
M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 66–76, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Covering a Tree by a Forest

Fanica Gavril and Alon Itai

Department of Computer Science, Technion - IIT, Haifa, Israel
gavril@cs.technion.ac.il, itai@cs.technion.ac.il

Abstract. Consider a tree T and a forest F. The paper discusses the following
new problems: The Forest vertex-cover problem (FVC): cover the vertices of T
by a minimum number of copies of trees of F, such that every vertex of T is
covered exactly once. The Forest edge-cover problem (FEC): cover the edges
of T by a minimum number of copies of trees of F, such that every edge of T is
covered exactly once. For a solution to always exist, we assume that F contains
a one vertex (one edge) tree.

Two versions of Problem FVC are considered: ordered covers (OFVC), and
unordered covers (UFVC). Three versions of Problem FEC are considered: or-
dered covers (OFEC), unordered covers (UFEC) and consecutive covers
(CFEC). We describe polynomial time algorithms for Problems OFVC, UFVC
and CFEC, and prove that Problems OFEC and UFEC are NP-complete.

Keywords: vertex-cover of a tree by a forest, edge-cover of a tree by a forest,
graph algorithms.

1 Introduction

In the present paper we consider only rooted trees. The root of a tree t is denoted
by root(t). For a vertex v of t, we denote by pt(v) the father of v, by Ch(v) its set of
children and by deg(v)=|Ch(v)| their number. For a subset X⊆V(t), we denote
Ch[X]=∪v∈XCh(v). We denote by tv the subtree of t rooted at v and containing v and all
its descendants. The number of edges in the unique path between two vertices x,y of t
is called distance between x and y and is denoted by dist(x,y); height(t) is the distance
from root(t) to the farthest leaf. Isomorphism between two rooted trees t, f is denoted
by t ≈ f. The connected components f1,...,fq of a forest F are rooted trees; for simplicity,
we denote by F also the family {f1,...,fq}. For a forest F, we denote by V(F), E(F), L(F)
its set of vertices, edges and leaves, respectively.

A forest vertex-cover (forest edge-cover) of a tree T by a forest F, is a partition of T
into vertex (edge) disjoint subtrees t1,...,tk such that each ti is isomorphic to some fj∈F.
A minimum forest vertex-cover is one which uses a minimum number of copies of
trees of F.

We define the following two new problems:

FVC: Find a minimum forest vertex-cover of a tree T by a forest F.
FEC: Find a minimum forest edge-cover of a tree T by a forest F.

 Covering a Tree by a Forest 67

To ensure that a cover exists, we assume throughout the paper that F contains a
unique tree f1 consisting of a single vertex, for vertex covers, and of a single edge, for
edge covers.

A rooted tree is ordered if there exists an order between the children of every ver-
tex. A cover is ordered if the trees ti and fj are isomorphic as ordered trees. A cover
without this restriction is unordered. We discuss two versions of Problem FVC: Prob-
lem OFVC – ordered forest vertex-cover (see Fig. 1), and Problem UFVC – unordered
forest vertex-cover. Likewise, for edges we have Problem OFEC – ordered forest
edge-cover, and Problem UFEC – unordered forest edge-cover.

In an ordered tree T, let {u1,…,udeg(u)} be the children of a vertex u . We say that the
children of u are covered consecutively by the children of a vertex x of F if for some
1≤i≤deg(u)−deg(x), the children ui,…,ui+deg(x)–1 of u are all covered by the children of
x. A cover of T by F is consecutive if for every vertex u in T which is covered by a
vertex x of F, u's children are covered consecutively by x's children. Problem CFEC is
to find a minimum consecutive edge-cover of an ordered tree T by a forest F. Note
that Problem CFVC – to find a minimum consecutive vertex-cover – is a restricted
case of OFVC.

For a vertex-cover t1,...,tk of a tree T by a forest F, let FC be the multiset of non-
trivial subtrees tj in the forest vertex-cover fulfilling |V(tj)|>1. Let r=|FC|: FVC is
equivalent to finding a forest vertex-cover which minimizes r+(|V(T)|–∑|V(tj)|), that
is, it maximizes ∑|V(tj)|–r. The problem is new, having a flavor of both max and
min: for a constant ∑|V(tj)|, it minimizes r, while for a constant r, it maximizes
∑|V(tj)|. Therefore, FVC is equivalent to packing into T a set of copies of trees in F–
{f1}, where |V(f1)|=1, such that ∑|V(tj)|–r is maximized. When the trees in F–{f1} are
of equal cardinality, the problem is of maximizing r, becoming equivalent to the
maximum packing problem. When more than one set of trees covers the same number
of vertices in T, the problem becomes one of minimizing the number r of trees. Simi-
larly, Problem FEC is equivalent to finding a forest edge-cover which minimizes
r+(|E(T)|–∑|E(tj)|), that is, maximizes ∑|E(tj)|–r.

 a1 b2 c5 b2

 b1 c1 c4 b1 c5

 f1 f2 f3 c2 c3 c1 a1 c4 a1

 F={f1,f2,f3} T c2 c3 a1

Fig. 1. An ordered forest vertex-cover of size 5: three copies of f1 and one of f2 and f3

68 F. Gavril and A. Itai

The above problems are related to the subtree isomorphism problem. Algorithms
for the subtree isomorphism problem were given in [6,7,8], while the problem of sub-
graph isomorphism of a forest F into a tree T is NP-complete [3]. In the present paper
we describe two polynomial time algorithms to solve Problems OFVC, UFVC and
CFEC, and prove that Problems OFEC and UFEC are NP-complete. One algorithm
called MAP-CHILDREN is similar to the algorithm for graph isomorphism and its
complexity depends on |V(F)|. The other algorithm called MAP-LEAVES seems to
be new, and works by replacing in F every maximal directed path in which the inter-
nal vertices have only one child, by a single edge; its complexity depends on |L(F)|,
being very efficient when |L(F)| is much smaller than |V(F)|, for example when the
trees in F are paths. The algorithms can be extended to unrooted trees by considering
copies of T rooted at each one of its vertices and extending the family F={f1,...,fq} to
contain copies of every fi rooted at each one of its vertices.

Problem FVC in a restricted form was discussed by Golumbic [4] for the factoriza-
tion of a tree Boolean function as a read-once (fan-out) function, and by Levin and
Pinter [5] for the realization of a tree Boolean function using a minimum number of
logic circuits. An additional application is in translation: we wish to cover a syntax
tree of a source language sentence by a minimum number of phrases, each of which
has an optimal translation to the target language.

In Sections 2,3 we describe polynomial time algorithms to solve Problems OFVC
and UFVC: in Section 2 the complexity depends on |V(F)|, while in Section 3, the
complexity depends on |L(F)|. In Section 4 we describe similar algorithms to solve
maximum packing problems of copies of trees of F into T. In Section 5 we prove that
Problems OFEC and UFEC are NP-complete. In Section 6 we describe a polynomial
time algorithm to solve CFEC.

2 Algorithm MAP-CHILDREN for Forest Vertex-Cover

Consider a tree T and a forest F. We shall describe how to extend covers of a subtree
Tu of T, consisting of u and all its descendants, to a complete cover of T. Let u∈V(T),
f∈F and x∈V(f). An [Tu , fx] forest vertex-cover of Tu is an F∪{fx} forest vertex-cover
of T, such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only
once in the cover. Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f),
then the parent pf(x) of x must cover the parent pT(u) of u. Let W(u,x) be the number of
trees in a minimum [Tu

 , fx] forest vertex-cover of Tu. Let W(u) denote the number of
trees in a minimum forest vertex-cover of Tu. Clearly W(u)=minf∈F{W(u,root(f))}.

Consider first the case where x is a leaf of f, i.e., V(fx)={x}. Then in any [Tu
 , fx]

forest vertex-cover of Tu, u is covered by x and each of its children is covered by the
root of a tree of F. Hence, W(u,x) = 1 + ∑v∈Ch(u) W(v).

In the general case, consider an [Tu
 , fx] forest vertex-cover of Tu; let X⊆V(T) be the

set of vertices of the subtree rooted at u of Tu covered by fx. Tu –X is a set of disjoint
subtrees of Tu, each subtree rooted at a vertex in Ch[X] –X and covered by a forest
vertex-cover of F. Let T[X] denote the vertex subgraph of T induced by X. Hence,

W(u,x)=1+minX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) : X⊆V(Tu), T[X]≈ fx , root(T[X])=u}. (1)

 Covering a Tree by a Forest 69

The above equation requires us to find all isomorphic copies of fx rooted at u and
hence might lead to an exponential time algorithm. To get a polynomial time algo-
rithm we will show how to compute W(u,x) from the values of W(v),W(y), v∈Ch(u),
y∈Ch(x).

An [Tu
 , fx] forest vertex-cover of Tu exists only if deg(x)≤deg(u). We construct the

cover of Tu from optimal covers of the children of u: deg(x) of u's children are cov-
ered by the deg(x) trees in {fz : z∈Ch(x)} and the remaining children of u are covered
by trees of F. A matching is an injection μ : Ch(x)→Ch(u); let M[Ch(x),Ch(u)] denote
the set of possible matchings of Ch(x) into Ch(u). Therefore,

W(u,x) = 1 – deg(x) + minμ∈M[Ch(x),Ch(u)]{∑1≤j≤deg(x)W(μ(xj),xj) + ∑v∈Ch(u)–μ(Ch(x)) W(v)} (2)

Finally, W(u)=minf∈F W(u,root(f)),and the size of a minimum cover is W(root(T)).
We describe a generic dynamic programming algorithm which is conducted by a

postorder traversal of T and F, that is, it considers the children of u and x before con-
sidering u and x. This ensures that when evaluating the left side of equation (2), the
values of the right side have been evaluated.

The dynamic programming algorithm traverses T and F in postorder and for every
u∈V(T), f∈F and x∈V(f), it finds the size of a minimum [Tu

 , fx] forest vertex-cover of
Tu. To obtain W(u) the algorithm finds the f∈F which minimizes W(u) = minf∈F
{W(u,root(f))}. Since the trees of F are disjoint, once a vertex x is chosen, the tree
f∈F to which it belongs and the vertex of T covered by root(f) are uniquely deter-
mined. When x is a leaf of f, hence fx={x}, the algorithm already evaluated for Tu the
minimum cover of every tree Tv, v∈Ch(u), thus W(u,x) = 1 + ∑1≤i≤deg(u) W(ui).

When x is not a leaf of f, the algorithm simulates a minimum weight isomorphism
algorithm of fx into Tu, by assuming that the corresponding ancestor of u, will be cov-
ered by root(f). Thus, by optimally covering the children of u by the children of x, it
carries to u (and to root(f)) the sizes of the minimum covers. This is done as follows:

A matching μ between a sequence of vertices (u1,…,um) and (x1,…,xr) is non-
crossing when every pair xi,xi+1 is matched to a pair uj,uk fulfilling j<k. For each sub-
problem P we will restrict the permitted matchings to a subset MP[Ch(x),Ch(u)] of all
possible matchings. For OFVC, MP is the set of non-crossing matchings and for
UFVC, MP is the set of all matchings. To every pair [ui,xj] we assign a cost equal to
W(ui,xj). Hence, a minimum cost matching μ* of Ch(x) into Ch(u) in equation (2), will
give us the optimal way of covering the children of u by the children of x. This, to-
gether with the postorder traversal ensures by induction that the dynamic program-
ming algorithm is correct.

Equation (2) is rewritten below as a minimum cost matching μ*∈MP[Ch(x),Ch(u)]
of a complete bipartite graph [Ch(x),Ch(u)], in which the cost of every edge (ui,xj) is
W(ui,xj)–W(ui):

W(u,x) = 1 – deg(x)+∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))] . (3)

We denote WS(u) = ∑1≤i≤deg(u) W(ui) and cost(μ*)=∑1≤j≤deg(x) [W(μ*(xj),xj) –
W(μ*(xj))].

70 F. Gavril and A. Itai

The algorithm keeps pointers along the minimum cost matchings to retrace the
minimum forest vertex-cover when u=root(T), and does not have to remember the
intermediate forest vertex-covers.

Algorithm MAP-CHILDREN
for every u∈V(T) in postorder W(u)=∞;

if u is a leaf then W(u)=1, WS(u)=0;
if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v);
for every x∈V(F) in postorder

if u is a leaf
 if x is a leaf then W(u,x)=1 else W(u,x)=∞;
if u is not a leaf
 if x is a leaf then W(u,x) = 1+WS(u);
 if x is not a leaf

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)];
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (3)

if x=root(f), for some f∈F then W(u)=min {W(u,x),W(u)};
if u=root(T) then W(u) is the size of the minimum cover;

end

In order to use the generic algorithm MAP-CHILDREN we need to specify how to
calculate equation (3). For OFVC, MP is the set of non-crossing matchings. Assuming
that W(ui) and W(ui,xj) (ui∈Ch(u) and xj∈Ch(x)) have been computed, we need to find
a minimum cost non-crossing matching μ*. We use dynamic programming again:

Let SCh(u)Ch(x)[i,j] be the value of the minimum cost non-crossing matching between
u1,...,ui and x1,...,xj where SCh(u)Ch(x)[1,1]=W(u1,x1) and SCh(u)Ch(x)[i,j]=∞ if i<j. Then

SCh(u)Ch(x)[i,j]=min {SCh(u)Ch(x)[i–1,j–1]+W(ui,xj),SCh(u)Ch(x)[i–1,j]+W(uj)} for i>1, j≤i . (4)

To compute all SCh(u)Ch(x)[i,j]'s for given vertices u,x it takes O(deg(u)deg(x)) time.
For all vertices, the required time is

∑u∈V(T) ∑x∈V(F) deg(u)deg(x) = ∑u∈V(T) deg(u) ∑x∈V(F) deg(x) < |V(T)||V(F)| . (5)

To find a minimum unordered cover UFVC, when the tree T and the forest F are
unordered, we also apply MAP-CHILDREN. The only difference is that in equation
(3) we drop the constraint that the matching be non-crossing, i.e., MP is the set of all
matchings between Ch(x) and Ch(u).

To find the matching μ* in the complete bipartite graph MP[Ch(x),Ch(u)] we fol-
low [1,7,8] and employ the maximal flow minimum cost algorithm of [2] to yield an
algorithm that requires O(∑f∈F|V(f)|1.5 |V(T)| log|V(T)|) time.

3 Algorithm MAP-LEAVES for Forest Vertex-Cover

In this section we construct an algorithm for OFVC and UFVC whose complexity
depends on the number |L(F)| of leaves of F, which may be much smaller than
the number of vertices of F. The key step is to cover the vertices of T by the leaves

 Covering a Tree by a Forest 71

of F: covering a vertex u∈V(T) by a leaf x of f determines how the path from x to
root(f) covers vertices of T. However, in order not to scan each vertex of f separately,
we shall replace the tree f by its skeleton – the tree skel(f) – resulting by replacing
every maximal directed path in which the internal vertices have only one child, by a
single edge. Now, every internal vertex of the tree skel(f) has at least two children.
Thus, |V(skel(f))|≤ 2|L(f)|. Let SKEL = {skel(f) : f∈F} and let SKEL+ be the set con-
taining the vertices of SKEL and their children in F. Since every edge of SKEL gives
rise to one child of F, |SKEL+|≤|2V(SKEL)|=O(|L(F)|).

Consider covering the vertex u∈V(T) by a vertex x∈V(skel(f)), skel(f)∈SKEL. If u
is a leaf then it can be covered only by leaves of SKEL. If u is not a leaf and x is a
leaf, then u is covered by x, each of its children v∈Ch(u) is covered by the root of a
tree of F, and Tv is covered by a minimum forest vertex-cover with trees of F. If nei-
ther u nor x is a leaf, then each child of x in f must cover a child of u. The edge in
skel(f) connecting x to a child yx, corresponds in f to a path (x,xj,...,yx). Assume that xj
covers ui. Then ui must have a descendant at distance dist(xj,yx) = dist(x,yx)−1 which is
covered by yx.

Let W(u), WS(u) and W(u,x) be as defined in Section 2. If u' is a descendant of u,
let PathT(u,u') denote the path in T from u to u'. Let CPathT(u,u') be the set of children
of vertices in PathT(u,u')−{u'}, children which are not in PathT(u,u'), and let
WP(u,u')=∑v∈CPath(u,u')W(v). We compute WP(pT(u),u') from WP(u,u') by

WP(pT(u),u') = WP(u,u') + ∑ {W(v) : v∈Ch(pT(u))} – W(u) = WP(u,u') + WS(u) – W(u). (6)

To compute W(u,x) for u∈V(T), x∈V(f), f∈F, we need to decide which children of u
should be covered by the children of x in f(x). Let (x,yx) be an edge in skel(f), let xj be
the child of x on the path in f from x to yx and let d = dist(xj,yx); to every child xj of x
corresponds exactly one yx and one d. Let D={dist(xj,yx) : xj∈SKEL+, pf(xj)=x}. Since
to every child xj of x corresponds exactly one yx it follows that
|D|≤|SKEL+|=O(|L(F)|). Let D[ui,d] be the list of descendants of ui∈V(T) at distance
d from ui. Thus, for children ui of u and xj of x we have

W(ui,xj) = minu' {W(u',yx) + WP(ui,u') : d = dist(xj,yx), u'∈D[ui,d]} . (7)

Now, according to equation (3), rewritten below as (8), we need to find a minimum
cost matching μ*∈MP[Ch(u),Ch(x)] of a complete bipartite graph (Ch(u),Ch(x)),
where the cost of every edge (ui,xj) is W(ui,xj) –W(ui) and evaluate:

W(u,x) = 1 – deg(x) + ∑v∈Ch(u) W(v) + ∑z∈Ch(x)[W(μ*(z),z) − W(μ*(z))] . (8)

By equations (5-7) we do not have to compute W(u,x) for all vertices x∈V(F), but
only for vertices x in SKEL+. Thus we need to compute only O(|V(T)||L(F)|) such
values.

In the preprocessing stage we discard from F the trees whose height exceeds
height(T) and prepare SKEL, SKEL+ and D ; this requires O(|V(F)|) time. Also, we

prepare D[u,d] for all u∈V(T) and d∈D. Let dmax=max {d : d∈D }; clearly

72 F. Gavril and A. Itai

dmax≤height(T). In the worst case, each vertex appears in the list of all its ancestors,
and so this requires O(|V(T)| dmax) time. The algorithm traverses T in postorder, and at
vertex u it examines the cost of covering u by every x∈SKEL+.

Algorithm MAP-LEAVES
 for every u∈V(T) in postorder W(u)=∞;
 if u is a leaf then W(u)=1, WS(u)=0;
 if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v);
 for every v∈Ch(u) // compute WP

 for all descendants w of v at distance at most dmax
 WP(u,w) = WS(u)−W(v) +WP(v,w);

 for every x∈SKEL+ in postorder
 if u is a leaf

 if x is a leaf then W(u,x)=1 else W(u,x)=∞;
 if u is not a leaf

 if x is a leaf then W(u,x) = 1+WS(u);
else if x∈V(SKEL)

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)]
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (7)
if x∈SKEL+ − V(SKEL)

let yx be the closest descendant of x that belongs to a tree in SKEL;
 d = dist(x,yx);
 W(u,x) = minw∈D[u,d] {W(w,yx) +WP(u,w)}; // yx is unique for x (9)

if x=root(f), f∈F then W(u)=min {W(u,x),W(u)};
if u=root(T) then W(u) is the size of the minimum cover;
end

The computation of WP(u,w) for every u,w requires O(|V(T)| dmax) time, since each

vertex w appears only in the list of its ancestors. The vertex w∈V(T) in equation (9) is
considered for its ancestor u at distance d = dist(x,yx). Thus for each x∈SKEL+, w ap-
pears in O(|SKEL+|) computations of the minimum in (9). Hence, over all w∈V(T), the
number of vertices considered in the computation of all the minima in (9) is
O(|V(T)||SKEL+|)=O(|V(T)||L(F)|). Since the matching can be found as in Section 2, we
obtain: For OFVC, Algorithm MAP-LEAVES requires O(|V(T)|dmax+|V(T)||L(F)|) ≤
O(|V(T)|height(T) +|V(T)||L(F)|) time. For UFVC, Algorithm MAP-LEAVES requires
O(|V(T)|dmax+∑f∈F|L(f)|1.5|V(T)| log|V(T)|) ≤ O(|V(T)|height(T)+∑f∈F|L(f)|1.5|V(T)|log|
V(T)|) time.

4 Algorithms for Maximum Packing of a Forest in a Tree

Algorithms MAP-CHILDREN and MAP-LEAVES can be used for many other opti-
mization problems on T and F. For example, finding a maximum packing of vertex
disjoint copies of trees of F into T, can be solved in polynomial time; here we assume
that F contains no single vertex tree, otherwise the problem is trivial. This problem has

 Covering a Tree by a Forest 73

two versions, one to maximize the number of packed trees and another to maximize the
number of covered vertices of T. Denote by W(u) the number of trees in a maximum
forest packing of Tu. An [Tu , fx] forest packing of Tu is an F∪{fx} forest packing of Tu,
such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only once
in the packing. Let W(u,x) be the number of trees in a maximum [Tu , fx] forest packing
of Tu. Then, similarly to equation (1),

 W(u,x)=1+maxX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) X⊆V(Tu), T[X]≈ fx, root(T[X])=u}. (10)

Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f), then pT(u) must be
covered by pf(x). W(u,x) can be evaluated as a maximum weight matching
μ*∈MP[Ch(x),Ch(u)] of a complete bipartite graph [Ch(x),Ch(u)], in which the
weight of every edge (ui,xj) is W(ui,xj)–W(ui):

W(u,x) = 1 – deg(x) + ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))]. (11)

Clearly W(u)=max {∑1≤i≤deg(u) W(ui) , maxf∈F{W(u,root(f))}} and the size of a maxi-
mum packing is W(root(T)); when u is a leaf, W(u)=0.

For a packing covering a maximum number of vertices of T, equation (11) is re-
placed by: W(u,x) = 1+ ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ(xj),xj) – W(μ(xj))].

The complexity of the algorithms is similar to the complexity of the algorithms in
Sections 2, 3.

5 Covering the Edges by a Minimum Ordered or Unordered
Forest Edge-Cover

Consider a tree T and a forest F, F={fi : i=1,..,k }. For u∈V(T) and x∈V(F), since we
are looking for an edge-disjoint cover, the edge from the parent pT(u) of u to u must
be covered by exactly one edge of the forest F.

We prove that the Problems OFEC and UFEC are NP-complete, by reducing to
them the NP-complete problem of Exact Cover by 3-Sets (X3C) [3].

Problem: Exact Cover by 3-Sets (X3C)
Instance: A set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X.
Question: Is there a subfamily S'⊆S s.t. every vi∈X is contained in exactly one set

in S' ?

Theorem 1: The problems of exact covering of the edges of a tree T by a minimum
ordered or unordered forest edge-cover are NP-complete.

Proof. We show that the problem X3C is reducible to the Problems OFEC and UFEC,
i.e., for each instance of X3C we show an instance of the edge-cover problem that has
a cover of size n/3 if and only if X3C has a solution.

Consider a set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X. We con-
struct a tree T (Fig. 2a) with root v whose children are v1,...,vn and at every vi we at-
tach a subtree Ti defined as follows (Fig. 2b): Ti's root is vi, vi has i children which are
leaves and vi has attached a path with n−i+1 vertices. Clearly, every Ti has exactly
n+2 vertices and no two Ti's are isomorphic. For every sj={va,vb,vc}∈S, a <b < c, we

74 F. Gavril and A. Itai

define a tree fj (Fig. 2c) with root sj, children va,vb,vc from left to right, and copies of
Ta, Tb, Tc attached as subtrees. Let F={f1,f2,...,fk}∪{e}, where e is the tree consisting
of two vertices and an edge between them. Consider an ordered or unordered forest
edge-cover of size n/3 of T; such a covering is minimum since all vertices sj's are
mapped on v. Then, for every child vi of v in T, there exists some fj with child vi of sj,
covering the child vi of v. Thus, a forest edge-cover of size n/3 of T by trees in F gives
an exact covering of X by subsets in S.

 v (a) vi (b) sj (c)
 T Ti fj

 ... va vb vc

 i leaves Ta Tb Tc

 v1 v2 ... vn
 n–i+1
 T1 T2 Tn vertices

Fig. 2. An instance of forest edge-cover problem corresponding to an instance of X3C

Conversely, an exact covering of X by subsets si,1,...,si,n/3∈S will give a cover
fi,1,...,fi,n/3∈F of the edges of T. Note that the order of the edges in the fi's is compatible
to that of T. Thus any exact cover is an ordered cover.

By the same reduction, the maximum packing problems of edge disjoint copies of
trees of F into a tree T, are NP-complete.

6 An algorithm for a Minimum Consecutive Forest Edge-Cover

Problem CFEC, finding a minimum consecutive edge-cover, assumes that T is an or-
dered tree and if u∈V(T) is covered by x∈V(F), then the children of u covered by the
children of x, are consecutive in the order of T. Let the edge from the parent of a ver-
tex v to v in a tree t be denoted by pt(v)→v. For non-roots u∈T and x∈V(F), since we
are looking for an edge-disjoint cover, the edge pT(u)→u should be covered by ex-
actly one edge of F, the edge pf(x)→x. Let us denote fx

+= fx∪{pf(x)→x},
Tu

+=Tu∪{pT(u)→u}. For non-roots u, x, let [Tu
+, fx

 +,j] denote a consecutive edge-
cover of the subtree Tu

+ by the forest F∪{fx
+} such that the edge pf(x)→x covers the

edge pT(u)→u, the children{x1,...,xdeg(x)} of x cover the children uj−deg(x)+1,...,uj of u,
and the tree fx

+ is used only once in the cover.
Let Tu(i,j) denote the subtree of Tu containing u (as root), the children ui,...,uj of u

and all the children's descendants. The algorithm is based on the observation that in a

 Covering a Tree by a Forest 75

[Tu
+,fx

 +,j] consecutive edge-cover, the subtrees Tu(1,j–deg(x)) and Tu(j+1,deg(u))
have consecutive edge-covers by F, that is, u is covered only by roots of trees in F,
while Tu(j–deg(x)+1, j)∪{pT(u)→u} has a consecutive edge-cover by the forest
F∪{fx

+}, using the tree fx
+ only once.

Let μu,x,j be a minimum cost matching of the complete bipartite graph [Ch(x),{uj–

deg(x)+1,...,uj}] in which the cost of every edge (v,z), v∈{uj–deg(x)+1,...,uj}, z∈Ch(x), is the
size of a minimum [Tv

+,fz
+,j] consecutive edge-cover. Let W(u,i,j) be the cardinality of

a minimum consecutive edge-cover of Tu(i,j) by F. For every u and j we will evaluate

 W(u,1,j) = minf∈F {W(u,1, j – deg(root(f)) + cost(μu,root(f),j)} (12)

 W(u,j,deg(u)) = minf∈F {W(u, j + deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))} . (13)

For non-roots u, x, let WR(pT(u)→u,pf(x)→x) be the size of a minimum among all j,
1≤j≤deg(u), of a [Tu

+, fx
 +, j] consecutive edge-cover, Therefore

 WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u))+cost(μu,x,j)}.(14)

Algorithm MAP-EDGES
 for every u∈V(T) in postorder
 for every f∈F

for j=1,...,deg(u) set W(u,1,j)=W(u,j,deg(u))=∞;
 if u is not a leaf then

 for every j=deg(u) –deg(root(f)+1,...,deg(u)
 find a minimum cost matching μu,root(f),j;
 W(u,1,j)=minf∈F{W(u,1, j–deg(root(f)) + cost(μu,root(f),j)};
 for every j=deg(u),deg(u) –1,..., deg(u) –deg(root(f)+1
 W(u,j,deg(u))=minf∈F{W(u, j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))};

 if u≠root(T) then
 for every x∈f∈V(F), x≠root(f), in postorder

if u is a leaf then
 if x is a leaf then WR(pT(u)→u,pf(x)→x)=1 else WR(pT(u)→u,pf(x)→x)=∞;

 if u is not a leaf then
 if x is a leaf then WR(pT(u)→u,pf(x)→x)=1+W(u,1,deg(u));
 if x is not a leaf then

Let μu,x,j be a minimum cost matching of the complete bipartite graph
 MP[Ch(x),{uj–deg(x)+1,...,uj}];

 WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u))
 +cost(μu,x,j)};

 if u=root(T) then W(u,1,deg(u)) is the size of the minimum edge-cover;
end

The algorithm works in O(∑f∈F |V(f)|1.5 |V(T)| log|V(T)|) time by the matching al-

gorithms in [1,2].

76 F. Gavril and A. Itai

The maximum packing problems of edge disjoint copies of trees of F into T, where
the children of u covered by the children of x, are consecutive in the order of T, can
also be solved in polynomial time; here we assume that F contains no single vertex
and no single edge tree otherwise the problem is trivial. This is done by an algorithm
similar to the above, by changing the equations (12), (13) to:

 W(u,1,j) = min {W(u,1,j–1) , minf∈F{W(u,1, j – deg(root(f)) + cost(μu,root(f),j)}}. (15)

W(u,j,deg(u)) = min {W(u,1,j+1),
 minf∈F{W(u,j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)1)) }} . (16)

References

1. Feder, T., Botwani, R.: Clique Partitions, Graph Compression and Speeding-up Algorithms,
J. Comput. Syst. Sci. 51, 261–272 (1995)

2. Gabow, H.N., Tarjan, R.E.: Faster Scaling Algorithms for Network Problems. SIAM J.
Comput. 18, 1013–1036 (1989)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
NP-Completeness. W. H. Freeman and Co., San Francisco (1979)

4. Golumbic, M.C., Mintz, A., Rotics, U.: Factoring and Recognition of Read-once Functions
using Cographs and Normality. In: DAC 2001, Las Vegas, pp. 109–114 (2001)

5. Levin, I., Pinter, R.Y.: Realizing Expression Graphs using Table-Lookup FPGAs. In: Pro-
ceedings of EuroDAC 1993, pp. 306–311 (1993)

6. Lingas, A.: An Application of Maximum Bipartite c-Matching to Subtree Isomorphism. In:
CAAP 1983. LNCS, vol. 159, pp. 284–299. Springer, Heidelberg (1983)

7. Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate Labelled Subtree
Homeomorphism. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 59–73. Springer, Heidelberg (2004)

8. Shamir, R., Tsur, D.: Faster Subtree Isomorphism. J. Algorithms 33, 267–280 (1999)

	Covering a Tree by a Forest
	Introduction
	Algorithm MAP-CHILDREN for Forest Vertex-Cover
	Algorithm MAP-LEAVES for Forest Vertex-Cover
	Algorithms for Maximum Packing of a Forest in a Tree
	Covering the Edges by a Minimum Ordered or Unordered Forest Edge-Cover
	An algorithm for a Minimum Consecutive Forest Edge-Cover
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

