs.

The connected graphs.

• Temporal logic for behaviour of programs.

Inputs on which the program terminates.
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Definability, II

A problem P is definable in a formal language L
if there is an expression (a formula) of L which characterizes exactly the
instances of P.

Definable in L: Connectivity of graphs is definable in Monadic Second Order
Logic MSOL.

Non-definable in L: Connectivity of graphs is not definable in First Second
Order Logic FOL.

Relative-definable in L: A graph is Eulerian in any logic L where being of
even cardinality is definable.
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Definability, III

How do we prove definability in a given logic L?

• We translate the set theoretic concept directly into the logic.

A graph has no edges.

• We first translate the set theoretic concept C into another concept C′
and prove their equivalence.

A graph is Eulerian iff it is connected and each vertex has even degree.

This may be a (difficult) theorem of mathematics. .

Then we translate C′ into L.

How do we prove non-definability in a given logic L?

• We have to develop special tools!

File:prelude.tex 14



236331-2018/9, Computability and Definability Lecture 1: Overview

Descriptive Complexity

We are looking for theorems of the form:

A class of objects O is

computable with specific resource bounds

iff

it is definable in a specific logic L.

The first theorem of this firm was discovered during World War II indepen-
dently in the USA (by S. Kleene) and in Poland (by A. Mostowski).

File:prelude.tex 15



236331-2018/9, Computability and Definability Lecture 1: Overview

The Kleene-Mostowski Theorem (1943, 1947)

A set A ⊂ IN of natural numbers is recursively enumerable
(or equivalently semi-computable by a Turing machine) iff
A is definable in the arithmetic structure of the natural numbers
〈 IN,+,×, <,0,1〉 by a Σ0

1 formula.

Σ0
0 formulas are FOL formulas with only bounded quantifiers ∃x < t, ∀x < t. Σ0

1 formulas are
FOL formulas of the form ∃xφ(x) where φ ∈ Σ0

0.

S. Kleene A. Mostowski
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The Büchi-Elgot-Trakhtenbrot Theorem
(1958, 1960)

A language (set of words) is recognizable by a
Finite Automaton iff it is definable in
(existential) Monadic Second Order Logic.

. R. Büchi C. Elgot B. Trakhtenbrot
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The Jones-Selman-Fagin Theorem (1974)

A language (set of words) is recognizable by a
non-deterministic Turing machine in polynomial time iff
it is definable in existential Second Order Logic.

. N. Jones A. Selman R. Fagin
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The Immerman-Vardi-Grädel Theorem (1980, 1991)

A language (set of words) is recognizable by a

deterministic Turing machine in polynomial time iff it is

definable in existential Second Order Logic with Horn formulas.

N. Immerman M. Vardi E. Grädel
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Lecture 1:

Second Order Logic SOL and its fragments.

In this course we look at (labeled) graphs and other relational structures.

• The basic definitions.
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Logics, a reminder

We define logics.

• Vocabularies: The basic relations

• Structures: Interpretations of vocabularies

• Variables: Indivicual variables, relation variables, function variables

• Atomic formulas

• Boolean closures

• Quantifications
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Vocabularies

A vocabulary is a (finite) set of basic symbols.

We deal with (possibly many-sorted) relational vocabularies.
The basic symbols are sorts symbols and relation symbols.

Sort symbols: Uα : α ∈ IN

Relation symbols: Ri,α : i ∈ Ar, α ∈ IN where Ar is a set of arities, i.e. of
finite sequences of sort symbols.

Constant symbols: cα,β for α, β ∈ IN, where α indicates the sort number.

In the case of one-sorted vocabularies, the arity is just of the form
〈U,U, . . . . . . , U〉︸ ︷︷ ︸

n

which will denoted by n.

Vocabularies are denoted by greek letters τ, σ, τi, σi with i ∈ IN.
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τ-structures, I

τ-structures are interpretations of vocabularies.

More precisely, a τ-structure is a function assigning subsets of cartesian prod-
ucts of a fixed set A to each symbol.

A : τ → A ∪
∞⋃
n=1

℘(An)

with the following restrictions:

• A(Uα) = Aα ⊆ A

• A(Uα) ∩ A(Uβ) = ∅ for α 6= β

• If i = 〈Uα1, . . . , Uαk
〉 is the arity of Ri,α then

A(Ri,α) ⊆ Aα1,× . . . ,×Aαk

• A(cα,β) ∈ Aα.
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τ-structures, II: Graphs and hypergraphs

Graphs and digraphs: τgraph = {U1, R2,1}.
The elements of the set A(U1) = V are called vertices. The subset
A(R2,1) = E ⊆ V 2 is called the (directed) edge relation.
If E is symmetric, the τ-structures is an undirected graph, otherwise it
is a directed graph (aka digraph).
If (u, u) ∈ E the veretx u has a loop.

Hypergraphs: τhgraph = {U1, U2, R〈1,2〉,1}
The elements of the set A(U1) = V are called vertices.
The elements of the set A(U2) = E are called edges.
The subset A(R〈1,2〉,1) ⊆ V ×E is called the undirected incidence relation.

Directed hypergraphs: τhgraph = {U1, U2, R〈1,2,1〉,1}
The elements of the set A(U1) = V are called vertices.
The elements of the set A(U2) = E are called edges.
The subset A(R〈1,2,1〉,1) ⊆ V×E×V is called the directed incidence relation.
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τ-structures, III: Labeled graphs and words

Vertex labeled Graphs: Graphs with `-many vertex labels, ` ∈ IN:
τlgraph = {U1, R2,1, P1, . . . , P`},
like graphs but with unary predicates Pi for vertex labels.

Edge labeled Graphs: Graphs with `-many edge labels, ` ∈ IN:
τlgraph = {U1, R2,i} with i = 1, . . . , ` ,
like graphs but with `-many edge relations for edge labels.

Words in Σ∗: Let Σ be a finite alphabet (set).
τword = {U1, R2,1, R1,a}, a ∈ Σ , where
A(R2,1) is a linear order, and
A(R1,a) ∩ A(R1,b) = ∅ for a, b ∈ Σ, a 6= b, and

⋃
a∈Σ A(R1,a) = A(U1).

τword-structures satsifying these conditions are words in Σ∗.
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Empty structures

In logic and universal algebra a τ-structure A is non-empty, i.e., for at least
one sort symbol Uα ∈ τ the set A(Uα) 6= ∅.

We allow empty structures!

The reason for not allowing empty structures is the axiomatization of First
Order Logic FOL. The axiom

∀xP (x)⇒ ∃xP (x)

only holds in non-empty one-sorted τ-structures.
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Making structures one-sorted

We can always make τ-structures into one-sorted τ ′-structures:

• We replace the sorts Uα ∈ τ by one sort V ∈ τ ′.

• We add for each sort Uα ∈ τ a unary relation symbol Pα ∈ τ ′.

• We replace each R(α1,...,αm),i ∈ τ by Rm,i ∈ τ ′. Constant symbols remain
the same.

We then make a τ-structure A into a τ ′-structure A′ by setting

• A′(V ) =
⋃
Uα∈τ A(Uα), and

• A′(Pα) = A(Uα)

• A(R(α1,...,αm),i) = A′(Rm,i)
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Isomorphisms and homomorphisms of τ-structures

Let A and B be two τ-strucures on sets
A =

⋃
α,Uα∈τ A(Uα) and B =

⋃
α,Uα∈τ B(Uα) respectively.

Let f : A→ B a function. f is a τ-homomorphism if

• For all Uα ∈ τ we have:
a ∈ A(Uα) iff f(a) ∈ B(Uα).

• For all R(α1,...,αm),i ∈ τ we have:
(a1, . . . , am) ∈ A(R(α1,...,αm),i) iff (f(a1), . . . , f(am)) ∈ B(R(α1,...,αm),i).

• For all cα ∈ τ we have:
f(A(cα)) = B(cα).

f is a τ-isomorphism if additionally f is one-one and onto.

A and B are τ-isomorphic if there is a τ-isomorphism f : A→ B.

File:w-logics.tex 29



236331-2018/9, Computability and Definability Lecture 1: Logics

τ-substructures

Let A and B be two τ-strucures on sets
A =

⋃
α,Uα∈τ A(Uα and B =

⋃
α,Uα∈τ B(Uα respectively.

A is isomorphic to a substructure of B if there is a function f : A → B such
that:

• f is one-one.

• For all Uα ∈ τ we have:
If a ∈ A(Uα) then f(a) ∈ B(Uα).

• For all R(α1,...,αm),i ∈ τ we have:
If (a1, . . . , am) ∈ Am then
(a1, . . . , am) ∈ A(R(α1,...,αm),i) iff (f(a1), . . . , f(am)) ∈ B(R(α1,...,αm),i).

• For all cα ∈ τ we have:
f(A(cα)) = B(cα).

If f is the identity, we say A is a substructure of B.
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Subgraphs and induced subgraphs

In graph theory an undirected graph G without multiple edges is given by two
sets V (G) and E(G) with E(G) ⊆ V (G)(2).

Let G,H be two graphs.

Subgraph: H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ V (H)2∩E(G).

This corresponds to the notion of substructure for graphs
viewed as hypergraphs. i.e., τ-structures for τ = τhgraph

Induced subgraph: H is an induced subgraph of G if V (H) ⊆ V (G) and
E(H) = V (H)(2) ∩ E(G).

This corresponds to the notion of substructure for graphs
viewed as graphs, i.e., τ-structures for τ = τgraph

Isomorphisms: H and G are isomorphic as τgraph-structures iff
they are isomorphic as τhgraph-structures.
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Properties of a τ-structure

A property of τ-structures is a class P of
τ-structures closed under τ-isomorphisms.

Examples:

• All finite τ-structures.

• All {R2,0}-structures where R2,0 is interpreted as a linear order.

• Al finite 3-dimensional matchings 3DM , i.e. all {R3,0}-structures with
universe A where the interpretation of R3,0 contains a subset M ⊆ A3

such that no two triples of M agree in any coordinate.

• All binary words which are palindroms.

We say a τ-structure A has property P iff A ∈ P.
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First Order Logic FOL

We now assume our vocabularies are one-sorted with sort symbol V .

We define the set of formulas FOL(τ):

Variables: u, v, w, . . . ranging over elements of the interpretation of V .

Terms: Variables and constant symbols in τ are τ-terms.

Atomic formulas: For each Rm,j ∈ τ and τ-terms t1, . . . , tm the expressions
Rm,j(t1, . . . , tm), t1 = t2 are atomic formulas in FOL(τ).

Boolean conncectives: If φ and ψ are in FOL(τ), so are
φ ∧ ψ, φ ∨ ψ, φ⇒ ψ and ¬φ.

Quantifiers: If φ is in FOL(τ) and v is a variable, then
∃vφ and ∀vφ are in FOL(τ).
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Second Order Logic SOL

We now define SOL(τ), the set of SOL-formulas for a vocabulary τ :

FOL : FOL(τ) ⊆ SOL(τ) and SOL(τ) is closed under boolean connectives
and first order quantification.

Second order variables: For each m, j ∈ IN−{0} we have second order vari-
ables Xm,j of arity m.
For each Xm,j a second order variable, and τ-terms t1, . . . , tm the expres-
sion Xm,j(t1, . . . , tm), is an atomic formulas in SOL(τ).

Second order quantification: If φ ∈ SOL(τ) so are ∀Xm,jφ and ∃Xm,jφ.

Monadic Second Order formulas MSOL(τ) are those where for the arity m of
the second order variables we have m = 1.

Analogously, SOLn(τ) is obtained by restricting the arity m of the second

order variables to m ≤ n.
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Lecture 1: Definability in graph theory

In this course we look at (labeled) graphs and other relational structures.

• Graph properties are classes of graphs
closed under graph isomorphism.

• Graph parameters are functions of graphs
invariant under graph isomorphism
with values in some domain, usually a ring or semi-ring such as the natural
numbers IN or the integers /Z or the reals IR, or a polynomial ring in
sveral indeterminates.
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Second Order Logic (SOL)

• Second Order Logic is the natural language
to talk about graph properties.

We shall show this informally and only after that define
the syntax and semantic of SOL.

• We shall see we can also use SOL to define graph parameters.
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Second Order Logic SOL and some of its fragments.

Atomic formulas for graphs are E(u, v) and u = v for individual variables u, v,
and R(u1, . . . , um) for m-ary relation variables R.

• First Order Logic FOL:

Closed under boolean operations and quantification over individual vari-
ables. No relation variables.

• Second order Logic SOL:

Closed under boolean operations and quantification over individual and
relation variables of arbitrary but fixed arity.

• Monadic Second order Logic MSOL:

Closed under boolean operations and quantification over individual and
unary relation variables.
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Concrete graphs (in R3)

A concrete graph G is given by

• a finite set of points V in R3, and

• a finite set E of ropes linking two points v1, v2.

The ropes are continuous curves which do not intersect.

Without loss of generality we can take the points also in IRm for m ≥ 3.

The ropes are called arcs.
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Plane graphs

A plane graph G is given by

• a finite set of points V in R2, and

• finite set E of arcs linking two points v1, v2.

The arcs are continuous curves which do not intersect.

All intersection points in the drawing are points of the graph!
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Abstract graphs

An abstract graph G = (V (G), E(G)) is given by

• a finite set of vertices V = V (G), and

• a finite set E = E(G) of edges linking two vertices v1, v2.

Here E ⊆ V (2) where V (2) denotes the set of
unordered pairs of elements of V .
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V = {1, . . . ,6}

E =


{(1,2), (2,3), (3,1)}∪
{(4,5), (5,6), (6,4)}∪
{(1,6), (6,3), (3,5), (5,2), (2,4), (4,1)}

1

2

3

4

5

6
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Graph isomorphism and subgraphs

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a
function f : V1 → V2 such that

• f is bijective (one-one and onto), and

• (u, v) ∈ E1 iff (f(u), f(v)) ∈ E2.

G1 = (V1, E1) is a subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2.

G1 = (V1, E1) is an induced subgraph of G2 = (V2, E2) if V1 ⊆ V2 and for all

(u, v) ∈ V (2)
1 ∩ E2 we also have (u, v) ∈ E1.

G1 = (V1, E1) is a spanning subgraph of G2 = (V2, E2) if E1 ⊆ E2 and for all

u ∈ V2 u ∈ V1 iff there is v ∈ V2 with (u, v) ∈ E1.
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Two isomorphic graphs

V1 = V2 = {1, . . . ,6}

E1 =

{
{(1,2), (2,3), (3,1), (4,5), (5,6), (6,4)}∪
{(1,6), (6,3), (3,5), (5,2), (2,4), (4,1)}

E2 =

{
{(1,4), (4,3), (3,1), (5,2), (2,6), (6,5)}∪
{(1,6), (6,3), (3,2), (2,4), (4,5), (5,1)}

G1 and G2 are isomorphic with
f(1) = 1, f(2) = 4, f(3) = 3, f(4) = 5, f(5) = 2, f(6) = 6.

1

2

3

4

5

6

1

2

3

4

5 6
G G1
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G1 is isomorphic to G.

G2 is a subgraph of G, but not an induced subgraph.

G3 is an induced subgraph and G4 is a spanning subgraph of G.

1

2

3

4

5

6

1

2

3

4

5 6

2
3

4

5 6
2

3
4

5 6

G G1

G2 G3

2
3

5 6

G4
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Some graph properties: Regularity

A graph G is (give definition in SOL):

• of degree bounded by d ∈ IN.

Every vertex has at most d neighbors.

• k-regular (k ∈ IN)

Every vertex has exactly k neighbors.

• regular

Every vertex has exactly the same number of neighbors.

• Regular and degree bounded by d.
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Definable in First Order Logic FOL

• The vertices v0, v1, . . . , vn are all different:

Diff(v0, v1, . . . , vn) :

 i,j≤n∧
i=0,j=1,i<j

vi 6= vj


• A vertex v0 has degree at most d:

Deg≤d(v0) : ∀v1, . . . , vd, vd+1

d+1∧
i=0

E(v0, vi)→
i=d+1,j=d+1∨
i=0,j=0,i 6=j

vi = vj


• A vertex v0 has degree at least d:

Deg≥d(v0) : ∃v1, . . . , vd

(
Diff(v1, . . . , vd) ∧

d∧
i=1

E(v0, vi)

)
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Regularity definable in .....

The following graph properties are definable in FOL (use previous slide):

• k-regular;

• regular and of bounded degree d;

The following are not definable in FOL (nor in Monadic Second order Logic
MSOL):

• regular;

• each vertex has even degree.

To show non-definability in FOL we need the machinery of

Ehrenfeucht-Fräıssé Games or Connection matrices.
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Regularity definable in .....

The following are definable in SOL:

• Two sets A,B ⊆ V have the same size:

EQS(A,B) : ∃R (Funct(R,A,B) ∧ Inj(R) ∧ Surj(R))

where Funct(R,A,B), Inj(R),Surj(R) are FOL-formulas saying that R is a
function from A to B which is one-one (injective) and onto (surjective).

• A vertex v has even degree:

The set of neighbors of v can be partitioned into two sets of equal size

EDeg(v0) : ∃A,B (Part(Nv, A,B) ∧ EQS(A,B))

• Two vertices u, v have the same degree:

The set of neighbors Nu, Nv of u and v have the same size.

SDeg(u, v) : EQS(Nu, Nv)
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Some graph properties: Closure proerties of graph classes.

A graph property is called

• hereditary if it is closed under induced subgraphs.

• monotone if it is closed under subgraphs, not necessarily induced.

• monotone decrasing if it is closed under deletion of edges, but not nec-
essarily of vertices.

• monotone increasing if it is closed under addition of edges, but not nec-
essarily of vertices.

• additive if it is closed under disjoint unions.

Note that monotone implies hereditary and monotone decreasing.
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Examples for the closure properties

• d-regular graphs are only additive.

• Graphs of bounded degree d are monotone and additive.

• Cliques (complete graphs) are hereditary but not monotone.

• Connectivity is only monotone increasing.

• Exercise: Check the above closure properties of graph properties for
your favorite graph properties.

• Exercise: Check the above closure properties of all the graph properties
discussed in the sequel of this course.
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Forbidden (induced) subgraphs

Let H = {Hi : i ∈ I} be a family of graphs.

• We denote by Forbsub(H) (Forbind(H)) the class of graphs G which have
no (induced) subgraph isomorphic to some graph H ∈ H.

• Forbsub(H) is monotone and Forbind(H) is hereditary.

Theorem: (Exercise)
Let P be a monotone (hereditary) graph property. Then there exists a family
H = {Hi : i ∈ I} of finite graphs such that P = Forbsub(H) (respectively
P = Forbind(H)).

Proposition: Let H = {Hi : i ∈ I} be a family of graphs with I finite. Then
both Forbsub(H) and Forbind(H) are definable in FOL.
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Homework 1

Characterize the following graph properties using
Forbsub(H) or Forbind(H),
and determine their definability in FOL and SOL.

• Forests

• Cliques

• Find other examples! You may consult:

@BOOK(bk:BrandstaedtLeSpinrad,
AUTHOR = {A. Brandst\"adt and V.B. Le and J. Spinrad},
TITLE = {Graph Classes: A survey},
PUBLISHER = {{SIAM} },
SERIES = {{SIAM} Monographs on Discrete Mathematics and Applications},
YEAR = {1999})
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Some graph properties: Colorability

Let P be a graph property. A graph G is (give definition in SOL,MSOL):

• 3-colorable:

The vertices of G can be partitioned into three disjoint sets Ci : i = 1,2,3 such that
the induced graphs G[Ci] consist only of isolated points.

This can be expressed in MSOL.

• k-P-colorable(k ∈ IN):

The vertices of G can be partitioned into k disjoint sets Ci : i = 1, . . . , k such that the
induced graphs G[Ci] are in P.

If P is definable in SOL (MSOL), this is also definable in SOL (MSOL).

• P-colorable:

The vertices of G can be partitioned into disjoint sets Ci : i ∈ I ⊂ IN such that the
induced graphs G[Ci] are in P.

This is definable in SOL provided P is. It is not MSOL-definable.
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k-colorable graphs

A subset V1 of a graph G = (V,E) is independent if it induces a graph of
isolated points (without neighbors nor loops).

A graph is k-colorable if its vertices can be partitioned into k independent
sets.

Part(X1, X2, X3) :

((X1 ∪X2 ∪X3 = V ) ∧ ((X1 ∩X2) = (X2 ∩X3) = (X3 ∩X1) = ∅))

Ind(X) :

(∀v1 ∈ X)(∀v2 ∈ X)¬E(v1, v2)

With this 3-colorable can be expressed as

∃C1∃C2∃C3 (Part(C1, C2, C3) ∧ Ind(C1) ∧ Ind(C2) ∧ Ind(C3))

We have expressed 3-colorability by a formula in Monadic Second Order Logic.

Question: Can we express this in First Order Logic ?
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Some graph properties: Chordality

A graph is a simple cycle of length k of it is of the form:

k=7

A graph is a simple cycle iff it is connected and 2-regular.

A graph G is chordal or triangulated if there is no induced subgraph of G
isomorphic to a simple cycle of length ≥ 4.

Exercise: Find a MSOL-expression for chordality.
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Some graph properties: Eulerian and Hamiltonian

A graph G is (give definition in SOL):

• Eulerian:

We can follow each edge exactly once, pass through all the edges, and return to the

point of departure.

Theorem (Euler): A graph is Eulerian iff it is connected and each vertex
has even degree.

• Hamiltonian:

We can follow the edges visiting each vertex exactly once, and return to the point of

departure.
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Eulerian graphs

A graph G = (V,E) is Eulerian if we can follow each edge exactly once, pass
through all the edges, and return to the point of departure.

Equivalently:
Can we order all the edges of E

e1, e2, e3, . . . em

and choose beginning and end of th edge ei = (ui, vi) such that for all i,
vi = ui+1 and vm = u1.

∃R (LinOrd(R,E)∧
(∀u, v, u′, v′First(R, u, v) ∧ Last(R, u′, v′)→ u = v′)∧

(∀u, v, u′, v′Next(R, u, v, u′v′)→ v = u′)
)

whith the obvious meaning of LinOrd(R,E), First(R, u, v) and Last(u, v).

Alternatively, we can use Euler’s Theorem.

As we shall see later, it cannot be expressed in MSOL.
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Hamiltonian graphs

We note: A graph with n vertices is Hamiltonian if it contains a spanning
subgraph which is a cycle of size n.

We define formulas:

Conn(V1, E1): (V1, E1) is connected.

Cycle(V1, E1): (V1, E1) is a cycle, i.e., regular of degree 2 and connected.

Ham(V,E) : ∃V1∃E1 (Cycle(V1, E1) ∧ E1 ⊆ E ∧ V1 = V )
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A subtle point: Graphs vs hypergraphs, I

• Graphs are structures with universe V of vertices, and a
binary edge relation E.
There can be at most one edge between two vertices.

• Hypergraphs have as their universe two disjoint sets V and E and an
incidence (hyperedge) relation R(u, v, e).
There can be many edges between two vertices.

• In both cases the relations are symmetric in the vertices.

• A Graph G can be viewed as hypergraph (h-graph) h(G) where there is
at most one edge (up to symmetry) between two vertices.

• There is a one-one correspondence between graph and h-graphs.
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G and h(G)
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A subtle point: Graphs vs hypergraphs, II

• FOL and SOL are equally expressive on graphs and h-graphs.

• MSOL is more expressive on h-graphs than on graphs.

Hamiltonicity is not definable in MSOL on graphs, but is definable on
h-graphs.

We shall discuss this in detail in a later lecture.
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How to prove definablity in SOL, MSOL and FOL?

So far we have looked at properties of
abstract (directed) graphs and hypergraphs.

• Formulate the property using set theoretic language of finite sets over
the set of vertices and edges and their incidence relation.

• Try to mimick this formulation in SOL.

• If you succeed, try to do it in MSOL or even FOL.
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Test your fluency in SOL! (Homework)

Express the following properties in FOL, if possible.

• A graph G is a cograph if and only if there is no induced subgraph of G
isomorphic to a P4.

• A G is P4-sparse if no set of 5 vertices induces more than one P4 in G.

• Triangle-free graphs: There is no induced K3.

• Existence of prescribed (induced) subgraph H.

• H-free graphs: non-existence of prescribed (induced) subgraph H.

• Let P be a graph property.
P-free graphs: non-existence of an induced subgraph H ∈ P .
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Topological properties of graphs (from Wikipedia)
http://en.wikipedia.org/wiki/Genus (mathematics)

So far our graph properties were formulated in the language of graphs, in-
volving as basic concepts only vertices, edges and their incidence relations.

Topological graph theory studies the embedding of graphs in surfaces, spatial
embeddings of graphs, and graphs as topological spaces.

• A graph is planar if it is isomorphic to a plane graph.

• The genus of a graph is the minimal integer n such that the graph can be
drawn without crossing itself on a sphere with n handles (i.e. an oriented
surface of genus n).

Thus, a planar graph has genus 0, because it can be drawn on a sphere
without self-crossing.

genus: 0,1,2,3
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Planar graphs, I

A graph is planar iff it is isomorphic to a plane graph.

This definition involves the geometry of th Euclidean plane.

How can we express planarity

without geometry ?
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Kuratowski’s Theorem

Kazimierz Kuratowski (1896-1980)

http://en.wikipedia.org/wiki/Kuratowski’s theorem

A subdivision of a graph G is a graph formed by subdividing its edges into
paths of one or more edges.

K3 and a subdivision of K3

Theorem: A finite graph G is planar if and only if it does not contain a

subgraph that is isomorphic to a subdivision of K5 or K3,3.
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Planar graphs, II

Theorem: Planarity is definable in MSOL.

• We use Kuratowski’s Theorem.

• For a fixed graph H, G is a subdivision of H, is definable in MSOL.

• For a graph property P definable in MSOL,
G has a subgraph H ∈ P, is definable in MSOL.

Exercise: Prove the last two statements.
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Graph minors, I

http://en.wikipedia.org/wiki/Graph minor

An undirected graph H is called a minor of the graph G if H can be formed
from G by deleting edges and vertices and by contracting edges.

H is a minor of G.

First construct a subgraph of G by deleting the dashed edges (and the
resulting isolated vertex), and then contract the thin edge

(merging the two vertices it connects).
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Graph minors, II

Proposition: For fixed H the statement H is a minor of G
is definable in MSOL.

• An edge contraction is an operation which removes an edge from a graph
while simultaneously merging the two vertices it used to connect.

• An undirected graph H is a minor of another undirected graph G if a
graph isomorphic to H can be obtained from G by contracting some
edges, deleting some edges, and deleting some isolated vertices.

• The order in which a sequence of such contractions and deletions is
performed on G does not affect the resulting graph H.

• Let (V )H = {v1, . . . , vm}. We have to find V1, . . . , Vm ⊆ V (G) which we all
contract to a vertex ui corresponding to vi such that Vi connects to Vj
iff (vi, vj) ∈ E(H).

• The vertices in V (G)−
⋃m
i Vi are discarded.
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Minor closed graph classes

• H is a topological minor of G if G has a subgraph which is isomorphic to
a subdivision of H.

• A graph property P is closed under (topological) minors, if whenever
G ∈ P and H is a (topological) minor of G the also H ∈ P .

Examples:

• Trees are not closed under minors, but forests are.

• Graphs of degree at most 2 are minor closed, but graphs of degree at
most 3 are not.

• Planar graphs are both closed under minors and topological minors.
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Forbidden minors, I

Let H = {Hi : i ∈ I} be a family of graphs.

• We denote by Forbmin(H) (Forbtmin(H)) the class of graphs G which have
no (topoligical) minors isomorphic to some graph H ∈ H.

• Forbmin(H) is closed under topological minors, is monotone and hence,
hereditary.

Theorem: (Exercise)
Let P be a graph property closed under (topological) minors. Then there
exists a family H = {Hi : i ∈ I} of finite graphs such that P = Forbmin(H)
(respectively P = Forbtmin(H)).

Proposition: Let H = {Hi : i ∈ I} be a family of graphs with I finite. Then

both Forbmin(H) and Forbtmin(H) are definable in MSOL.
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The Graph Minor Theorem, 1983-2004

aka Robertson-Seymour Theorem

(formerly the Wagner conjecture, 1937)

Here is one of the deepest theorems in structural graph theory:

Theorem: Let P be a graph property closed under minors.

Then P = Forbmin(H) with H finite.

Corollary: Every graph property P property closed under minors

is definable in MSOL.

K. Wagner N. Robertson P. Seymour
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Wagner’s Theorem and Hadwiger’s Conjecture

Theorem: A graph G is planar iff K5 and K3,3 are not minors of G.

• This gives another proof that planarity is MSOL-definable.

Conjecture: If a graph G is not k-colorable then its has the complete graph
Kk+1 as a minor.

The conjecture was proven for k ≤ 6.

The converse is not true.
There are bipartite graphs with a K4 minor.
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Logic and Complexity: Regular languages

Let L ⊆ Σ? be a magenta language, i.e., a set of words over the alphabet Σ.

We assume you are familiar with automata theory!

Theorem:(Kleene; Büchi, Elgot; Trakhtenbrot)

The following are equivalent:

• L is recognizable by a deterministic finite automaton.

• L is recognizable by a non-deterministic finite automaton.

• L is regular, i.e., describable by a regular expression

• The set of τword-structures Aw with w ∈ L is definable in MSOL(τword).
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Complexity classes

We need to recall some complexity classes:

L: Deterministic logarithmic space.

NL: Non-deterministic logarithmic space.

P: Deterministic logarithmic space.

NP: Non-deterministic polynomial time.

PH: The polynomial hierarchy.

]P: Counting predicates in P (Valiant’s class)

PSpace: Deterministic polynomial space.
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Complexity of SOL-properties

Fagin, Christen:
The NP-properties of classes of τ-structures are exactly the
∃SOL-definable properties.

Meyer,Stockmeyer:
The PH-properties (in the polynomial hierarchy)
of classes of τ-structures are exactly the SOL-definable prop-
erties.

Makowsky, Pnueli:
For every level ΣP

n of PH there are MSOL-definable classes
which are complete for it.
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Separating Complexity Classes, I

We have

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ ]P ⊆ PSpace

• To show that PH does not collapse to NP we have to find a τ-sentence
φSOL(τ) which is not equivalent over finite structures to an existential
τ-sentence ψSOL(τ).

• Every sentence φ ∈ SOL(τ) is equivalent (over finite structures) to an
existential sentence ψ ∈ SOL(τ) iff NP = CoNP.
Note we allow arbitrary arities of the quantified relation variables.

Over infinite structures this is known to be false (Rabin)

• If there is a φ ∈ SOL(τ) which is not equivalent to an existential sentence,
then P 6= NP.
And there should be such a sentence !

• To show that PSpace is different from PH it suffices to find
a PSpace-complete graph property which is not SOL-definable.
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HEX and Geography, I

• The game HEX:
Given a graph G and two vertices s, t.
Players I and II color alternately vertices in V − {s, t} white and black
respectively.
Player I tries to construct a white path from s to t and Player II tries to
prevent this.

HEX: The class of graphs which allow a Winning Strategy for player I.

• The game GEOGRAPHY:
Given a directed graph G. Players I and II choose alternately new edges
starting at the end point of the last chosen edge. The first who cannot
find such an edge has lost.

GEO: The class of graphs which allow a Winning Strategy for I.
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HEX and Geography, II

Theorem (Even, Tarjan): HEX is PSPACE-complete.

Theorem (Schaefer): GEO is PSPACE-complete.

Problem: Are they SOL-definable?

This would imply that PSPACE= PH, and the polynomial hierarchy
collapses to some finite level!

Short versions: Fix k ∈ IN.
SHORT-HEX, SHORT-GEOGRAPHY asks whether Player I can win in
k moves.

S-HEX and S-GEO are the class of (orderd) graphs where player I has a
winning strategy.

S-HEX and S-GEO are FOL-definable for fixed k.
(and therefore solvable in P).
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The role of order, I

Let τ= be the one sorted vocabulary without any relation or constant symbols.
We have only equality as atomic formulas.

Let τ< be the one sorted vocabulary with one binary relation symbol R< which
will e interpreted as a linear order.

• The class of structures of even cardinality EVEN is not definable in
MSOL(τ=).

We shall prove this later.

• The class of structures of even cardinality EVEN is definable in MSOL(τ=)
by a formula φEV EN .

File:w-sol.tex 80



236331-2018/9, Computability and Definability Lecture 1: Graph Theory

The role of order, II: Constructing φEV EN

We use the order to define the binary relation 2NEXT and the unary relation
Odd

• For a structure A = 〈A,<〉, let (a, b) ∈ 2NEXTA iff a < b and there is
exactly one element strictly between a and b.

• The first element is in OddA.
If a ∈ OddA and (a, b) ∈ 2NEXTA then b ∈ OddA.

• Let φEV EN be the formula which says that the last element is not in Odd.

• Now the a structure 〈A,<〉 is in EVEN iff its last element is not in OddA.

Q.E.D.
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The role of order, III: Order invariance

In the previous example EVEN the MSOL(τ<)-formula φEV EN is order invariant
in the following sense:

Let A1,A2 be two structures with universe A and different order relations <1

and <2.
Then A1 |= φEV EN iff A2 |= φEV EN .

We generalise this:

Let A1,A2 be two τ ∪ {R<}-structures with universe A and different order
relations A1(R<) =<1 and A2(R<) =<2 but for all other symbols in R ∈ τ we
have A1(R) = A2(R).

A τ ∪ {R<}-formula in SOL is order invariant if for all structures A1,A2 as
above we have

A1 |= φ iff A2 |= φ

File:w-sol.tex 82



236331-2018/9, Computability and Definability Lecture 1: Graph Theory

The fragment HornESOL(τ).

• A quantifier-free τ-formula is a Horn clause if it is a disjunction of atomic
or negated atomic formulas where at most one is not negated.

¬α1 ∨ ¬α2 ∨ . . . ∨ ¬αn ∨ β
where αi, β are atomic.

• A quantifier-free τ-formula is a Horn formula if it is a conjunction of Horn
clauses.

• A formula φ ∈ SOL(τ) is in HornESOL(τ) of it is of the form

∃U1,r1, U2,r2, . . . , Uk,rk∀v1, . . . , vmH(v1, . . . , vm, U1,r1, U2,r2, . . . , Uk,rk)

where H is a Horn formula and vi are first order variables.
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Some classes of graphs

order invariantly (o.i.) definable in HornESOL(τgraph)

• Graphs of even cardinality, of even degree. order is needed !

• Bipartite graphs G = (V1, V2, E) with |V1| = |V2|.

• Regular graphs, and regular graphs of even degree.

• Connected graphs.

• Eulerian graphs.

To be discussed on the blackboard.
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The Immermann-Vardi-Graedel Theorem (IVG)

Let τ be a relational vocabulary with a binary relation
for the ordering of the universe.

Theorem 1 (Immermann, Vardi, Graedel 1980-4)

Let C be a set of finite τ-structures. The following are equivalent:

• C ∈ P;

• there is a τ-formula φ ∈ HornESOL(τ) such that A ∈ C iff A |= φ.

Here the presence of the ordering is crucial:

Without it the class of structures for the empty vocabulary of even cardinality

is in P, but not definable in HornESOL.
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The Immermann-Vardi-Graedel Theorem (IVG):

Order invariant version

Let τ be a relational vocabulary and
τ1 = τ ∪ {R<}. with a binary relation for the ordering of the universe.

Theorem 2 (Graedel 1980-4, Dawar, Makowsky)

Let C be a set of finite τ-structures. The following are equivalent:

• C ∈ P;

• there is an order invariant τ1-formula φ ∈ HornESOL(τ) such that for all
τ-structures A and linear orderings RA ⊂ A(V )2 A ∈ C iff 〈A, RA〉 |= φ.
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Conclusion: The logical equivalent to P = NP

Let τ be a relational vocabulary which contains
a binary relation for the ordering of the universe.

The following are equivalent:

• P = NP in the classical framework.

• Every ESOL(τ)-formula is equivalent over finite ordered τ-structures to
some HornESOL(τ)-formula.

• Every o.i. ESOL(τ)-formula is equivalent over finite ordered τ-structures
to some o.i. HornESOL(τ)-formula.
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Logics capturing complexity classes

Without requiring the presence of order we have:

• A class C of finite structures is in NP iff C is definable in existential SOL.

• A class C of finite structures is in PH iff C is definable in SOL.

By requiring the presence of an order relation we have

• A class C of finite structures is in P iff C is 0.i. definable in existential
HornESOL.

• There are similar theorems for L,NL,PSpace.
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Numeric graph invariants (graph parameters)

We denote by G = (V (G), E(G)) a graph,
and by G and Gsimple the class of finite (simple) graphs, respectively.

A numeric graph invariant or graph parameter is a function

f : G → IR

which is invariant under graph isomorphism.

(i) Cardinalities: |V (G)|, |E(G)|

(ii) Counting configurations:

k(G) the number of connected components,
mk(G) the number of k-matchings

(iii) Size of configurations:

ω(G) the clique number
χ(G) the chromatic number

(iv) Evaluations of graph polynomials:

χ(G,λ), the chromatic polynomial, at λ = r for any r ∈ IR.
T (G,X, Y ), the Tutte polynomial, at X = x and Y = y with (x, y) ∈ IR2.
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Definability of numeric graph parameters, I

We first give examples where we use small, i.e., polynomial sized sums and products:

(i) The cardinality of V is FOL-definable by ∑
v∈V

1

(ii) The number of connected components of a graph G, k(G) is MSOL-definable by∑
C⊆V :component(C)

1

where component(C) says that C is a connected component.

(iii) The graph polynomial Xk(G) is MSOL-definable by∏
c∈V :first−in−comp(c)

X

if we have a linear order in the vertices and first− in− comp(c) says that c is a first
element in a connected component.
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Definability of numeric graph parameters, II

Now we give examples with possibly large, i.e., exponential sized sums:

(iv) The number of cliques in a graph is MSOL-definable by∑
C⊆V :clique(C)

1

where clique(C) says that C induces a complete graph.

(v) Similarly “the number of maximal cliques” is MSOL-definable by∑
C⊆V :maxclique(C)

1

where maxclique(C) says that C induces a maximal complete graph.

(vi) The clique number of G, ω(G) is is SOL-definable by∑
C⊆V :largest−clique(C)

1

where largest− clique(C) says that C induces a maximal complete graph of largest size.
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Definability of numeric graph parameters, III

Let R be a (polynomial) ring.

A numeric graph parameter p : Graphs→R is L-definable if it can be defined
inductively:

• Monomials are of the form
∏

v̄:φ(v̄)
t where t is an element of the ring R and φ is a

formula in L with first order variables v̄.

• Polynomails are obtained by closing under small products, small sums, and large sums.

Usually, summation is allowed over second order variables, whereas products
are over first order variables.

L is typically Second Order Logic or a suitable fragment thereof.
We are especially interested in MSOL and CMSOL, Monadic Second Order
Logic, possibly augmented with modular counting quantifiers.

If L is SOL we denote the definable graphparameters by SOLEVALR, and
similarily for MSOL and CMSOL.

Our definition of SOLEVAL is somehow reminiscent to the defintion of Skolem’s definition

of the Lower Elementary Functions.
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