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Abstract. Consider a tree T and a forest F. The paper discusses the following 
new problems: The Forest vertex-cover problem (FVC): cover the vertices of T 
by a minimum number of copies of trees of F, such that every vertex of T is 
covered exactly once. The Forest edge-cover problem (FEC): cover the edges 
of T by a minimum number of copies of trees of F, such that every edge of T is 
covered exactly once. For a solution to always exist, we assume that F contains 
a one vertex (one edge) tree.  

Two versions of Problem FVC are considered: ordered covers (OFVC), and 
unordered covers (UFVC). Three versions of Problem FEC are considered: or-
dered covers (OFEC), unordered covers (UFEC) and consecutive covers 
(CFEC). We describe polynomial time algorithms for Problems OFVC, UFVC 
and CFEC, and prove that Problems OFEC and UFEC are NP-complete. 

Keywords: vertex-cover of a tree by a forest, edge-cover of a tree by a forest, 
graph algorithms.  

1   Introduction 

In the present paper we consider only rooted trees. The root of a tree t is denoted  
by root(t). For a vertex v of t, we denote by pt(v) the father of v, by Ch(v) its set of  
children and by deg(v)=|Ch(v)| their number. For a subset X⊆V(t), we denote 
Ch[X]=∪v∈XCh(v). We denote by tv the subtree of t rooted at v and containing v and all 
its descendants. The number of edges in the unique path between two vertices x,y of t 
is called distance between x and y and is denoted by dist(x,y); height(t) is the distance 
from root(t) to the farthest leaf. Isomorphism between two rooted trees t, f is denoted 
by t ≈ f. The connected components f1,...,fq of a forest F are rooted trees; for simplicity, 
we denote by F also the family {f1,...,fq}. For a forest F, we denote by V(F), E(F), L(F) 
its set of vertices, edges and leaves, respectively.  

A forest vertex-cover (forest edge-cover) of a tree T by a forest F, is a partition of T 
into vertex (edge) disjoint subtrees t1,...,tk such that each ti is isomorphic to some fj∈F. 
A minimum forest vertex-cover is one which uses a minimum number of copies of 
trees of F.  

We define the following two new problems: 

FVC: Find a minimum forest vertex-cover of a tree T by a forest F. 
FEC: Find a minimum forest edge-cover of a tree T by a forest F. 
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To ensure that a cover exists, we assume throughout the paper that F contains a 
unique tree f1 consisting of a single vertex, for vertex covers, and of a single edge, for 
edge covers. 

A rooted tree is ordered if there exists an order between the children of every ver-
tex. A cover is ordered if the trees ti and fj are isomorphic as ordered trees. A cover 
without this restriction is unordered. We discuss two versions of Problem FVC: Prob-
lem OFVC – ordered forest vertex-cover (see Fig. 1), and Problem UFVC – unordered 
forest vertex-cover. Likewise, for edges we have Problem OFEC – ordered forest 
edge-cover, and Problem UFEC – unordered forest edge-cover. 

In an ordered tree T, let {u1,…,udeg(u)} be the children of a vertex u . We say that the 
children of u are covered consecutively by the children of a vertex x of F if for some 
1≤i≤deg(u)−deg(x), the children ui,…,ui+deg(x)–1 of u are all covered by the children of 
x. A cover of T by F is consecutive if for every vertex u in T which is covered by a 
vertex x of F, u's children are covered consecutively by x's children. Problem CFEC is 
to find a minimum consecutive edge-cover of an ordered tree T by a forest F. Note 
that Problem CFVC – to find a minimum consecutive vertex-cover – is a restricted 
case of OFVC. 

For a vertex-cover t1,...,tk of a tree T by a forest F, let FC be the multiset of non-
trivial subtrees tj in the forest vertex-cover fulfilling |V(tj)|>1. Let r=|FC|: FVC is 
equivalent to finding a forest vertex-cover which minimizes r+(|V(T)|–∑|V(tj)|), that 
is, it maximizes ∑|V(tj)|–r. The problem is new, having a flavor of both max and 
min: for a constant ∑|V(tj)|, it minimizes r, while for a constant r, it maximizes 
∑|V(tj)|. Therefore, FVC is equivalent to packing into T a set of copies of trees in F–
{f1}, where |V(f1)|=1, such that ∑|V(tj)|–r is maximized. When the trees in F–{f1} are 
of equal cardinality, the problem is of maximizing r, becoming equivalent to the 
maximum packing problem. When more than one set of trees covers the same number 
of vertices in T, the problem becomes one of minimizing the number r of trees. Simi-
larly, Problem FEC is equivalent to finding a forest edge-cover which minimizes 
r+(|E(T)|–∑|E(tj)|), that is, maximizes ∑|E(tj)|–r. 
 
  a1                  b2                      c5                                                                                   b2

      

                             
                        b1           c1                  c4                                                  b1                                 c5     

           
                                                       

  f1                f2              f3         c2               c3                            c1                 a1                 c4                 a1

                                       

   
                                    F={f1,f2,f3}                                               T        c2                 c3                 a1   

 

Fig. 1. An ordered forest vertex-cover of size 5: three copies of f1 and one of f2 and f3 
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The above problems are related to the subtree isomorphism problem. Algorithms 
for the subtree isomorphism problem were given in [6,7,8], while the problem of sub-
graph isomorphism of a forest F into a tree T is NP-complete [3]. In the present paper 
we describe two polynomial time algorithms to solve Problems OFVC, UFVC and 
CFEC, and prove that Problems OFEC and UFEC are NP-complete. One algorithm 
called MAP-CHILDREN is similar to the algorithm for graph isomorphism and its 
complexity depends on |V(F)|. The other algorithm called MAP-LEAVES seems to 
be new, and works by replacing in F every maximal directed path in which the inter-
nal vertices have only one child, by a single edge; its complexity depends on |L(F)|, 
being very efficient when |L(F)| is much smaller than |V(F)|, for example when the 
trees in F are paths. The algorithms can be extended to unrooted trees by considering 
copies of T rooted at each one of its vertices and extending the family F={f1,...,fq} to 
contain copies of every fi rooted at each one of its vertices. 

Problem FVC in a restricted form was discussed by Golumbic [4] for the factoriza-
tion of a tree Boolean function as a read-once (fan-out) function, and by Levin and 
Pinter [5] for the realization of a tree Boolean function using a minimum number of 
logic circuits. An additional application is in translation: we wish to cover a syntax 
tree of a source language sentence by a minimum number of phrases, each of which 
has an optimal translation to the target language.  

In Sections 2,3 we describe polynomial time algorithms to solve Problems OFVC 
and UFVC: in Section 2 the complexity depends on |V(F)|, while in Section 3, the 
complexity depends on |L(F)|. In Section 4 we describe similar algorithms to solve 
maximum packing problems of copies of trees of F into T. In Section 5 we prove that 
Problems OFEC and UFEC are NP-complete. In Section 6 we describe a polynomial 
time algorithm to solve CFEC. 

2   Algorithm MAP-CHILDREN for Forest Vertex-Cover 

Consider a tree T and a forest F. We shall describe how to extend covers of a subtree 
Tu of T, consisting of u and all its descendants, to a complete cover of T. Let u∈V(T), 
f∈F and x∈V(f). An [Tu , fx] forest vertex-cover of Tu is an F∪{fx} forest vertex-cover 
of T, such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only 
once in the cover. Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f), 
then the parent pf(x) of x must cover the parent pT(u) of u. Let W(u,x) be the number of 
trees in a minimum [Tu

 , fx] forest vertex-cover of Tu. Let W(u) denote the number of 
trees in a minimum forest vertex-cover of Tu. Clearly W(u)=minf∈F{W(u,root(f))}.  

Consider first the case where x is a leaf of f, i.e., V(fx)={x}. Then in any [Tu
 , fx] 

forest vertex-cover of Tu, u is covered  by x and each of its children is covered by the 
root of a tree of F. Hence, W(u,x) = 1 + ∑v∈Ch(u) W(v). 

In the general case, consider an [Tu
 , fx] forest vertex-cover of Tu; let X⊆V(T) be the 

set of vertices of the subtree rooted at u of Tu  covered by fx. Tu –X is a set of disjoint 
subtrees of Tu, each subtree rooted at a vertex in Ch[X] –X  and covered by a forest 
vertex-cover of F. Let T[X] denote the vertex subgraph of T induced by X. Hence, 

W(u,x)=1+minX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) : X⊆V(Tu), T[X]≈ fx , root(T[X])=u}. (1) 
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The above equation requires us to find all isomorphic copies of fx rooted at u and 
hence might lead to an exponential time algorithm. To get a polynomial time algo-
rithm we will show how to compute W(u,x) from the values of W(v),W(y), v∈Ch(u), 
y∈Ch(x). 

An [Tu
 , fx] forest vertex-cover of Tu exists only if deg(x)≤deg(u). We construct the 

cover of Tu from optimal covers of the children of u: deg(x) of u's children are cov-
ered by the deg(x) trees in {fz : z∈Ch(x)} and the remaining children of u are covered 
by trees of F. A matching is an injection μ : Ch(x)→Ch(u); let M[Ch(x),Ch(u)] denote 
the set of possible matchings of Ch(x) into Ch(u). Therefore, 

W(u,x) = 1 – deg(x) + minμ∈M[Ch(x),Ch(u)]{∑1≤j≤deg(x)W(μ(xj),xj) + ∑v∈Ch(u)–μ(Ch(x)) W(v)} (2)

Finally, W(u)=minf∈F W(u,root(f)),and the size of a minimum cover is W(root(T)). 
We describe a generic dynamic programming algorithm which is conducted by a 

postorder traversal of T and F, that is, it considers the children of u and x before con-
sidering u and x. This ensures that when evaluating the left side of equation (2), the 
values of the right side have been evaluated.  

The dynamic programming algorithm traverses T and F in postorder and for every 
u∈V(T), f∈F and x∈V(f), it finds the size of a minimum [Tu

 , fx] forest vertex-cover of 
Tu. To obtain W(u) the algorithm finds the f∈F which minimizes W(u) = minf∈F 
{W(u,root(f))}. Since the trees of F are disjoint, once a vertex x is chosen, the tree 
f∈F to which it belongs and the vertex of T covered by root(f) are uniquely deter-
mined. When x is a leaf of f, hence fx={x}, the algorithm already evaluated for Tu the 
minimum cover of every tree Tv, v∈Ch(u), thus W(u,x) = 1 + ∑1≤i≤deg(u) W(ui). 

When x is not a leaf of f, the algorithm simulates a minimum weight isomorphism 
algorithm of fx into Tu, by assuming that the corresponding ancestor of u, will be cov-
ered by root(f). Thus, by optimally covering the children of u by the children of x, it 
carries to u (and to root(f)) the sizes of the minimum covers. This is done as follows: 

A matching μ between a sequence of vertices (u1,…,um) and (x1,…,xr) is non-
crossing when every pair xi,xi+1 is matched to a pair uj,uk fulfilling j<k. For each sub-
problem P we will restrict the permitted matchings to a subset MP[Ch(x),Ch(u)] of all 
possible matchings. For OFVC, MP is the set of non-crossing matchings and for 
UFVC, MP is the set of all matchings. To every pair [ui,xj] we assign a cost equal to 
W(ui,xj). Hence, a minimum cost matching μ* of Ch(x) into Ch(u) in equation (2), will 
give us the optimal way of covering the children of u by the children of x. This, to-
gether with the postorder traversal ensures by induction that the dynamic program-
ming algorithm is correct.  

Equation (2) is rewritten below as a minimum cost matching μ*∈MP[Ch(x),Ch(u)] 
of a complete bipartite graph [Ch(x),Ch(u)], in which the cost of every edge (ui,xj) is 
W(ui,xj)–W(ui): 

W(u,x) = 1 – deg(x)+∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))] . (3)

We denote WS(u) = ∑1≤i≤deg(u) W(ui) and cost(μ*)=∑1≤j≤deg(x) [W(μ*(xj),xj) – 
W(μ*(xj))].  
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The algorithm keeps pointers along the minimum cost matchings to retrace the 
minimum forest vertex-cover when u=root(T), and does not have to remember the 
intermediate forest vertex-covers.  
 

Algorithm MAP-CHILDREN 
for every u∈V(T) in postorder W(u)=∞; 

if u is a leaf then W(u)=1, WS(u)=0; 
if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v); 
for every x∈V(F) in postorder 

if u is a leaf 
    if x is a leaf then W(u,x)=1 else W(u,x)=∞; 
if u is not a leaf 
      if x is a leaf then W(u,x) = 1+WS(u); 
      if x is not a leaf 

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)]; 
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (3) 

if x=root(f), for some f∈F then W(u)=min {W(u,x),W(u)};  
if u=root(T) then W(u) is the size of the minimum cover; 

end 
 

In order to use the generic algorithm MAP-CHILDREN we need to specify how to 
calculate equation (3). For OFVC, MP is the set of non-crossing matchings. Assuming 
that W(ui) and W(ui,xj) (ui∈Ch(u) and xj∈Ch(x)) have been computed, we need to find 
a minimum cost non-crossing matching μ*. We use dynamic programming again: 

Let SCh(u)Ch(x)[i,j] be the value of the minimum cost non-crossing matching between 
u1,...,ui  and x1,...,xj where SCh(u)Ch(x)[1,1]=W(u1,x1) and SCh(u)Ch(x)[i,j]=∞ if i<j. Then 

SCh(u)Ch(x)[i,j]=min {SCh(u)Ch(x)[i–1,j–1]+W(ui,xj),SCh(u)Ch(x)[i–1,j]+W(uj)} for i>1, j≤i . (4)

To compute all SCh(u)Ch(x)[i,j]'s for given vertices u,x it takes O(deg(u)deg(x)) time. 
For all vertices, the required time is 

∑u∈V(T) ∑x∈V(F) deg(u)deg(x) = ∑u∈V(T) deg(u) ∑x∈V(F) deg(x) < |V(T)||V( F)| . (5)

To find a minimum unordered cover UFVC, when the tree T and the forest F are 
unordered, we also apply MAP-CHILDREN. The only difference is that in equation 
(3) we drop the constraint that the matching be non-crossing, i.e., MP is the set of all 
matchings between Ch(x) and Ch(u). 

To find the matching μ* in the complete bipartite graph MP[Ch(x),Ch(u)] we fol-
low [1,7,8] and employ the maximal flow minimum cost algorithm of [2] to yield an 
algorithm that requires O(∑f∈F|V(f)|1.5 |V(T)| log|V(T)|) time. 

3   Algorithm MAP-LEAVES for Forest Vertex-Cover 

In this section we construct an algorithm for OFVC and UFVC whose complexity 
depends on the number |L(F)| of leaves of F, which may be much smaller than  
the number of vertices of F. The key step is to cover the vertices of T by the leaves  
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of F: covering a vertex u∈V(T) by a leaf x of f determines how the path from x to 
root(f) covers vertices of T. However, in order not to scan each vertex of f separately, 
we shall replace the tree f by its skeleton – the tree skel(f) – resulting by replacing 
every maximal directed path in which the internal vertices have only one child, by a 
single edge. Now, every internal vertex of the tree skel(f) has at least two children. 
Thus, |V(skel(f))|≤ 2|L(f)|. Let SKEL = {skel(f) : f∈F} and let SKEL+ be the set con-
taining the vertices of SKEL and their children in F. Since every edge of SKEL gives 
rise to one child of F, |SKEL+|≤|2V(SKEL)|=O(|L(F)|). 

Consider covering the vertex u∈V(T) by a vertex x∈V(skel(f)), skel(f)∈SKEL. If u 
is a leaf then it can be covered only by leaves of SKEL. If u is not a leaf and x is a 
leaf, then u is covered by x, each of its children v∈Ch(u) is covered by the root of a 
tree of F, and Tv is covered by a minimum forest vertex-cover with trees of F. If nei-
ther u nor x is a leaf, then each child of x in f must cover a child of u. The edge in 
skel(f) connecting x to a child yx, corresponds in f to a path (x,xj,...,yx). Assume that xj 
covers ui. Then ui must have a descendant at distance dist(xj,yx) = dist(x,yx)−1 which is 
covered by yx. 

Let W(u), WS(u) and W(u,x) be as defined in Section 2. If u' is a descendant of u, 
let PathT(u,u') denote the path in T from u to u'. Let CPathT(u,u') be the set of children 
of vertices in PathT(u,u')−{u'}, children which are not in PathT(u,u'), and let 
WP(u,u')=∑v∈CPath(u,u')W(v). We compute WP(pT(u),u') from WP(u,u') by 

WP(pT(u),u') = WP(u,u') + ∑ {W(v) : v∈Ch(pT(u))} – W(u) = WP(u,u') + WS(u) – W(u). (6) 

To compute W(u,x) for u∈V(T), x∈V(f), f∈F, we need to decide which children of u 
should be covered by the children of x in f(x). Let (x,yx) be an edge in skel(f), let xj be 
the child of x on the path in f from x to yx and let d = dist(xj,yx); to every child xj of x 
corresponds exactly one yx and one d. Let D={dist(xj,yx) : xj∈SKEL+, pf(xj)=x}. Since 
to every child xj of x corresponds exactly one yx it follows that 
|D|≤|SKEL+|=O(|L(F)|). Let D[ui,d] be the list of descendants of ui∈V(T) at distance 
d from ui. Thus, for children ui of u and xj of x we have 
 

W(ui,xj) = minu' {W(u',yx) + WP(ui,u') : d = dist(xj,yx), u'∈D[ui,d]} .             (7) 
 

Now, according to equation (3), rewritten below as (8), we need to find a minimum 
cost matching μ*∈MP[Ch(u),Ch(x)] of a complete bipartite graph (Ch(u),Ch(x)), 
where the cost of every edge (ui,xj) is W(ui,xj) –W(ui) and evaluate: 
 

W(u,x) = 1 – deg(x) + ∑v∈Ch(u) W(v) + ∑z∈Ch(x)[W(μ*(z),z) − W(μ*(z))] .              (8) 
 

By equations (5-7) we do not have to compute W(u,x) for all vertices x∈V(F), but 
only for vertices x in SKEL+. Thus we need to compute only O(|V(T)||L(F)|) such 
values. 

In the preprocessing stage we discard from F the trees whose height exceeds 
height(T) and prepare SKEL, SKEL+ and D ; this requires O(|V(F)|) time. Also, we 

prepare D[u,d] for all u∈V(T) and d∈D. Let dmax=max {d : d∈D }; clearly 
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dmax≤height(T). In the worst case, each vertex appears in the list of all its ancestors, 
and so this requires O(|V(T)| dmax) time. The algorithm traverses T in postorder, and at 
vertex u it examines the cost of covering u by every x∈SKEL+. 
 

Algorithm MAP-LEAVES 
 for every u∈V(T) in postorder W(u)=∞; 
      if u is a leaf then W(u)=1, WS(u)=0; 
      if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v);  
         for every v∈Ch(u)  // compute WP 

      for all descendants w of v at distance at most dmax 
             WP(u,w) = WS(u)−W(v) +WP(v,w); 

      for every x∈SKEL+ in postorder 
           if u is a leaf 

      if x is a leaf then W(u,x)=1 else W(u,x)=∞; 
           if u is not a leaf 

    if x is a leaf then W(u,x) = 1+WS(u); 
else if x∈V(SKEL)  

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)] 
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (7) 
if x∈SKEL+ −  V(SKEL) 

let yx be the closest descendant of x that belongs to a tree in SKEL; 
                                  d = dist(x,yx); 
                                 W(u,x) = minw∈D[u,d] {W(w,yx) +WP(u,w)}; // yx is unique for x  (9) 

if x=root(f), f∈F then W(u)=min {W(u,x),W(u)};  
if u=root(T) then W(u) is the size of the minimum cover; 
end 

 
The computation of WP(u,w) for every u,w requires O(|V(T)| dmax) time, since each 

vertex w appears only in the list of its ancestors. The vertex w∈V(T) in equation (9) is 
considered for its ancestor u at distance d = dist(x,yx). Thus for each x∈SKEL+, w ap-
pears in O(|SKEL+|) computations of the minimum in (9). Hence, over all w∈V(T), the 
number of vertices considered in the computation of all the minima in (9) is 
O(|V(T)||SKEL+|)=O(|V(T)||L(F)|). Since the matching can be found as in Section 2, we 
obtain: For OFVC, Algorithm MAP-LEAVES requires O(|V(T)|dmax+|V(T)||L(F)|) ≤ 
O(|V(T)|height(T) +|V(T)||L(F)|) time. For UFVC, Algorithm MAP-LEAVES requires 
O(|V(T)|dmax+∑f∈F|L(f)|1.5|V(T)| log|V(T)|) ≤ O(|V(T)|height(T)+∑f∈F|L(f)|1.5|V(T)|log| 
V(T)|)  time.  

4   Algorithms for Maximum Packing of a Forest in a Tree 

Algorithms MAP-CHILDREN and MAP-LEAVES can be used for many other opti-
mization problems on T and F. For example, finding a maximum packing of vertex 
disjoint copies of trees of F into T, can be solved in polynomial time; here we assume 
that F contains no single vertex tree, otherwise the problem is trivial. This problem has  
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two versions, one to maximize the number of packed trees and another to maximize the 
number of covered vertices of T. Denote by W(u) the number of trees in a maximum 
forest packing of Tu. An [Tu , fx] forest packing of Tu is an F∪{fx} forest packing of Tu, 
such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only once 
in the packing. Let W(u,x) be the number of trees in a maximum [Tu , fx] forest packing 
of Tu. Then, similarly to equation (1), 
 

 W(u,x)=1+maxX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) X⊆V(Tu), T[X]≈ fx, root(T[X])=u}. (10) 
 

Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f), then pT(u) must be 
covered by pf(x). W(u,x) can be evaluated as a maximum weight matching 
μ*∈MP[Ch(x),Ch(u)] of a complete bipartite graph [Ch(x),Ch(u)], in which the 
weight of every edge (ui,xj) is W(ui,xj)–W(ui): 
 

W(u,x) = 1 – deg(x) + ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))].    (11) 
 

Clearly W(u)=max {∑1≤i≤deg(u) W(ui) , maxf∈F{W(u,root(f))}} and the size of a maxi-
mum packing is W(root(T)); when u is a leaf, W(u)=0. 

For a packing covering a maximum number of vertices of T, equation (11) is re-
placed by: W(u,x) = 1+ ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ(xj),xj) – W(μ(xj))]. 

The complexity of the algorithms is similar to the complexity of the algorithms in 
Sections 2, 3. 

5   Covering the Edges by a Minimum Ordered or Unordered 
Forest Edge-Cover 

Consider a tree T and a forest F, F={fi : i=1,..,k }. For u∈V(T) and x∈V(F), since we 
are looking for an edge-disjoint cover, the edge from the parent pT(u) of u  to u must 
be covered by exactly one edge of the forest F.  

We prove that the Problems OFEC and UFEC are NP-complete, by reducing to 
them the NP-complete problem of Exact Cover by 3-Sets (X3C) [3].  
 

Problem: Exact Cover by 3-Sets (X3C) 
Instance: A set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X.  
Question: Is there a subfamily S'⊆S s.t. every vi∈X is contained in exactly one set  

in S' ?  

Theorem 1: The problems of exact covering of the edges of a tree T by a minimum 
ordered or unordered forest edge-cover are NP-complete. 

 

Proof. We show that the problem X3C is reducible to the Problems OFEC and UFEC, 
i.e., for each instance of X3C we show an instance of the edge-cover problem that has 
a cover of size n/3 if and only if X3C has a solution.  

Consider a set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X.  We con-
struct a tree T (Fig. 2a) with root v whose children are v1,...,vn and at every vi we at-
tach a subtree Ti defined as follows (Fig. 2b): Ti's root is vi, vi has i children which are 
leaves and vi has attached a path with n−i+1 vertices. Clearly, every Ti has exactly 
n+2 vertices and no two Ti's are isomorphic. For every sj={va,vb,vc}∈S, a <b < c, we 
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define a tree fj  (Fig. 2c) with root sj, children va,vb,vc from left to right, and copies of 
Ta, Tb, Tc attached as subtrees. Let F={f1,f2,...,fk}∪{e}, where e is the tree consisting 
of two vertices and an edge between them. Consider an ordered or unordered forest 
edge-cover of size n/3 of T; such a covering is minimum since all vertices sj's are 
mapped on v. Then, for every child vi of v in T, there exists some fj with child vi of sj, 
covering the child vi of v. Thus, a forest edge-cover of size n/3 of T by trees in F gives 
an exact covering of X by subsets in S.  

                                                                                                                                                   
                    v     (a)                            vi      (b)                                            sj     (c)
             T                                   Ti                                                      fj              

                                           

                                                         ...                                          va                      vb                       vc     

                                                     i leaves                                    Ta              Tb             Tc

     v1               v2       ...     vn                                       
                                                           n–i+1                                                      
     T1              T2               Tn              vertices                                         

 

Fig. 2. An instance of forest edge-cover problem corresponding to an instance of X3C 

Conversely, an exact covering of X by subsets si,1,...,si,n/3∈S will give a cover 
fi,1,...,fi,n/3∈F of the edges of T. Note that the order of the edges in the fi's is compatible 
to that of T. Thus any exact cover is an ordered cover.                                                  

By the same reduction, the maximum packing problems of edge disjoint copies of 
trees of F into a tree T, are NP-complete. 

6   An algorithm for a Minimum Consecutive Forest Edge-Cover 

Problem CFEC, finding a minimum consecutive edge-cover, assumes that T is an or-
dered tree and if u∈V(T) is covered by x∈V(F), then the children of u covered by the 
children of x, are consecutive in the order of T. Let the edge from the parent of a ver-
tex v to v in a tree t be denoted by pt(v)→v. For non-roots u∈T and x∈V(F), since we 
are looking for an edge-disjoint cover, the edge pT(u)→u should be covered by ex-
actly one edge of F, the edge pf(x)→x. Let us denote fx

+= fx∪{pf(x)→x}, 
Tu

+=Tu∪{pT(u)→u}. For non-roots u, x, let [Tu
+, fx

 +,j] denote a consecutive edge-
cover of the subtree Tu

+ by the forest  F∪{fx
+} such that the edge pf(x)→x covers the 

edge pT(u)→u, the children{x1,...,xdeg(x)} of x cover the children uj−deg(x)+1,...,uj of u, 
and the tree fx

+ is used only once in the cover.  
Let Tu(i,j) denote the subtree of Tu containing u (as root), the children ui,...,uj of u 

and all the children's descendants. The algorithm is based on the observation that in a 



 Covering a Tree by a Forest 75 

[Tu
+,fx

 +,j] consecutive edge-cover, the subtrees Tu(1,j–deg(x)) and Tu(j+1,deg(u)) 
have consecutive edge-covers by F, that is, u is covered only by roots of trees in F, 
while Tu(j–deg(x)+1, j)∪{pT(u)→u} has a consecutive edge-cover by the forest  
F∪{fx

+}, using the tree  fx
+ only once. 

Let μu,x,j be a minimum cost matching of the complete bipartite graph [Ch(x),{uj–

deg(x)+1,...,uj}] in which the cost of every edge (v,z), v∈{uj–deg(x)+1,...,uj}, z∈Ch(x), is the 
size of a minimum [Tv

+,fz
+,j] consecutive edge-cover. Let W(u,i,j) be the cardinality of 

a minimum consecutive edge-cover of Tu(i,j) by F. For every u and j we will evaluate 
 

                 W(u,1,j) = minf∈F {W(u,1, j – deg(root(f)) + cost(μu,root(f),j)}                    (12) 
 

     W(u,j,deg(u)) = minf∈F {W(u, j + deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))} .   (13) 
 

For non-roots u, x, let WR(pT(u)→u,pf(x)→x) be the size of a minimum among all j, 
1≤j≤deg(u), of a [Tu

+, fx
 +, j] consecutive edge-cover,  Therefore 

 

     WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u))+cost(μu,x,j)}.(14) 
 

Algorithm MAP-EDGES 
 for every u∈V(T) in postorder 
     for every f∈F  

for j=1,...,deg(u) set W(u,1,j)=W(u,j,deg(u))=∞; 
     if u is not a leaf then 

   for every j=deg(u) –deg(root(f)+1,...,deg(u) 
      find a minimum cost matching μu,root(f),j; 
      W(u,1,j)=minf∈F{W(u,1, j–deg(root(f)) + cost(μu,root(f),j)}; 
   for every j=deg(u),deg(u) –1,..., deg(u) –deg(root(f)+1 
    W(u,j,deg(u))=minf∈F{W(u, j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))}; 

 if u≠root(T) then 
     for every x∈f∈V(F), x≠root(f), in postorder 

if u is a leaf then 
   if x is a leaf then WR(pT(u)→u,pf(x)→x)=1 else WR(pT(u)→u,pf(x)→x)=∞; 

              if u is not a leaf then 
      if x is a leaf then WR(pT(u)→u,pf(x)→x)=1+W(u,1,deg(u)); 
      if x is not a leaf then 

Let μu,x,j be a minimum cost matching of the complete bipartite graph  
                                                                  MP[Ch(x),{uj–deg(x)+1,...,uj}]; 

               WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u)) 
                                                                                        +cost(μu,x,j)}; 

      if u=root(T) then W(u,1,deg(u)) is the size of the minimum edge-cover; 
end 

 
The algorithm works in O(∑f∈F |V(f)|1.5 |V(T)| log|V(T)|) time by the matching al-

gorithms in [1,2]. 
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The maximum packing problems of edge disjoint copies of trees of F into T, where 
the children of u covered by the children of x, are consecutive in the order of T, can 
also be solved in polynomial time; here we assume that F contains no single vertex 
and no single edge tree otherwise the problem is trivial. This is done by an algorithm 
similar to the above, by changing the equations (12), (13) to: 
 

   W(u,1,j) = min {W(u,1,j–1) , minf∈F{W(u,1, j – deg(root(f)) + cost(μu,root(f),j)}}.  (15) 
 
W(u,j,deg(u)) = min {W(u,1,j+1), 
                                    minf∈F{W(u,j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)1)) }} . (16) 
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