How to Pack Trees

JOSEPH GIL ALON ITAI *
Department of Computer Science
Technion — Israel Institute of Technology
Technion City; Haifa; Israel 3200
Email: yogi | itai@CS.Technion.AC.IL

FAX: 4972-4-829-4353

February 21, 1999

Abstract

In a virtual memory system, the address space is partitioned into pages, and main
memory serves as a cache to the disk. In this setting, we address the following prob-
lem: Given a tree, find an allocation of its nodes to pages, so called a packing, which
optimizes the cache performance for some access pattern to the tree nodes. We inves-
tigate a model for tree access in which a node is accessed only via the path leading
to it from the root. Two cost functions are considered: the total number of different
pages visited in the search, and the number of page faults incurred. It is shown that
both functions can be optimized simultaneously. An efficient dynamic programming
algorithm to find an optimal packing is presented. The problem of finding an optimal
packing which also uses the minimum number of pages is shown to be NP-complete.
However, an efficient approximation algorithm is presented. This algorithm finds a
packing that uses the minimum number of pages, and requires at most one extra page
fault per search. Finally, we study this problem in the context of dynamic trees which

allow insertions and deletions.

*The second author was supported by the fund for the promotion of research at the Technion.

1 Introduction

1.1 Motivation

The simplicity and the elegance of the Random Access Machine (RAM) model have made
it the model of choice for many algorithm designers. However, it must be recognized that
memory is hardly ever “random access”. The rapid decrease in the cost-performance ratio
of CPUs has not been matched by that of storage units. As a result, true random access
machines are still economically infeasible. Most modern computer systems feature a memory
hierarchy of several levels: the topmost level is small, fast, and expensive; each successive
level is larger, slower and cheaper. The power of this structure is in that, due to caching, it
may be able to offer an expected access time close to that of the fastest level while keeping

the average cost per memory cell near the cost of the cheapest level.

A few words of reminder may be required here. On-chip-processor-cache and main mem-
ory are organized as an array of pages with identical and fixed page size. To access an item,
the processor first checks whether the memory page holding the item is in its cache. If it
is not there, a cache miss occurs and the entire memory page is loaded into the cache. A
similar structure, but with larger page sizes (typically 4Kb to 32Kb) occurs in a virtual
memory operating system where most of the memory resides on disk and is paged in on so
called page faults. Due to the huge difference in access times between successive memory

levels, a significant performance penalty is incurred by cache misses and page faults.

We should therefore also pay attention to questions pertaining to the cost of memory
reference in a hierarchical system. One such work is that of Aggarwal, Alpernm, Chandra,
and Snir [1] who suggested a computation model in which a charge of 1gi is associated with

the access to the ith memory cell.

Finding algorithms that enhance the effectiveness of caches is in a sense a problem dual to
finding cache management policies that attempt to optimize the performance of algorithms.
from the compiler optimization and numerical algorithms communities. A significant body
of research (see [10] for a brief survey) demonstrated performance enhancement in many
numerical algorithms operating on matrices. The key idea behind these results was the

alignment of the algorithm and the data structures to achieve better cache performance.

The performance gains were obtained by non-trivial loop transformations and judicious
layouts of the matrices with the aim of reducing the number of cache-misses and page-faults.
Although a more precise definition is required, the basic principle is simple: since a “locality
of reference” assumption underlies every hierarchical memory system, a program coerced to

exhibit this kind of behavior, will perform better.

Improving the locality of memory references has also a positive impact on the performance
of parallel performance by reducing communication overheads. Indeed, we see reports [11] of
these optimizations leading to almost doubling the measured speedup on a multi-processor

system, bringing it close to the theoretical maximum.

A natural question arising here is whether combinatorial computing can capitalize on
similar techniques. In this paper, we try to give a partial answer to this problem by studying
the issue of memory-level sensitive representation of trees in memory. Why trees? Most
importantly, large trees are a ubiquitous data representation. They occur in a wide range of
application domains including Al (Lisp functions and data), text processing (e.g., SGML [§]
documents), and geometric modeling in CAD systems [5]. Also, trees are more interesting
than matrices in that they have a greater variety of topologies and since the pointer structure

allows for many different layouts in memory.

1.2 Definitions

To continue the discussion in a more rigorous manner we need the following notations and
definitions. Let T' be a given input tree of n nodes, whose root is r. We say that a node v
belongs to a tree T', and by abuse of notation write v € T. For a node v € T, T, denotes
the sub-tree of T whose root is v. If v # r, then parent(v) denotes its parent. Also, if T
is a binary tree then the left and right children of v are denoted by left(v) and right(v). A
descent is a sequence vy, . .., v; such that v; = parent(v;41) fori =1,...,k — 1. We say that
the descent leads from vy to vg. The path to a node v is a descent leading from r to it; ¢(v)

denotes the number of edges in this path.

The nodes of T' are to be represented in memory as records and its edges as pointers.
We assume that every node requires one unit of space. Memory is partitioned into pages,
each of which can contain p nodes. A packing of T'is a function 7 which maps its nodes to
memory pages; formally 7 : T' — Z% such that |[771(:)] < p. A page is full if |771(2)| = p.
The space of a packing is the number of pages it uses, i.e., |7(T")|. We say that a packing is
compact if its space consumption achieves the minimum, N = [n/p]; it is k-compact if its

space usage is kIV.

1.3 The problem

Operating systems’ jargon includes the idiom “working set of a process”—a rather loosely
defined term which refers to the set of pages a process will reference in the “near future”.

Virtual memory systems work only because in practice the working set is small, and most

of it is stored in internal memory!. If a large tree is packed randomly in pages, then the
working set of a program manipulating it is large and its processing may lead to extensive
disk activity and even to thrashing. Our overall goal is therefore to find a packing that
minimizes the working set.

The model we use for patterns of access to the tree is that of paths. A node is accessed only
by traversing the path leading to it. With each node v we associate a positive weight w(v)
that can be thought of as the probability of accessing it (although weights are not necessarily

normalized). We also use the notation

u€Ty

The model is quite general and corresponds to a large family of tree algorithms ranging from
ordinary search trees to ray tracing [4].
Consider a packing 7 and the path to the node v: r = v, v1,...,ve) = v. There are two

extremal cases:

1. Suppose that the cache can accommodate only one page which is initially used for some
other purpose. Then, the number of page faults that occur along a path is exactly the
number of times a page boundary is crossed. More formally, we define for every node

U

(1 ifu=r
A (u) =< 0 if r(parent(u)) = 7(u)

1 otherwise .

The page fault cost associated with the path to v, PF,(v), is defined as

2. Conversely, suppose that the size of the cache is unlimited. The appropriate charge
for a path in this case is the working set cost, WS, (v), the number of distinct pages

accessed along it, defined formally as

WS:(v) = [{r(v:) [0 <@ < L(v)}] -

'For the sake of concreteness, we chose to relate to disk-caching in memory. However, the discussion

equally applies to caching of main memory in a separate or on-chip CPU cache.

Two functions which should be used as targets for our global optimizations are there-

fore PF,(T) and WS, (T), defined as

PF.(T) = Zw(v)PFT(U),

veT

WS(T) = > w(v)WS,(v) .

veT
A packing 7 is said to be page-fault-optimal if it minimizes PF.(T), and working-set-optimal
if it minimizes WS, (7).
For a page P and a node v, 7(v) = P, we say that v belongs to P, and by abuse of
notation, we write v € P.
We observe that a trivial instance of the problem occurs when |T'| < p. This case is

tacitly excluded from our consideration.

2 Results

In this section we present our main results. Proofs are postponed to later sections.

Intuition may also lead us to believe that in a page-fault-optimal packing a path never
visits the same page twice. Indeed, this is the case. For an exact statement of this property

we need the following definition.

Definition 1 A packing is convex if for every descent uy,...,ur for which (uy) = 7(uy)
then fori=1,... k, 7(u;) = 7(uy).

As it turns out, convexity is a property of not only page-fault optimal packing, but also

of working-set optimal packings.

Theorem 1 (proof in Section 3) Let 7 be a packing. Then, if T is page-fault-optimal or if

T 18 working-set-optimal then T is convex.

How about working-set-optimal packings? Perhaps surprisingly, we can show that both
of our, seemingly different, complexity measures, WS and PF, can in fact be optimized

simultaneously.

Theorem 2 (proof in Section 3) A mapping is page-fault optimal if and only if it is working

set optimal.

We therefore may use the term optimal to refer to both page-fault-optimal and working-

set-optimal. and denote the cost of an optimal packing 7°P* as C opt(T') = PF opt(T) =

WS opt(T). (We omit T when it is understood by the context.) As it turns out, an optimal
packing can be computed efficiently by using dynamic programming in a bottom-up traversal

of the tree.

Theorem 3 (proof in Section 4) Let T' be a tree of n nodes and degree d. Then, an optimal
packing can be computed in time O(np*logd) while using O(plogn) space.

The packing obtained by this algorithm is 2-compact. Is it also possible to simultaneously

optimize space and cache performance? Unfortunately, the answer is (most likely) negative.

Theorem 4 (proof in Section 5) The problem of computing an optimal compact packing is

NP-complete.

On the other hand, it is possible to achieve a compact packing in which the average cost

is not much worse than that of the optimal.

Theorem 5 (proof in Section 6) Let 7°P* be an optimal packing. Then, in O(nlogn) time

and using O(p) space, it is possible to compute from it a compact packing T°°P* such that

Cq—a T Co 1
i < Tpt—l—ng(v).

n n veT

Furthermore, if all nodes v, w(v) =1 then

CTappr/n < C,Topt/n + 0.5 .

Outline Most of this paper is devoted to the question of packing fixed trees. The dynamic
version of this problem, that is, efficiently updating the packing as the tree changes due to,
say, insertions and deletions, seems to be much more difficult. In Section 7 we discuss this
further and give some partial results that show how to maintain a reasonably good packing

for two specific schemes of tree updates: B-trees and a variation of weight-balanced trees.

3 Equivalence of the two Complexity Measures

In order to show that the page-fault and the working-set complexity measures are equivalent,

we show that the optimal packings for either measures are convex.

Lemma 3.1 All working-set-optimal packings are convez.

Proof. Suppose to the contrary that there exists a non-convex working-set-optimal packing
7. Fach non-convex descent, uy,...,u; in 7 can be extended into a path by prefixing it with
the path that leads from r to parent(vy). Let vy,... v, us,. .. ug, ug = r, be a shortest path
that can be obtained in this manner, that is, one achieving the minimum of ¢ 4+ k. Then,
the path vy, ..., v, is convex, and it never revisits a page after leaving it. In other words, for
i=1,...0 =1, if 7(vig1) # 7(v;), then for all y =1,...,0 — 1, 7(vit1) # 7(vj).

We may assume that vy,..., v, is the longest convex prefix of our path. Then, 7(u;) =
T(ug) and 7(ug—1) # 7(ug). Let j be the minimum index for which 7(u;) = 7(ux—1). The
reader is advised to consult Figure 1 as a reference at this stage. Define the mapping 7"

7

T(ug) if v=u;
T(v) =1 7(u;) ifv=uy

j
7(v) otherwise .

\
-
/a/:k us
T

< - e \ é /\\
. p

Up -1 U —1

(a) (b)

Figure 1: A non-convex descent in 7 and in 7’ (proof of Lemma 3.1)

For vertices w which are not descendents of u;, the working set of w with respect to
7 is equal to the working set with respect to 7’. Since for every descendent v of u; the

working set of v with respect to 7 already contains the page 7(u1), WS (v) < WS, (v).

However, the working set of u; with respect to 7’ does not contain the page 7(u;), thus

WS;i(u;) < WS (u;). Hence, WS, < WS,. Contrary to the optimality of 7. u
This proves the working set half of Theorem 1.

Since for every vertex v and every mapping 7, WS;(v) < PF,(v), we get that this
property also holds globally. Thus, for every mapping 7, WS, < PF.. In particular, for

convex mappings, we can assert:

Claim 3.1 For every convex mapping T,
WS, =PF., .

It follows that:

Corollary 3.2 Let 7 be a page-fault optimal mapping. Then
WS, =PF., .

Proof. If the claim does not hold then there exists a page-fault optimal mapping 7 that is

not working-set optimal. Let 7/ be a working-set optimal mapping. Then

WS, < WS, . (1)
Since 7' is working-set optimal then by Lemma 3.1 it is convex. By Claim 3.1

WS, = PF., . (2)
By combining (1) and (2) we obtain

PF., < PF, |

contradicting the assumption that 7 is page-fault optimal. .

Theorem 2 follows immediately. Further, this also completes the proof of the page-fault-
optimal half of Theorem 1.

From now on, the term optimal mapping will denote a mapping which is both working-

set-optimal and page-fault-optimal.

4 Finding an Optimal Packing

In this section we give the dynamic programming algorithm that lies behind Theorem 3. We

begin by deriving the additional properties of optimal packings on which the algorithm is

8

based. Next, the basic algorithm for binary trees is presented. This algorithm uses relatively
large space for its computation. We then show how space consumption can be reduced.

Finally, the extension to trees of arbitrary degree is described.

4.1 Properties of optimal packings

It is natural to conjecture that the page that contains the root must be full.

Lemma 4.1 Let 7 be a page-fault-optimal packing, and P = 7(r). Then, P is full.

Proof. Suppose to the contrary that P is not full. Then, since we assumed |T| > p,
there must exist a node v, v € P, parent(v) € P. Moving v to P decreases PF(v) without

increasing PF(u) for any other node wu. .

More generally, any “internal page” must be full, in an optimal packing, as stated formally

in the following lemma.

Lemma 4.2 Let 7 be an optimal packing of T'. Let P be a non-full page of 7. Then, P must
contain a leaf of T', and furthermore, if v € P, then T, C P.

Proof. Suppose that P does not contain a leaf, or that it has a node u such that not all of
T, is in P. Then, P must contain a vertex v that has a child w € P. Since P is not full, w
can be moved to P, while reducing PF(w) and not effecting the PF of any other vertex. =

Lemma 4.3 There exists an optimal packing T such that for every page P the subgraph of
T induced by the set 7=1(P) is also a tree.

Proof. Let 7 be an optimal mapping for which the lemma does not hold. The following
procedure constructs from 7 an alternative optimal mapping 7/ which satisfies the lemma.

Replace each page P that contains a forest of kp > 1 trees by kp pages, each containing a
single tree. For each vertex v, PF.(v) = PF.(v) and therefore PF, = PF,.. n

Let 7, be the graph whose nodes are the pages of 7 and (P, P') is an edge of 7, if and
only if there exists v € 77'(P’) such that parent(v) € 77(P).

Lemma 4.4 There exists an optimal packing T such that T, is a tree.

Proof. Let 7 be an optimal mapping which satisfies Lemma 4.3. The connectivity of T,
follows from the connectivity of T'. If 7. does not contain a cycle, we are done. Otherwise,
let Py, ..., P, beacyclein T,. Since (P, Piy1) is an edge of T, there exists v; € 77'(P;) and
Uiy € 771 (Py) such that (v;,u;y1) € T. There also exists v, € 77'(P,) and vy € 77(Py)
such that (v, u1) € T. Since by Lemma 4.3 each 77!(F;) is a tree, 77*(P,) contains a path,

mi[us, v;], from w; to v;. Connecting these paths with the edges (v;, u;y1) yields the cycle

ﬂ-l[ulvUl](vlvu2)7r2[u27v2](v27u3) T (Uq—hUq)”q[uqavq](vqaul) erT .

Thus T contains a cycle, contradicting the assumption that it is a tree. .

Corollary 4.5 Let 7 be an optimal packing and v € T \ {r} a node for which 7(v) #
T(parent(v)). Then, the pages assigned by T to the nodes of T, are disjoint from those
assigned to the remainder of the tree. Further, the restriction of T to T, is an optimal

packing of T,.

4.2 Algorithm for Binary trees

In this section we assume that 7' is a binary tree, i.e., each node has at most two children.
Since initially all pages are isomorphic, we may assume that the root r is always mapped to

a fixed page R. Consider the set
V={veT]|r(v) ¢ R,7(parent(v)) = R} .

By Corollary 4.5, 7 is an optimal packing of T, for all v € V. Thus, in order to find an
optimal packing, it may be possible to first determine which other nodes reside in R and

then continue recursively with all trees T, v € V.

Dynamic programming provides a more efficient implementation of this idea. However, in
order to implement this technique, we consider the following slightly more general problem:
For : = 1,...,p an i-confined packing of a tree T' is a packing of 7' in which R contains :

nodes.

Suppose that in an optimal packing, exactly ¢ nodes of Tjegr) are mapped to R. Then T,
when restricted appropriately, is both an optimal i-confined packing of Tieg() and an op-
timal (p — ¢ — 1)-confined packing of Tiighe(,). This property is the basis of our bottom-up
dynamic programming algorithm. To find an optimal packing of T', we first find optimal

i-confined packing of Tiegy(r) and Tigny(r) for all values of s.

For node v € T' let A[v,1] be the cost of an optimal ¢-confined packing of T,,. If exactly 1
(1 <7 < p—2) of the nodes of Tiegs(r) are mapped to R, then exactly p —1—1 > 1 nodes

10

of Tright(,,)) are mapped to R. Accounting for the cost of accessing r itself we have
Alr,p] = w(r)+ Alleft(r),:] + Afright(r),p — 1 —1¢] . (3)

What about the extremal cases, 7 = 0 and ¢ = p — 17 If Tiere(r) N R = (), then all the nodes

of Tefs(ry incur a page fault when going from r to left(r). Hence, the cost of T in this case is
Alr,pl = w(r) + w(Tietr)) + Alleft(r), p] + Alright(r),p — 1] . (4)
Similarly, in the case Tyigne(ry N R = 0, we have
Alr,pl = w(r) + Alleft(r), p — 1] + w(Tiigne(r)) + Alright(r), p] - (5)

Generalizing over equations (3), (4), and (5) for every node v and for any number ¢ =

2

,-..,p of nodes in the page of v, we obtain:

/

Alleft(v),r — 1] + w(Tright(U)) + Alright(v), p],
Alv,i] = w(v) + min | w(Tiere(0)) + Alleft(v), p] + Alright(v),i — 1],) (6)
miny <jci—1 (Alleft(v),] + Afright(v), s — j — 1])

where A[left(v),] is defined, for notational convenience, as 0 whenever left(v) does not exist

(and similarly for right(v)). The case ¢ = 1 is special and is given by
Alo, 1] = w(T,) + Allefo(v),] + Alright(v) 5] @

This gives us the desired dynamic programming algorithm. The algorithm is detailed in

Figure 2. It is easy to check that the algorithm runs in O(np?) time.

4.3 Reducing the space requirement of the algorithm

The algorithm computes the np values of Afv,:]. Therefore a naive implementation would
use O(np) space. In this section we show how to save space without compromising the time
complexity.

In examining the algorithm we find that in order to calculate Afv, -], we need only the val-
ues of A[left(v), -] and A[right(v),-]. After A[v,] has been calculated, the values of A[left(v), -]
and A[right(v), -] can be discarded. Let o(¢) denote the number of nodes v for which at time ¢
the value of A[v, -] has been calculated, but A[parent(v), -] has not yet been calculated. Then,
at time ¢ we need po(t) space. The total space requirement is pmax;{c(t)}. We wish to

organize the computation so as to minimize
meX{O'(t)} :

11

For all leaves v of T do
begin
mark v;
for::=1to pdo
Alv, 1] := w(v);
end;
While there exists an unmarked node v do
begin
mark v;
for 1:=2to pdo
update Alv,1] according to equation (6);
update Alv, 1] according to equation (7);

end;

Figure 2: Dynamic programming algorithm for computing an optimal packing of a binary

tree T' .

This problem has been studied before in a different context: finding the smallest number
of registers required to calculate an arithmetic expression [2]. If T' denotes a binary expression
tree where the leaves are data elements and the internal nodes are operators, then o(v), the
minimum number of registers required to calculate the value of a node v, can be found by

the following recursive formula:

7

1 if v is a leaf,
o(v) = max{c(left(v)), o(right(v))} if o(left(v)) # o(right(v))
1 + left(v) otherwise .

To calculate the value of the arithmetic expression using o(r) registers, we first calculate the
left or right subtree of r with the larger value of o , then free all the registers except the
one holding the root of that subtree. We then calculate the other subtree using o(r) — 1
registers. Again we free all the registers except those holding the roots of the children of r.
Since o(r) > 3 we have a remaining register to store the value of r. The maximum value

of o(r) over all n-node trees occurs for the complete binary tree. In this case, o(T") = 2+lg(n).

By using o(r) registers, each of size O(p), to store the values of Afv,] of “active” nodes,
we can compute A[r, -] and hence also the minimal value of PF.(T). However, since all

the temporary values are discarded, this space saving version of the algorithm yields only

12

the values A[v,p| and not the mapping 7(v) for all v € T. It is possible to retrace the
evaluation in order to compute the actual packing: Since we know the number of nodes
in Tiefe(r) that were mapped to R we may calculate 7(r), 7(left(r)) and 7(right(r)). However,
to calculate the optimal mapping of the grandchildren of r we must rerun the algorithm
on Tege(ry and Tyighe(r)- The running time of this modified version is O(p 3=, |T,|). For a full
tree this is O(pnlogn). For trees of depth Q(n), the running time is in the order of n?.

We now show a better tradeoff between space and time. For all £ > 0 we compute the
optimal packing 7 of any binary tree in O(p?kn) time and O(pkn'/*) space. In particular,
for k = logn we achieve O(p®nlogn) time and O(p*logn) space.

We first consider £ = 2. Recall that every n-node tree T has a vertex v such that both T
and T'\ T have at least n/3 vertices. A simple generalization of this argument shows that T’
can be partitioned into subtrees 77, ... ,T\’/ﬁ, each having between y/n/2 and 2/n nodes.

Let r1,...,7, (m < 4/n) be the roots of these trees. We may assume that the root of
the subtree 77 is also the root of T, i.e., r; = r. To save space, we compute A[r, p] using our

space saving scheme, but retain the values of A[r;,] (1 =2,...,m).

Consider the tree T7. Its leaves are either one of the r;’s or a leaf of T'. Thus, we may
recompute the values of A[v,-] for all v € T} using O(py/n) space. We now compute the
optimal packing for v € T|. Also, for every leaf of T| which belongs to {ry,...,r,} we know
the number of nodes of its subtree that belong to the same page as that leaf. We store this

information, and free all the space used to compute Afv, -], v € T}.

In the general step, let I' C {T),...,T! } be the set of trees for which we have not yet
calculated the packing, but whose root is a leaf of a subtree for which the packing has been
calculated. Pick T} € I', recompute A[v,-] for all v € T}, and update its leaves as we did
for T7.

At any given time we need the values of Afv,-] only for v € {ry,...,r,} and for one of

, : : B
the subtrees T}. The working space requirements are hence at most p(m + \/n) = 2py/n.

The values of Afv, -] are calculated once for v € {ri,...,r 5} and twice for the remaining
nodes. Thus, the running time is multiplied by a factor of two.

1/k

To reduce the working space requirements even further to O(pkn'/*), partition T" into nt/k

subtrees each of size between n*=1/% and 2n{*=Y/k Then compute A[r,-], and store the

9
values of A[r;,-] for the roots of these subtrees. Finally, apply the procedure recursively on

all these subtrees going from the subtree containing the root down.

The depth of the recursion is k. For each level of recursion we store < 2n'/* tables,
making the total storage requirements O(pkn'/*). The value of A[v,-] is calculated at most

once at each level of the recursion. Thus, the running time is multiplied by a factor of k.

13

To prove Theorem 3 we set k = Ign.

4.4 Arbitrary degree trees

Our results can be extended to trees of arbitrary degrees: Let v be a vertex with d children.
Construct a full binary tree 7% with d leaves. Then, T has 2d—1 nodes and is of height lg, d.
We identify v with the root of 7%, and the children of v with its leaves, and replace the edges
from v to its children by 7. Repeating this procedure for all internal vertices v yields a

binary tree T, which has at most twice as many vertices as 7.

To find an optimal packing of T', we run a modified version of the binary tree algorithm
which accounts for the fact that the new vertices have zero weight and do not occupy any

space.

5 Optimal Compact Packing is NP-Complete

In the previous section, we looked for a packing that minimized the number of page misses,
and disregarded the number of pages required for the packing. In this section we show that
if we insist on a compact packing, i.e., one that uses the minimum number of pages, then
finding the time-optimal packing becomes NP-complete. The next section will show that
slightly relaxing the minimality of page misses requirement allows us to make the solution
of Section 4 compact. The penalty of the increase in the expected number of page misses is

a small additive factor.

Consider the following decision problem:

TREE-PACKING

Instance: An integer p, a binary tree T' of n = mp nodes, and a positive

integer C.

Question: Does there exist a compact packing of cost C, i.e., a packing 7 such

that WS, (T) < C and |7(T)| = m?

We can now turn to the proof of Theorem 4, namely showing that TREE-PACKING 1is
NP-complete. The problem is in NP since given a packing 7 it takes polynomial time to
determine its cost and to check that it satisfies the compactness condition. To see that it is
complete in NP, we present a reduction from the following 3-PARTITION problem, which
is strongly NP-complete.

14

3-PARTITION

Instance: Set A of 3m elements, a bound ¢ € ZF, and a size function s(a) € Z*

such that ¢/4 < s(a) < ¢/2 and

> s(a) =mgq .

a€A

Question: Can A be partitioned into m disjoint sets Ay, ..., A, such that

Y s(a) =g

a€A;

forallz=1,...,m?

Note that it follows from the definition of the problem that |A;| = 3 for all s.

The 3-PARTITION problem was shown by Garey and Johnson [7, pp. 96-105] to be
NP-complete in the strong sense, i.e., it remains NP-complete even when all the numbers
s(a), a € A, are written in unary.

We first show that the problem remains NP-Complete even when we restrict the bound ¢
to be of the form 4° — 1, integer b. To do so, we replace the bound ¢ by p which is of the

desired form and is at least three times greater than ¢ (but no greater than 12¢). Define

b = Hog43q-‘ 9
p = 41,
Ap = p—3q,

s'(a) = 3s(a)+Ap/3 .
To see that s'(a) attains only integer values, note that 2° is not divisible by 3, hence,
p=(2) —1=@ - +1)

must be divisible by 3, and therefore, Ap is also divisible by 3. Moreover, since p+1 = 4% =
4[10g,34] > 3q, and p is divisible by 3, we get

p > 3q. (8)

The following lemma is required to show that the new definitions form an instance of

3-Partition.

Lemma 5.1 For all a, p/4 < §'(a) < p/2.

15

Proof. From the definition of s'(a) and Ap,
s'(a) = 3s(a) + Ap/3 .
Since s(a) < q/2,

' 39, P
s'(a) < 2—|—3 q

DO [+
+

For the lower bound side of the lemma, we have

(p—3q)
T

s'(a) = 3s(a) + Ap/3 = 3s(a) +

Now, since s(a) > ¢/4,

: 9, (=39 p ¢

) >3-4+ 75— =571
By (8)

: p p/3_p

s'(a) > 4 =4

It remains to show that Ay,..., A, is a solution of 3-PARTITION(s, ¢) if and only if
it is a solution of 3-PARTITION(s’, p). Assume therefore that Ay,..., A, is a solution of
3-PARTITION(s, q), then

> s'(a)=33% s(a)+ > Ap/3 .
a€A; a€A; a€A;
Since A is a solution to 3-PARTITION(s, ¢) and since |A;| = 3,
Y s'(a)=3¢+Ap=p .
a€A;

This variation on 3-PARTITION is also strongly NP-complete because there is only a
polynomial increase in the input size: Since p < 4[108,34] < q1+log3a — 4. (3¢) = 12q. Also,

s(a) < s'(a) < p < 12q < 35s(a) .

Therefore s'(a) = 0 (s(a)).
We now show that TREE-PACKING is NP-Complete by reducing an instance of 3-
PARTITION(s’, p) with p = 4* — 1 to an instance of TREE-PACKING with page size p. The

tree T' is constructed from the following components:

16

1. The full binary tree P of height hp = 2b — 1. The tree P has
ohetl _1=4"—1=p

nodes and therefore fits exactly in a page.

2. The full binary tree M of height hyg + 1 and M leaves. The tree M is chosen to be the

minimum tree which satisfies

M > 3m
hp + 1 divides App + 1 .

An optimal packing of M is obtained by naturally partitioning it into copies of the full
binary tree P: Start at the root of M, and put the subtree isomorphic to P rooted
at the root of M in one page. Then, continue recursively with each of the (p +1)/2
remaining sub-trees. An example of this packing is given in Figure 3. Note that all

the pages thus generated are completely full. Let Cyp denote the cost of this packing.
3. Trees S(a) for all a € A, where S(a) is an arbitrary tree with s'(a) nodes.

The tree T is created from M by hanging subtrees on its leaves as follows. For all M
leaves of M a copy of P is added as a right child. In the first 3m leaves of M, we add the
trees S(a) in sequence as left children. A copy of P is added as a left child of the remaining
M — 3m leaves.

The tree M has 2M — 1 nodes. Also, 7'\ M contains 2M — 3m copies of P. The total
number of nodes added by the trees S(a) is

> IS(a)l=>_ s'(a) =mp .
a€A a€A

Thus, the total number of nodes of T is
2M — 1)+ 2M —3m)p+mp=(2M — 1)+ 2(M —m)p .

Denote

hvm + 1
h = .
hp +1

Lemma 5.2 There exists a compact packing of T into pages of size p which has cost
Cr=Cm+ 2(M — m)(h + 1)p
iff there exists a solution to the 3-PARTITION problem.

17

Xi?gb

d@%@d 1

d%@%é:é}b
Figure 3: The tree M for b = 2

f@%@@%

d%@'.ggé?%

Proof. For a mapping 7 the term 7-distance of a node v € T' denotes PF,(v).

Given a solution Ay,...,A,,, to the 3-PARTITION problem, construct an optimal com-
pact packing of T' as follows. First pack M optimally with cost Cyy. The 7-distance of the
leaves M is thus h. Then, put each copy of P hung on a leaf of M in a separate page. This
adds to the cost (2M — 3m)p(h + 1). Finally, for every A; = {a;,,a;,,a;,} assign the three
subtrees S(a;,), S(a;,) and S(a;,) that were hanged on the leaves of M to the same page.
The packing thus obtained is compact. Its cost is Cr since there are altogether 2(M — m)
nodes in the 3m auxiliary trees S(a) and the 2M — 3m copies of P. The 7-distance of all

nodes in these trees is h + 1.

For the other direction, note that in any packing, there are at most p nodes of T' at
r-distance 1, at most (p 4+ 1)p nodes at 7-distance 2, and at most (p + l)i_lp nodes at 7-
distance :. In total, at most 2M — 1 nodes of T" are at 7-distance h or less. The remaining
2(M — m)p nodes must be at a greater 7-distance. It follows from this observation that Cp
is the minimum cost of any packing, and that in an optimal packing there will be no nodes

at 7-distance greater than h + 1.

Consider an optimal packing 7. Had any leaf v of M been at a 7-distance greater than
h, then, since v’s right subtree contains p nodes, this subtree contains a node v’ which is at
T-distance h + 2 or more. Thus, in an optimal packing, all leaves of M are at T-distance at
most h. (From the above counting argument, they are all at 7-distance h.)

Since the packing of M into pages at 7-distance < h is compact, the children of all leaves
of M cannot belong to the same page as their parent. Consequently, all the nodes of S(a)

and copies of P are at 7-distance at least h + 1.

In an optimal compact packing, if any S(a) is split between two pages, there would be a
node in S(a) at 7-distance greater than ~h+1. Thus, in an optimal compact packing the S(a)’s
are grouped into pages—three per page. This grouping is a solution to the 3-PARTITION

problem. .

This completes the proof of Theorem 4.

6 Approximating an Optimal Compact Packing

The NP-Completeness result is due to our requirement that the packing be compact and
that the cost be optimal. Here we show that if the cost is allowed to increase by an additive

factor, then a compact packing can be found efficiently.

We start with the Dynamic Programming solution. Let Pi,..., P, be its non-full pages.
Because of the optimality of the solution, each P, is a leaf-page (the children of all the nodes

19

of P; are also mapped to the same page). Since the Dynamic Programming solution did not

attempt to save space, P; consists of a single tree (call it T}).

We now apply an iterative process to repack these pages: In the 2’th step, let P; be the
first page that is neither full nor empty and P; the next such page. (We are done if no

such P; exists.)

If |P;| + |Pi| < p, we move all of P; to P; and free P;. This change does not affect the
cost of the packing. Otherwise, we split 7 (the tree residing in P;) into two pieces: one of
size p — | P;| and the other consisting of the remaining nodes. The split is done so that the
piece moved to P, is a connected graph containing 7}’s root. (This can be accomplished by
conducting a breadth-first search or a depth-first search from 7T}’s root.) We move the first
piece to P;, thus filling it, and P; remains with |P;| — (p— | F;|) nodes. In this case, after the
move, F; is full and P; is the next page to be filled. In this manner, no tree of P; will be split
again. The important point to notice is that each tree is split at most once and hence each
path is split at most once. Therefore, the number of page faults of each path from the root to
a node increased by at most 1. Hence, the increase in cost is less than 2 welJT; w(v) < w(T).
If the w(v) are probabilities, then w(7T) = 1 and the cost of our packing is at most 1 greater
than that of the optimal tight solution.

If all the nodes have the same weight, say 1/n, we can improve on this by observing that
there are several ways to split s nodes from the tree T;. If s > |T;]/2, we split the tree so that
the larger piece contains the root, and we move the root to P;. Otherwise, we keep the root
in P; and move the other piece to F;. Hence, at least half the vertices of T} are mapped to
the same page as the root of T}, and therefore their cost did not increase. The cost increased
for at most half the nodes. Since every path was split at most once, the increase is by 1
for these. This leads to a bound that exceeds the optimal cost by an additive factor of at
most 1/2.

This improvement cannot be guaranteed when the weights are not equal. Let T} consist
of two nodes: ug—the root, and its child u; (see Figure 4). Suppose exactly one node of
T; should be moved to P;. Regardless whether uy or u; is moved, a page fault is incurred
between ug and wu;. Therefore, the number of page faults on the path to u; increases by 1.
Thus the expected path length has increased by w(uq) - 1. When w(uy) > 1/2, the added
cost is greater than 1/2.

20

i

of Qe

F;

Figure 4: Any repacking of T} increases the cost by at w(uy).

7 Packing Dynamically Changing Trees

The schemes we described so far for packing trees assumed that the tree T was given and does
not change. Now we consider dynamic trees, i.e., trees in which nodes can be inserted and
deleted. Often algorithms maintain “well-balanced” trees—trees whose height is O(logn).
We assume that the reader has some familiarity with B-trees and weight balanced trees
(see [3] for a textbook presentation). These schemes perform local operations on trees such
as rotations and node splitting (replacing a node v by two siblings vy, vq, and attaching each
of v’s children to either vy or vy). We will examine how an optimal packing is affected by
such operations, and show how to maintain a near optimal packing for B-trees and a variant

of weight balanced trees.

,,,,,

Figure 5: Adding a node completely changes the packing (w(v) = 1).

As can be seen from Figure 5, the insertion of a single node may affect the contents of
all the pages of an optimal mapping. Therefore, if an efficient update algorithm is desired
we can only hope to approximate the optimal packings. More formally, let o4,...,0,, be a
series of inserts, deletions and rotations, Ty the initial tree, and T; the tree obtained after

applying the operations oy, ...,0;. Our aim is a dynamic packing scheme that, given T;, the

21

tree obtained after applying the operations o4, ..., 0;, the packing 7; which was produced for
it, and the next update operation 0,41, will efficiently compute 7,41, the packing for T;4. It

is required that
(1) = O (ery(T)) i=0,...,m (9)

where 7,,¢(7;) is the optimal packing of T;.

Requirement (9) will follow from a stronger condition
¢rn(v) =0 (c%pt(v)) veET;and i =0,...,m. (10)

We also wish that the size of 7;(7;) does not exceed that of a compact packing by more than

a small factor.

A general solution to this problem still remains to be found. However, we can provide

one for two families of trees. The main ideas behind our constructions are sketched below.

B-trees: B-trees are the most common data structure used to store databases. It is a tree
for which the degree of every node is between d/2 and d (for some predetermined integer
d), and all leaves are at the depth (distance from the root in terms of number of edges). If
the node size of the B-tree is equal to the page size, then every packing maps each node to
a unique page and thus is optimal. Suppose therefore that several nodes can be stored in a
page. Let h be the height of the B-tree. Let n be such that a full B-tree of degree d and of
height n can be stored in a page. Specifically, we set

n = [logy(1 +p(d—1))]

To get a packing we first cut the edges emanating from the nodes at height (distance from
the leaves) n,2n,..., |h/n]n, whereby producing subtrees, each with at most p nodes. We

then map each such subtree to a separate page. This is illustrated in Figure 6.

Figure 6: Packing a B-tree of degree 5, n = 3.

For a leaf v the cost of the packing is ¢;(v) = [h/n]. Thus the cost of the packing is at
most n [h/n], while the cost of an optimal packing is at least 7 [h/n'], where

n' = |logy(1 +p(d/2 —1))]

22

Since ' = 0(n), c-(T) = O(copt(T))-

Insertions to a B-tree may add nodes only to leaf pages. With our selection of 7, the
page is large enough to accommodate all insertions, unless the root of the subtree stored in
it splits. If this happens, we store the two resultant subtrees in a separate page. If the root
of the entire tree is split and n divides h, then the root is moved to a separate page. It
follows that the updating of 7 requires changing at most two pages. It can be shown that
the amortized time for updating the packing is constant. Deletions are carried out similarly

within the same complexity.

This dynamic packing scheme might require an excessive number of pages. The space
consumption may be reduced by storing several trees in a single memory page. Using a rather
standard memory management policy we can guarantee that at least a constant fraction of
each page is used. Although more page overflows may occur with this policy, we can show

that incurred overhead per operation is, in an amortized sense, constant.

Weight Balanced Binary Trees We follow the scheme suggested by G. Varghese [3,
Problem 18-3, p. 376]: Let 1/2 < o < 1. We say that a binary tree T' is a-balanced if for

every node v € T
|ﬂeft(v)| S Oé|TU| and |Tright(v)| S a|TU| . (11)

Whenever, as a result of insertions and deletions, condition (11) is violated for a node v
but not for any of its ancestors, the entire subtree T), is reorganized: it is replaced by a full
binary tree with |7,| nodes. This reorganization requires O(|7T,|) time. One can show that

the amortized time for insertion/deletion is O(logn).

To maintain a near optimal packing, every page P; consists of a subtree of T'. Since only
leaves are added, if there is no room for a new node in its parent’s page, it is allocated to a
new page. Whenever T), is reorganized we also repack T, using our Dynamic Programming

algorithm.

8 Further Research

We have shown how to efficiently pack static search trees, and have given schemes for han-
dling two types of dynamically changing trees. The challenge still lies in finding a general
scheme for dynamic trees, which will account for more elaborate balancing operations, such
as rotations of AVL trees. Yet, another interesting direction would be to explore the problem

of tree packing under a different model of access patterns, e.g., starting at any given node,

23

and moving on the path to another given node.

Trees are not the only data structure that can benefit from efficient packing. It would
be interesting to find efficient packing schemes for general graphs, sparse matrices, and data
structures for multi-dimensional keys (Oct-trees, grid graphs) under a suitable model for

access patterns.

In the caching model we presented, every disk-page can be mapped to any main memory
page. Such mappings are called distributed mapping which capture the behavior of paging
between the main memory and the disk . As indicated in the introduction, a similar hierarchy
occurs within the processor between the fast cache memory resident on the CPU chip and
the slower main memory. However, the mapping between main memory and memory cache
is more restricted: each memory page can be mapped only to a single predetermined cache
page. This restriction, is called direct mapping [9]. The packing problem in this context
becomes more difficult, since the pages are no longer isomorphic. In particular, in a worst
case situation, were all external pages are mapped to the same internal page, then the number
of page faults would be exactly the same as the number of pages accessed. On the other
hand, it might be beneficial to map the root page to a cache page, such that no other page
shares the same cache page. Thus, direct mapping raises an additional question: how to
map the nodes of a tree to main memory pages so as to minimize the number of page faults
in a batch of several searches. What is required is a solution for the simultaneous packing

and mapping problems.

References

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical memory.
In Proceedings of the 19th Annual Symposium on Computing, pages 305-314, New York,
1987.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools.
Addison-Wesley, Reading, Massachusetts, 1988.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw Hill and
The MIT Press, 1990.

[4] B. Farizon. Local and global memory for the implementation of ray tracing on a par-
allel machine. Master’s thesis, Computer Science Dept., Technion — Israel Institute of

Technology, 1995.

24

[5]

[11]

J. D. Foley and A. V. Dam. Fundamental of Interactive Computer Graphics. The
Systems Programming Series. Addison-Wesley, Reading, Massachusetts, 1984.

S. Gal, Y. Hollander, and A. Itai. Optimal mappings in a direct mapped cache environ-
ment. Math. Programming B, 63:371-387, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.
Y. Hollander. Data structures for cache memory. PhD thesis, Technion, 1996.

M. S. Lam, E. Rothberg, and M. E. Wolf. The cache performance and optimizations
of blocked algorithms. In Fourth International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS 1V), 1991.

M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation,
1991.

25

