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Abstract

Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s ∈ G there

are two spanning trees such that the paths from any other vertex to s on the trees are disjoint. In this

paper the result is generalized to 3-connected graphs.
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1. Introduction.

A graph G =(V (G ),E (G )) consists of a set of vertices V (G ) and a set E (G ) of unordered pairs of

V (G ) called edges. An x −y path π[x ,y ] in a graph G is a sequence of distinct vertices of V (G )

(x = v 0,v 1,...,vm = y ) such that (vi −1,vi ) ∈ E (G ) (i =1,...,m ). Two paths π1[x 1,y 1] and π2[x 2,y 2] are dis-

joint if they have no common vertices except perhaps {x 1,y 1}∩{x 2,y 2}. Let κ(x ,y ;G ) denote the max-

imum number of disjoint x −y paths in G . A graph G is k-connected if between any two vertices of G

there are at least k disjoint paths. The connectivity, κ(G ), of G is the maximum integer k such that G

is k -connected, i.e., min{κ(x ,y ;G ) : x ,y ∈ V (G )} = k . If v ∈ V (G ) we denote by Γ(v ) the set of all

vertices adjacent to v while ΓE (v ) denotes the set of edges adjacent to v . The degree of v , deg (v ;G ),

is equal to the cardinality of ΓE (v ). A vertex v is a leaf if deg (v ;G )=1.

We abuse the notation and say that an edge or a vertex belongs to a graph (e ∈ G or v ∈ G

instead of e ∈ E (G ) or v ∈ V (G )). Also, G −e denotes the graph from which e was deleted from the

edge set (likewise G +e ). For all other notations refer to Bondy & Murty ([BM76]).

Let T be a spanning tree of G and v ,w ∈ V (G ) then T [v ,w ] is the path from v to w on T . The

following result appears in [IR]:

Theorem 1.1

If G is a 2-connected graph and s ∈ V (G ), then there exist two spanning trees of G , T 1 , T 2,

such that for every vertex v ∈ G the paths T 1[v ,s ] and T 2[v ,s ] are disjoint.

Itai and Rodeh [IR] used this result to develop distributed algorithms which are resilient to the

failure of a single line (or processor). To increase reliability more spanning trees are needed. The pur-

pose of this paper is to prove the following:

Theorem 1.2

If G is a 3-connected graph and s ∈ V (G ), then there exist three spanning trees of G , Ti

(i =1,2,3), such that for every vertex v ∈ G , the paths Ti [v ,s ] (i =1,2,3) are disjoint.
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We start the paper by proving general properties of 3-connected graphs (Section 2). To prove the

theorem, in Section 3 we define a property, Extended 3-Tree Path property (E3TP), which implies the

existence of the three trees. The remainder of the paper shows that 3-connectivity implies E3TP. To

that end, we investigate the structure of a minimal counterexample (MCE). In Section 4 we show that in

every MCE, deg (s )=3. In Section 5 it is shown that an MCE cannot contain certain subgraphs. The

proof is completed in Section 6. While Section 7 contains the conclusions.

Our proof methodology is to obtain from an MCE, G , a smaller graph G′ , then show that G′ is

3-connected, thus by definition of MCE, G′ satisfies E3TP. Thus G′ contains three trees, which we

modify to get three trees in G .

2. Connectivity

Let U ⊆ V (G ) then E (U ;G ) consists of all the edges of G both endpoints of which belong to U

and the subgraph induced by U is the graph G [U ]=(U , E (U ;G )). A set S ⊆ V (G ) is a separation set

of G if its deletion from G increases the number of connected components. A separation set is a

minimum separation set if its cardinality is minimum.

The concatenation πσ of two edge-disjoint paths π=π[v ,x ] = (v =v 0,...,vn =x ) and σ=σ[x ,w ] =

(x =vn ,vn +1,...,vm ) is the v −w path obtained by deleting cycles from the sequence (v =v 0,...,vm =w ).

Lemma 2.1

Let G be a 3-connected graph, S ={v 1,v 2,v 3} a separation set of G and e =(v 1,v 2). Then for all

vertices x ,y ∈ V (G )−{v 1,v 2}, κ(x ,y ;G −e ) = 3.

Proof

Case 1: v 3{x ,y }: Thus, x ,y ∈ V (G )−S . If x and y belong to different connected components of

G −S then there exist three x −y paths which do not use e . Thus, assume x and y are in the same com-

ponent. At most one x −y path uses e . In this path, e can be replaced by a v 1−v 2 path which except

for its endpoints lies entirely in a component not containing x and y .
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Case 2: v 3 ∈ {x ,y }: W.l.g., v 3=y . In G there are three x −v 3 paths. At most one of them, say π1,

uses e . (If none uses e , we are done.) The other two paths lie entirely in the connected component of

G −S which contains x . Let π1 = π1[x ,vi ](vi ,v 3−i )π1[v 3−i ,v 3], for i =1 or i =2. Let σ be a vi −v 3 path in

the connected component of G −S not containing x . Then replace π1 by the path π1′=π1[x ,vi ]σ to obtain

three x −v 3 paths in G −e . _
_



The following two lemmas follow from Menger’s Theorem,

Lemma 2.2:

Let v ∈ V (G ) and deg (v ;G )≥k . If for every two vertices x ,y ≠v , κ(x ,y ;G )≥k then κ(G )≥k .

Proof

If κ(G )<k there exists a set W of cardinality ≤ k −1 separating v from some other vertex, say x . Since

deg (v )≥k , v has a neighbor y W . Thus W separates y from x , which implies κ(x ,y ;G )≤k −1. _
_



An edge e is subdivided when it is deleted and replaced by a path of length two connecting its

endpoints, the internal vertex of this path being a new vertex. The graph G is a subdivision of H if G

can be obtained from H by a series of edge subdivisions. Let h (G ) be the minimum size graph H such

that G is a subdivision of H .

Lemma 2.3

Let G be a 3-connected graph, S ={v 1,v 2,v 3} a separating set and e =(v 1,v 2). Then H =h (G −e ) is

3-connected.

Proof

It is sufficient to show that every two vertices x ,y ∈ V (H ) are connected by three disjoint paths. By

Lemma 2.1, {x ,y }∩{v 1,v 2}≠ ∅ . Thus, w.l.g., x = v 1,

Case 1: deg (v 1;G )=3: we are done since deg (v 1;G −e )=2, implying that v 1H .

Case 2: deg (v 1;G )>3: If deg (y ;G −e )=2 then y =v 2 and by reversing the roles of x and y we return to

Case 1. Thus, deg (y ;G −e ) ≥ 3. Let W ={w 1,w 2}⊆V (H ) separate between v 1 and y in G −e (thus v 1
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and y are not connected in G −e ). Since deg (v 1;G −e )≥3, in G −e v 1 has a neighbor u 1W ∪{y }. If

y ≠v 2, W separates between u 1 and y contrary to Lemma 2.1. Otherwise, y =v 2 has a neighbor

u 2W ∪{v 1} and W separates between u 1 and u 2 again contradicting Lemma 2.1. _
_



Remark: Figure 2.1 shows that the condition e ∈ E (S ) is necessary.

Let e = (x ,y ) be an edge of G . The contraction of e in G (G ⁄e ) is the graph resulting from G by

replacing the vertices x ,y by a single vertex xy  and connecting it to Γ(x ;G )∪Γ(y ;G )−{x ,y }.

Corollary 2.4:

Let G be a 3-connected graph and e = (v 1,v 2) ∈ E (G ). Then either G ⁄e or h (G −e ) is 3-

connected.

Proof

If G ⁄e is only 2-connected then v 1 and v 2 belong to some minimum separating set S ={v 1,v 2,v 3}, to

which the previous lemma may be applied. _
_



We conclude this section with a lemma to be used in Section 6.

Let x ∈ G and S ⊆ V (G ). An x −S fan is a set of disjoint paths π1[x ,y 1],...,πk [x ,yk ] were all the

vertices yi are distinct vertices of S ; k is the size of the fan.

Lemma 2.5

Let B ⊆ V (G ) be a set of vertices such that κ(x ,y ;G ) = k for all x ,y ∈ B . If for every other

vertex v there is a v −B fan of size k , then κ(G ) = k .

e

v 1

v 2

v 3 Figure 2.1
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Proof

Let v ,w be two vertices of G and S a separation set of G which separates v from w , such that

 S  <k . By our assumption S cannot separate all v −B paths nor all w −B paths. Thus, for some

x ,y ∈ B there are two paths π[v ,x ] and σ[w ,y ] which do not pass through vertices of S . As x ,y ∈ B

there are k disjoint x −y paths, and S cannot separate all of them. Let τ[x ,y ] be an x − y path not pass-

ing through S . We conclude that ρ = π[v ,x ]τ[x ,y ]σ[y ,w ] is a v − w path not passing through S (ρ is a

path since by our definition of concatenation of paths cycles are deleted); thus S does not separate v

from w . _
_



3. Extended three tree path property.

Let S be a set. The relation  ⊆ S × S is an order on S if  is irreflexive, antisymmetric, transi-

tive and total, i.e., for all u ,v ∈ S either v u or u v .

To prove Theorem 1.2 we need the following definition of an s −t ordering which is equivalent to

the s −t numbering found in [Ev] and used in [IR]. Let e =(s ,t ) be an edge in a graph G . An s −t ord-

ering of G is an order  on the vertices of G such that:

(S1) s is minimum and t is maximum, i.e. for all v ≠ s ,t s v t .

(S2) For every vertex v ∈ V (G ) − {s ,t } there are two vertices v 1,v 2 ∈ Γ(v ) such that v 1 v v 2.

In [Ev] it is proven that such a ordering exists for all 2-connected graphs.

Let  be an order on the vertices of the graph G . A path π=(v 1, . . . , vn ) −increases

( −decreases ) if v 1 v 2  . . . vn (vn vn −1  . . . v 1). Let s be the minimum vertex of . A

pair of spanning trees, (T 1,T 2) are ordered by  if for every vertex v the path T 1[v ,s ] -decreases and

the path T 2[v ,s ]−s -increases. (In this case T 2[v ,s ]−s = T 2[v ,t ].) The motivation for this definition is

that when u v , T 1[u ,s ] and T 2[v ,s ] are disjoint. The following lemma is useful in proving that an

order is an s −t ordering.
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Lemma 3.1

If the pair of spanning trees (T 1 , T 2) is ordered by  which satisfies (S1) for some edge (s ,t )

then  is an s −t ordering.

Proof

Let v ≠s ,t be a vertex of G . Since (T 1,T 2) are ordered by , the path T 1[v ,s ] = (v ,v 1)T 1[v 1,s ] is -

decreasing. Therefore v 1 is a neighbor of v satisfying v 1 v . Considering T 2[v ,t ] provides us with

another neighbor v 2 satisfying v v 2. _
_



We now show a simple application of this lemma to be used in the proof of our last theorem.

Lemma 3.2

Let T 1, T 2 be spanning trees of a graph G and  an s −t order of G . If (T 1,T 2) is ordered by 

and Γ(s ;T 1)={v } then there exists an s −v order ′ such that (T 2,T 1) is ordered by ′.

Proof

To define ′, let s be the ′-minimum and v the ′-maximum. For all other vertices u ,w if u w

then define w ′u . Since a -increasing (decreasing) path is ′-decreasing (increasing), (T 2,T 1) is

ordered by ′, so by the previous lemma ′ is an s −v ordering. _
_



Let s ∈ V (G ), and e 1,e 2 ∈ ΓE (s ). The quadruple (G ,s ,e 1,e 2) satisfies the Extended 3-Tree Path

property (E 3TP ) if there are three trees (T 1,T 2,T 3) such that:

(E1) Ti are spanning trees of G (i =1,2,3).

(E2) For all v ∈ G T 3[v ,s ] is disjoint of T 1[v ,s ] and T 2[v ,s ].

(E3) E (Ti )∩ΓE (s ) = {ei } for i = 1,2.

(E4) If e 2 = (s ,t ) then there exists an s −t ordering  of G such that (T 1,T 2) is ordered by .

Note that by (E4) T 1[v ,s ] and T 2[v ,s ] are disjoint, and in fact  was introduced to facilitate proving

that.
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Lemma 3.3

Let G be a graph. If for every s ∈ V (G ) there exist e 1,e 2 ∈ ΓE (s ), such that (G ,s ,e 1,e 2) satisfies

E3TP then G is 3-connected.

Proof

We show that between every v ,w ∈ V there exist three disjoint paths. Let e 1,e 2 ∈ ΓE (v ). Since

(G ,v ,e 1,e 2) satisfies E3TP construct the three trees. The desired paths are Ti [w ,v ] (i =1,2,3). _
_



Note that some 2-connected graphs G may satisfy E3TP for some s , e 1 and e 2 (Figure 3.1).

Our goal will be to prove the converse of this lemma, namely, for every 3-connected graph G ,

s ∈ V (G ) and e 1,e 2 ∈ ΓE (s ), (G ,s ,e 1,e 2) satisfies E3TP. To this end, (G ,s ,e 1,e 2) is a counterexample

if G is a 3-connected graph, s ∈ V (G ), e 1,e 2 ∈ ΓE (s ) and (G ,s ,e 1,e 2) does not satisfy E3TP. A

minimum-counter-example (MCE ) is a counterexample for which  V (G )   +  E (G )  is minimum. A

graph G is an MCE if there exist s ,e 1 and e 2 s.t. (G ,s ,e 1,e 2) is an MCE. To satisfy our goal of prov-

ing Theorem 1.2, we show that there exists no MCE.

4. Reducing the degree of the root of an MCE

4.1 Edge contraction in MCE.

In this and the following section we investigate the structure of an MCE. Here we consider con-

tracting an edge incident with s , and in subsection 4.2 we delete such an edge.

............................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.....................

...................

...................

e 1 e 2
s

v

T 1

T 2

T 3 . . . . . . . . . . . . .

S = {s ,v }
Figure 3.1
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Lemma 4.1:

Let e = (s , p ) ≠ e 1,e 2. If κ(G ⁄e ) = 3 then (G ,s ,e 1,e 2) is not an MCE.

Proof

For the sake of contradiction assume that (G ,s ,e 1,e 2) is an MCE. By hypothesis G ⁄e is 3-connected. If

ei =(s ,vi ) then let ei ′=(sp  ,vi ). By the minimality of G , (G ⁄e ,sp  ,e 1′,e 2′) satisfies E3TP. Let Ti ′

(i =1,2,3) be the corresponding trees in G ⁄e and ′ the sp −t ordering. As deg (p ;G )≥3, p has two

neighbors p 1,p 2 ≠ s . Assume, w.l.g., that p 1 ′p 2.

Define now Ti = Ti ′−ei ′+ei +(p ,pi ) (i =1,2). Note that Ti [p ,s ] = (p ,pi )Ti [pi ,s ]. The tree T 3 is

obtained from T 3′ by adding the edge (s ,p ) and replacing each edge of the form (v ,sp  ) by the

corresponding edge (either (v ,s ) or (v ,p )) of G .

To define the s −t ordering in G let  be any extension of ′ to all of V (G ) such that

p 1 p p 2.

We prove now that the new trees satisfy E3TP in G .

(E1) The subgraph Ti is a spanning tree of G since  V (Ti )   =  V (G ⁄e )   +1 =  V (G )  and

 E (Ti )  =  E (Ti ′)   + 1 = (  V (G ⁄e )   −1)+1 =  V (G )   −1.

(E2) We show that T 1[v ,s ] and T 3[v ,s ] are disjoint, the proof for T 2[v ,s ] is identical. For v ≠p :

T 1[v ,s ] = T 1′[v ,sp  ]−e 1′+e 1. Thus, since T 1′[v ,sp  ] and T 3′[v ,sp  ] are disjoint,

T 1[v ,s ]∩T 3[v ,s ]⊆{v ,s ,p }. Since p is a leaf of T 1 and v ≠ p , p V (T 1[v ,s ]) and so T 1[v ,s ] and

T 3[v ,s ] are disjoint.

As for p , by the construction T 1[p ,s ] = (p ,p 1)T 1′[p 1,sp  ], and T 3[p ,s ] = (p ,s ). Therefore, also

the path T 1[p ,s ] is disjoint of T 3[p ,s ].

(E3) Actually no edges were removed from Ti ′ i =1,2 and the only added edge is (p ,pi ) which is not

adjacent to s .

(E4) By definition  is a total order and as p 1 p p 2 (S1) holds. By Lemma 3.1 it remains to show

that (T 1,T 2) are ordered by . For v ≠p , Ti ′[v ,sp  ]=Ti [v ,s ] (i =1,2). Since T 1′[v ,sp  ] is -
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decreasing then so is T 1[v ,s ]. Thus, it remains to check only for p . T 1[p ,s ] = (p ,p 1)T 1′[p 1,sp  ]

and as p 1 p and T 1′[p 1,sp  ] is -decreasing so is T 1[p ,s ].

The proof that T 2[p ,t ] is -increasing is identical. _
_



4.2 Edge removal.

Let e = (s ,p ) ≠ e 1,e 2. If G −e is 3-connected then obviously (G ,s ,e 1,e 2) is not an MCE. In this

section we generalize this observation to the case where deg (p ;G −e ) = 2.

Lemma 4.2

Let s ∈ G with deg (s ;G )>3 and e ∈ ΓE − {e 1,e 2}. If H =h (G −e ) is 3-connected then

(G ,s ,e 1,e 2) is not an MCE.

Proof

Assume that (G ,s ,e 1,e 2) is an MCE. Let e = (s ,p ). If deg (p ;G )>3 then H =G −e . Since by the

hypothesis H is 3-connected, (H ,s ,e 1,e 2) is a smaller counterexample.

Therefore, deg (p ;G ) = 3. Let Γ(p ) = {p 1,p 2,s }. If p ∈ V (H ) then since deg (p ;H )=2, H is not

3-connected. (This happens only if (p 1,p 2) ∈ E (G ).) Thus  V (H )  <  V (G )  and since (G ,s ,e 1,e 2)

is an MCE, (H ,s ,e 1,e 2) satisfies E3TP. Let Ti ′ (i =1,2,3) be the corresponding trees, and ′ the s −t ord-

ering. Assume, w.l.g., that p 1 ′p 2. If the edge (p 1,p 2) belongs to T 3′ then assume, w.l.g., that

T 3′[p 1,s ] = (p 1,p 2)T 3′[p 2,s ] and define T 3 = T 3′−(p 1,p 2)+(p 1,p )+(p ,s ). Otherwise, T 3 = T 3′+(p ,s ).

(Thus we may have shortened some paths of T 3.) Now we construct the other two trees: If

(p 2,p 1) ∈ E (T 1′) then T 1 = T 1′−(p 2,p 1)+(p 2,p )+(p ,p 1). Otherwise, T 1 = T 1′+(p ,p 1). If

(p 1,p 2) ∈ E (T 2′) then T 2 = T 2′−(p 1,p 2)+(p 1,p )+(p ,p 2). Otherwise, T 2 = T 2′+(p ,p 2).

To define the s −t ordering in G let  be any extension of ′ to all vertices of G such that p 1 p p 2.

We prove that the trees Ti (i =1,2,3) satisfy E3TP in G .

(E1) and (E2)

By our construction, replacing the edge (p 1,p 2) by the path (p 1,p ,p 2) leaves the trees connected

without introducing any cycles. If (p 1,p 2) ∈ T 3′[v ,s ] then (p 1,p 2)Ti [v ,s ] (i =1,2),
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T 3[v ,s ] ⊆ T 3′[v ,s ]+(p 1,p )+(p ,s ) and thus is disjoint of Ti [v ,s ]. Otherwise, T 3[v ,s ] = T 3′[v ,s ]

and therefore, (E1) and (E2) hold for Tj (j =1,2,3). Thus, it remains to prove these conditions

only for p . But T 1[p ,s ] = (p ,p 1)T 1[p 1,s ], T 2[p ,s ] = (p ,p 2)T 2[p 2,s ] and T 3[p ,s ] = (p ,s ) are dis-

joint.

(E3) No edges adjacent to s were added or removed from T 1′ and T 2′. Thus this condition remains

unchanged.

(E4) First we prove that  is an s −t ordering. Since  satisfies condition (S1), by Lemma 3.1 it

remains to show that (T 1,T 2) are ordered by . For p , T 1[p ,s ] = (p ,p 1)T 1′[p 1,s ] p 1 p and the

path T 1′[p 1,s ] -decreases. Similarly, since p p 2, the path T 2[p ,t ] = (p ,p 2)T 2′[p 2,t ] -

increases. For v ≠ p then we have to check only the case where (p 2,p 1) ∈ T ′1[v ,s ] (and simi-

larly for T ′2[v ,t ]). As p 1 ′p 2, p 1 appeared in T 1′[v ,s ] after p 2. To get T 1[v ,s ] we replaced the

edge (p 2,p 1) by the path (p 2,p ,p 1), but p 1 p p 2, thus the order on T 1[v ,s ] is preserved. _
_



4.3 The root-degree of an MCE.

In this section we prove the following,

Lemma 4.3

If (G ,s ,e 1,e 2) is an MCE then deg (s ) = 3.

Proof

Let e ∈ ΓE (s )−{e 1,e 2}. By Corollary 2.4 either G ⁄e or h (G −e ) is 3-connected. If G ⁄e is 3-connected

then by Lemma 4.1 (G ,s ,e 1,e 2) is not an MCE. Thus, κ(h (G −e ))≥3. If deg (s )>3 then by Lemma 4.2

(G ,s ,e 1,e 2) is not an MCE. _
_



In the remaining sections we assume deg (s ) = 3.

Lemma 4.4

Let ΓE (s ) = {s 1,s 2,s 3} and (G ,s ,(s ,s 1),(s ,s 2)) satisfy E3TP. Let T 1,T 2,T 3 be the corresponding

trees. Then for 1≤i ,j ≤3 and i ≠j , si is a leaf of Tj .
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Proof

Assume, for example, that s 1 is not a leaf of T 2, then there exists a vertex x such that

T 2[x ,s ]=T 2[x ,s 1]T 2[s 1,s ]. Since, T 1[x ,s ]=T 1[x ,s 1](s 1,s ), T 1[x ,s ]∩T 2[x ,s ]⊇{s 1}, i.e., the two paths are

not disjoint, contrary to the hypothesis. _
_



5. Illegal subgraphs in an MCE.

This section deals with an MCE for which deg (s ) = 3 and shows several subgraphs which cannot

be contained in an MCE. The proofs of these lemmas are very similar to the proofs of Lemmas 4.1 and

4.2, so we will be more brief.

Lemma 5.1

Let F 1 be the graph of Fig 5.1. If G contains the graph F 1 as a subgraph and deg (v ;G ) = 3

then for e 2 ≠ (s ,p ), (G ,s ,e 1,e 2) is not an MCE.

Remark: The vertices s , p and q are connected to G −F 1; (p ,q ) may also belong to G .

Proof

If G is an MCE then by Lemma 4.3 deg (s ;G )=3. Let ΓE (s ;G )={e 1,e 2,e 3}, then since by definition

e 1=(s ,v ) and e 2 ≠ (s , p ), we have e 3=(s ,p ). By the minimality of G , H =h (G −b ) is not an MCE. We

first show that κ(H )=3, then use the three spanning trees of H to construct trees for G .

Claim: κ(H ) = 3.

Proof of Claim: Obviously, Γ(s ;G ) = {u , p ,v } is a separating set of G . Applying Lemma 2.1 to

Γ(s ;G ) shows that except perhaps for x =v or y =p κ(x ,y ;G −b )=3. We need not prove the connectivity

v

s p q

b
e 1

Figure 5.1 F 1
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for v since deg (v ;G −b )=2 and thus it does not belong to H . If deg (p ;G )=3 then p does not belong to

H . Thus, for all x ,y ∈ V (H ), κ(x ,y ;G −b )=3, from which the claim follows. Otherwise, deg (p ;H )≥3;

thus by Lemma 2.2 κ(H )=3. (For both cases we have equality since deg (s ;H )=3.)

Define e 2
H to be the sole member of the set ΓE (s ;H )−{(s ,q ),e 3}. Since G is an MCE,

(H ,s ,(s ,q ),e 2
H ) satisfies E3TP. Let Ti

H (i =1,2,3) be the corresponding trees and H the s −t ordering.

Note that s H q and q H w for all w ∈ V (H )−{s ,q }.

Case 1: deg (p ;G )>3.

In this case p ∈ H , so e 3
H = (s ,p ). The s −t ordering for G is defined as s v q and agrees with H

on all other vertices. The trees are

T 1 = T 1
H −(s ,q )+(s ,v )+(v ,q ),

T 2 = T 2
H +(v ,q ),

T 3 = T 3
H +(p ,v ).

Case 2: deg (p ;G ) = 3.

The s −t ordering for G is defined as s v p q and agrees with H on all other vertices. Let

Γ(p ) = {s ,v , p 1}. Then by definition, e 3
H = (s , p 1)G . Define

T 1 = T 1
H −(s ,q )+(s ,v )+(v ,q )+(v , p ),

T 2 = T 2
H +(v ,q )+(p 1, p ),

T 3 = T 3
H −(s , p 1)+(s , p )+(p , p 1)+(p ,v ).

Lemma 5.2

Let F 2 and F 3 be the graphs of Fig 5.2. If G contains either F 2 or F 3 and v ,w have no addi-

tional neighbors, then for e 2≠(s ,p ) (G ,s ,e 1,e 2) is not an MCE.

Proof

G −b is 3-connected. Thus G cannot be an MCE. _
_



Lemma 5.3

Let F 4 be the graph of Fig 5.3. If G contains F 4, e 2 ≠ (s , p ) and v ,w have no additional neigh-
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v w

s p q

e 1 b

F 2

v w

s p q

e 1

b

F 3
Figure 5.2

bors, then (G ,s ,e 1,e 2) is not an MCE.

Remark: W.l.g., (p ,q )G , since otherwise we have the graph F 3.

Proof

It is easy to show that H = h (G −b ) is 3-connected. Thus, if (G ,s ,e 1,e 2) is an MCE, (H ,s ,(s ,q ),e 2)

satisfies E3TP. Let Ti
H (i =1,2,3) be the corresponding trees and H the s −t ordering. By Lemma 4.4

p is a leaf of T 1
H ,T 2

H and q is a leaf of T 2
H ,T 3

H . W.l.g., T 1
H [p ,s ] = (p ,q ,s ). As (p ,q ) ∈ T 1

H then

T 1 = T 1
H −(q ,s )−(p ,q )+(q ,v )+(w ,v )+(v ,s )+(p ,w ),

and T 2 = T 2
H +(v ,q )+(w ,q ),

W.l.g, T 3
H [q ,s ] = (q , p ,s ) then let

T 3 = T 3
H −(q , p )+(q ,w )+(w , p )+(v ,w )

 is defined as the extension of H to G which satisfies s v w min{z  z ∈ V (G )−s ordered by

H }. _
_



We now come to the main lemma of this section.

Lemma 5.4

Let (G ,s ,e 1,e 2) be an MCE such that {s , p ,q } is a separation set with (s , p ) ∈ G and

v w

s p q

e 1

b

F 4
Figure 5.3
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e 1,e 2 ≠ (s , p ). Then each component of G −{s , p ,q } contains more than two vertices.

Proof

Let B be a component of G −S . If  V (B )   =1 then the subgraph spanned by S and B is the graph F 1.

If  V (B )   =2 then the subgraph spanned by S and B is one of the graphs Fi i = 2,3,4. In both cases

G is not an MCE. _
_



6. E3TP and 3-connected graphs.

We give now the main result of this paper which implies Theorem 1.2.

Theorem 6.1

Let G be a 3-connected graph, s ∈ V (G ) and e 1,e 2 ∈ ΓE (s ), then (G ,s ,e 1,e 2) satisfies E3TP.

Proof

As shown in Fig 6.1 if  V (G )   = 4, E3TP is satisfied. Thus,  V (G )  >4. Assume the theorem is

false and let (G ,s ,e 1,e 2) be an MCE. By Lemma 4.3, deg (s ) = 3. Let ΓE (s ) = {e 1,e 2,e 3}, where

e 3 = (s ,p ). By Lemma 4.1, κ(G ⁄e 3)=2. Therefore, there is a vertex q such that S = {s ,p ,q } is a

separating set. Since s must have an edge in each component, G −S contains only two components

G 1,G 2 and since deg (s ;G )=3 and (s , p ) ∈ G , (s ,q )E (G ). By Lemma 5.4  V (G i )  >2 (i =1,2).

Case 1: (p ,q )E (G ).

As there are three disjoint paths from q to s we may assume, w.l.g., that at least two of them pass

through G 2+s +p . Since deg (s )=3 one of these paths contains e 3. Also, there is always at least one path

......................
.............................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s x 1

x 2x 3

s x 1 x 2 x 3

Figure 6.1
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in G 1. Let G2 = G ⁄G 1 (the contraction of G 1 to a single vertex u ) and G1 the graph resulting from G

by replacing G 2 by F 4 (see Fig. 6.2). I.e. V (G1) = V (G )−V (G 2)+{v ,w } and

E (G1) = E (G )−E (G 2)+(v ,w )+(s ,v )+(v ,q )+(w ,p )+(w ,q ); (u ,v and w are new vertices.) Now we prove

that G1 and G2 are 3-connected.

Claim 1: G1 is 3-connected.

Since there is at least one path between any two vertices of s ,p ,q containing only vertices of G 1,

any two vertices x ,y ∈ {s ,p ,q } are 3-connected. For x ≠ s ,p ,q there exists an x −{s ,p ,q } fan. Thus,

by Lemma 2.5, G1 is 3-connected.

Claim 2: G2 is 3-connected.

As it can be verified that the connectivity between any two vertices ≠ q is 3, the claim follows

by Lemma 2.2.

s
p

q

G 1

G 2

s
p

q

u

G 2

G2

s q
p

v w

G 1

G1

Figure 6.2
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Case 1.1 t ∈ G 2 :

As  V (G i )  >2 (i =1,2) ,  V (Gi )  <  V (G )  therefore (G1,s ,e 1,(s ,v )) and (G2,s ,(s ,u ),e 2)

satisfy E3TP. (Note that in G1 v plays the role of t .) Let T 1
1,T 2

1,T 3
1 be the trees in G1, 1 an s −v

ordering and T 1
2,T 2

2,T 3
2 the trees in G2 with an s −t ordering 2. For i =1, 2, 3, define:

Ti = Ti
1∪Ti

2−{u ,v ,w }. (Note that (s , p ) belongs to both T 3
1 and T 3

2.)

Assume s 1x 1 1,...,xl
1

1q are the vertices of G 1∪S and s =y 1 2, . . . , 2yl
2
=t are the vertices of

G 2. Define  to agree with 1 on vertices of G 1∪S and with 2 on vertices of G 2 also if x ∈ G 1∪S

and y ∈ G 2 then x y . We prove now that T 1,T 2,T 3 satisfy E3TP.

(E1) It is easy to verify that for each vertex x there exists a x −s path on each Ti . Thus each of the

Ti ’s is connected and span G .

To show that Ti contains no cycles we check the number of edges of Ti . For example:

 E (T 1)   =  E (T 1
1)   −2+  E (T 1

2)   −3 =  V (G1)   −1+  V (G2)   −1−5 =

 V (G1)   +  V (G2)   −7 =  V (G )   +6−7 =  V (G )   −1. Thus, T 1 is a spanning tree.

(E2) If x =p then T 3[p ,s ]=(p ,s ) (= T 3
1[p ,s ] = T 3

2[p ,s ]), which is disjoint of Ti [p ,s ] (i =1,2).

If x ∈ G 1.

(1)T 1[x ,s ] = T 1
1[x ,s ],

(2)T 2[x ,s ] = T 2
1[x ,q ]T 2

2[q ,s ] and

(3)T 3[x ,s ] = T 3
1[x ,s ] = T 3

1[x ,p ](p ,s ).

By E3TP in G1, T 3[x ,s ] is disjoint of T 1[x ,s ] and of T 2
1[x ,q ]. It remains to show that T 3[x ,s ] is

disjoint of T 2
2[q ,s ]. This follows because the former lies entirely in G 1+s and the latter in

G 2+q +s .

The remaining cases (x ∈ G 2 and x =q ) are similar.

(E3) By the construction, only edges belonging to the original graph G appear in Ti . Therefore, for

each tree Ti (i =1,2) ΓE (s ;G )∩Ti = {ei }.
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(E4) To prove that  is a s −t ordering we first show condition (S1), i.e. that s is the minimal vertex

of . The maximal vertex of  is equal to the maximal vertex of 2. Note that by E3TP in

G2, 2 does not obtain that maximum on q or p . By Lemma 3.1 it remains to show that (T 1,T 2)

are ordered by . We show now that T 1[x ,s ] is -decreasing for x ∈ G . Assume x ∈ G 1, then

T 1[x ,s ]=T 1
1[x ,s ]. As  and 1 agree on G 1, T 1[x ,s ] is -decreasing. If x ∈ G 2 then

T 1[x ,s ]=T 1
2[x ,q ]T 1

1[q ,s ]. By E3TP on G2 T 1
2[x ,q ] is 2-decreasing and as before T 1

1[q ,s ] is

1-decreasing. Now  agrees with 1 on G 1 and with 2 on G 2. Therefore, T 1[x ,s ] is -

decreasing. The proof that T 2[x ,s ]−s is -increasing is similar.

Case 1.2 t ∈ G 1:

As before, (G1,s ,e 2,(s ,v )) and (G2,s ,(s ,u ),e 1) satisfy E3TP. We proceed as in case 1.1 to obtain

three trees T 1, T 2, T 3 ⊆ G satisfying (E1-E4). In particular, there exists an s −v order  ordering

(T 1,T 2) . Since Γ(s ;T 1)={t }, we may use Lemma 3.2 to obtain an s −t order ′ such that (T 2,T 1) is

ordered by ′. Thus (T 2,T 1,T 3) are three trees which demonstrate that (G ,s ,e 1,e 2) satisfies E3TP.

Case 2: (p ,q ) ∈ E (G )

In this case we construct G1 = G ⁄G 2 and G2 = G ⁄G 1. The rest of the proof is identical to case 1.

_
_



7. Conclusions.

The results of this paper and [IR] suggest the following conjecture:

Conjecture

If a graph G is k -connected and s ∈ G then there exist k spanning trees of G such that the

paths from any vertex v to s on the spanning trees are disjoint.

In this paper we used s −t ordering to ensure that the paths T 1[v ,s ] and T 2[v ,s ] are disjoint. We

have not been able to extend this method to k >3. Also, since our proof is much more complicated that
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that of k =2, new ideas are required.

A similar conjecture can be stated for edges: Namely, if the graph is k -edge connected then for

every vertex s there exist k spanning trees such that the paths from any vertex v to s on the spanning

trees are edge-disjoint.

Both conjectures were proven for k =2 [IR]. It seems that methods similar to those of this paper

are sufficient to prove the edge-conjecture for k =3. However, we feel that it is more promising to show

that for all k the vertex-conjecture implies the edge-conjecture (or vice versa).
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