SIAM J. COMPUT.
Vol. 5, No. 1, March 1976

OPTIMAL ALPHABETIC TREES*

ALON ITAIT

Abstract. An algorithm of Knuth for finding an optimal binary tree is extended in several
directions to solve related problems. The first case considered is restricting the depth of the tree by
some predetermined integer K, and a Kn? algorithm is given. Next, for trees of degree o, rather than
binary trees, Kn”log o and n’” log o algorithms are found for the restricted and nonrestricted cases,
respectively. For alphabetic trees with letters of unequal cost, a o°n” algorithm is proposed. We
conclude with a comparison of alphabetic and nonalphabetic trees and their respective complexities.

Key words. algorithms, alphabetic trees, binary trees, optimal trees, probabilistic search, variable-
length codes

1. Introduction. When constructing a code, it is often necessary to minimize
the average message length. There is a natural correspondence between a binary
prefix code and a binary tree, associating with every leaf a codeword. Assuming
that every source word has a fixed probability of occurring, the length of an
average message corresponds to the weighted path length of the tree. Let
(wy, - - -, w,) denote the weights of the codewords and /(w;) the length of the path
from the root to the weight w.. The weighted path length (cost) is defined as
WT = Z?=1 Wil(wi).

In real time applications, it may be desirable to restrict the length of every
codeword. In the tree representation, this restriction is expressed by limiting the
length of any path from the root of the tree to a leaf by some integer K.

Similar problems arise when organizing files. Each entry of the file has a
certain probability of being requested. There is an order between the entries of the
file which must be conserved. No search can take longer than a prespecified
maximum. Our aim is to construct a file which fulfills all the requirements and
minimizes average search time.

The file is represented as a binary tree with the entries at the nodes. Our aim is
to find, among all trees which satisfy the restriction that no path is longer than a
giveninteger K and which preserve the order of the file entries, one with minimum
cost.

In the paper, we show that an algorithm of Garey[1], which is an extension of
an algorithm of Knuth [4], can be used to solve several problems of this nature.

The running time is of order Kn?, where n is the number of nodes, K the
maximal depth.

In § 7 we show how to extend the results from binary trees to o-ary trees (i.e.,
trees in which each node may have up to o sons). For this problem, we give
n’K log o and n’log o algorithms for the restricted and nonrestricted cases,
respectively.

* Received by the editors July 30, 1974, and in revised form December 30, 1974.
t Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

9

10 ALON ITAI

Section 8 deals with alphabetic trees with letter of unequal cost. For this
problem a o*n? algorithm is proposed. Finally, in the last section, we compare the
problem of alphabetic and nonalphabetic trees and their respective complexities.

2. Definitions. A binary tree consists of a distinguished node, called root, and
right and left subtrees of the root. A binary full tree consists of a root and left and
right subtrees, either both empty or both binary full trees. Nodes occurring in the
two subtrees are called descendants of the root. All nodes having a given node as a
descendant are ancestors of that node. If j is the root of a subtree of i, then i is the
father of j and j is i’s son. Nodes which have no descendants are called leaves.
Nodes which are not leaves are called internal nodes. From the root there is a
unique path to every node i. The length of that path is the number of nodes in the
path minus 1 and is called the depth of node i, denoted by .

Traversing a tree in postorder (symmetric order) [3] (visit the left subtree,
visit the root, visit the right subtree), imposes a full order relation on the nodes.
We say that node i'is left of node j (i <j) if i precedes j in that order.

Aan alphabetic tree for the sequence of nonnegative weights (w,, - - -, w,) is a
binary tree with n leaves, each of which is associated with a weight, such that the
leaf of w; is left of the leaf of w;,, fori=1,---, n—1.

The weighted path length or cost of an alphabetic tree T is given by

M=

WT =

wilia
1

where [; is the depth of the leaf associated with the weight w,.

Given a positive integer K a K restricted alphabetic tree is an alphabetic tree in
which no node has depth greater than K. A K restricted alphabetic tree is optimal
if it has minimum cost. In the sequel, we shall use the phrase optimal tree in lieu of
the cumbersome optimal K restricted alphabetic tree.

3. A dynamic programming solution. We first notice that an optimal tree is a
binary full tree (each internal node has exactly two sons), except perhaps when
zero weights are involved. However, in this case, there exists an optimal tree
which is a full binary tree. Henceforth, we shall assume that all optimal trees are
full binary trees.

Let T be an optimal tree, v an internal node of T of depth [,; then the subtree
of T with root v is an optimal (K —1,) restricted alphabetic tree for its own
sequence of weights.

Let[i, j, k], 1=i=j=n and 0= k =K, denote the subproblem of finding an
optimal tree of depth at most k for (w;, wi_y, - - -, w;). If k < |log, (j—i+1)], then
no solution exists, and we may set WT[i, j, k] =00. Otherwise set

WT(i, i, k]=0, i=1,---,n,
() WTli i k]= ¥ w,+min {WT[i, b, k= 1]+ WT[b+1, j k—1]}
i=b<j

i=1,--,n—1,j=i+1,- - n

The value bo, for which (1) produces the minimum, is the last node (in postorder)
of the left subtree and is called the breakpoint. If b, is a breakpoint for [i, j, k], we

OPTIMAL ALPHABETIC TREES 11

can construct an optimal tree for [i, j, k] by constructing an optimal tree for
[i, bo, k —1]and [bo+ 1, j, k — 1] and combining these two trees. Solving [i, j, k] for
all k, i, j (looping firston k=1,--- K, thenonp=j—~1=1,---,n~1, thenon
i=1, -+, n—p) results in an optimal tree for [1, n, K] the original problem.

After finding the minimum cost, we may reconstruct the tree had we saved
the breakpoints b, for every [i, j, k].

The resulting algorithm requires execution time proportional to Kn®. Gilbert
and Moore [2] proposed a similar algorithm for trees with no restriction on
maximal depth. See that paper for further description and analysis of the
algorithm.

4. An improved algorithm. We may improve the previous algorithm by
observing the following phenomena.

THEOREM 1. Let b, be the breakpoint of an optimal tree for [1, n, k]. Then there
exists an optimal tree for [1, n+ 1, k] whose breakpoint b;, satisfies by = b,.

Let b[i, j, k] denote a breakpoint of the subproblem [i, j, k]and b'[i, j, k] the
breakpoint of the optimal tree with the smallest breakpoint leftmost tree.

THEOREM 2. There exist optimal trees such that:

(a) bli, j—1, k]=bli, j, k]=b[i+1, j, k]. Moreover, the leftmost trees satisfy

(a); in other words,

(b) b'li,j—1,k1=b'[i,j, kK1=b'[i+1, j, k].

We shall prove the theorems in the next section. Let us first see how we can
use these results to obtain an improved algorithm. For fixed k and fixed p=j—1,
the smallest breakpoint of [i,j, k]-b'[i,], k] lies between b'[i,j—1, k] and
b'[i+1,j, k] (Theorem 2(b)). Therefore, we need only consider b'[i+1, j, k]
—b'[i, j, k] possible breakpoints. Summing over i and substituting j =i+ p, we
find that

N A+bi+1,i+p, kl1—b'li,i—1+p, k)
i=1

=(n—p)+b'[n—p+1,n k]-b'[1, p, k]1=2n.

The improved algorithm determines b'[i, j, k] and WTTi, j, k] using previously
obtained values. The outer loops on k and p introduce a factor of nK. The whole
algorithm takes time proportional to n’K.

Note that the results of Theorem 2(a) are not sufficient since there may be
optimal trees which satisfy b[i, j—1, k]>b[i+1, j, k]. We overcome this diffi-
culty by insisting on the smallest breakpoint. This refinement does not increase the
difficulty of implementing the algorithm and is usually incorporated for the sake of
programming convenience [4, p. 22].

Knuth [4] first proposed this algorithm for the unrestricted case. Garey [1]
extended it to the restricted case when w; = w, = - - - = w,. Here we show that this
additional requirement is superfluous.

5. Proof of Theorems 1 and 2. Let T, T" be trees of depth not exceeding K.
Let a be anode of T, a’ anode of T'. Both T and T" are subgraphs of a binary full
tree and can be compared by the ““left of” relation;i.e., a leftof a’ (a<a'),a=a’
or a right of a’ (a’ < a). Let x; denote the position of weight w; in the tree T, x| the

12 ALON ITAI

position of w; in T'. In what follows, we shall assume k Zlog, (n+1). First we
notice that by adding to the right a new node of weight w,., =0 w, moves to the
left.

LeEMMA 3. Let T=T[1, n, k] be an optimal tree for weights (w, * - -, w,).
There exists an optimal tree T'=T'[1, n+1, k] for weights (w., * -+, w,, 0) such
that x, < x,.

Proof. Case 1. x, is of maximal depth. (i.e., I, = k). In this case, x/,+1 = x,, since
Xn< X, by transitivity x;, <x..

Case 2. x, is not of maximal depth (i.e., [, < k). In this case, we may obtain an
optimal tree by replacing w, by a node whose two sons are w,, w,.;. The resulting
tree T" satisfies WT' = WT + w,. To show that T" is optimal, assume the existence
of a tree T>=T*[1,n+1, k] which costs less than T', WT*>< WT'. We may
construct a tree T° = T7[1, n, k] by deleting w,.., from T>. This would enable us to
decrease the depth of w,. We then have

WIr=Wr*—w,<(WT+w,)—w, = WT,

which contradicts the optimality of T. Q.E.D.

Next we note that w, does not have to move right when w,., increases.

LEMMA 4. Let T=T[l,n+1,k] be an optimal tree for weights
(W1, "+ *, Way War1). There exists an optimal tree T'=T'[1, n+1, k] for weights
(Wi, *) Way Whit), What> Was, Such that x\, = x,,.

Proof. If the tree T remains optimal for weights (w,, * * *, W,, W,.1), We are
done since we can choose T'= T. Otherwise, let T’ be any optimal tree for
(w1, **+, whiy). Consider the cost of T and T’ as functions of the (n+1)st
weight, w: WT(w)=w L+ -+ +wl,+wl. =C+1l.,w, WT'(w)=w,li+ -
+wul,+wl.,,=C+I[,.,,w. The difference in cost D(w)= WT'(w)— WT(w)
=C'—C+(l,,s1—l,+1)w is a linear function of w, and we know that D(w,.;) <0
§ D(Wn+l)-

It follows that [}, <l,... In particular, the father z of x,., is a node of the
right subtree of the father z’ of x,.,. Since x,,is in the left subtree of z’ and x, is a
descendant of z, we have x, <x,. In both cases we find that x,=x,. Q.E.D.

If we add a new weight w,., to the right, the weight w, moves left, because we
can do this in two stages: First add a node of weight w,., = 0. This enables us to
move w, to the left. Then increase the weight of the node. This may be done
without moving w, to the right. Thus we have the following corollary.

CoOROLLARY 5. If T=TI1, n, k] is an optimal tree for (wy, - - -, w,), there
exists an optimal tree T'=T'[1, n+1, k] for (wy, - -+, W,41) such that x., < x,.

We wish to show that by adding a new node, we form a tree in which none
of the previous weights moves right. It has already been shown that we can
construct an optimal tree in which w, moves left. We shall now show that this
requirement may be extended, and we can find an optimal tree in which no weight
moves to the right.

Some notation follows: For Q a binary tree, let SQ denote the set consisting
of all indices of the weights of Q. WQ as before denotes the cost of Q.

LemMA 6. Let T=T|1,n, k] be an optimal tree for (wy,- - -, w,). There
exists an optimal tree T'=T[1,n+1,k] for (wy," - -, War1) such that x,=<x,
i=1,--,n

OPTIMAL ALPHABETIC TREES 13

Proof. Assuming to the contrary that no such optimal tree exists, let T’ be an
optimal tree for weights (wy, - -+, w,.;) in which some weights move right. Let
w;_, be the last weight which moves right. (x;-, <xj_, but x;=x,; for i =j,-+,n.)
By Corollary 5, we may assume j = n. Let z be the deepest common ancestor of
x;- and x; (i.e., @ node z which is an ancestor of both xj_, and xj, and no
descendant of z has this property).

Comparing xj_; and xj to z, there are three possibilities:

(a) w;-, and w; do not pass z (x;_; <x|_; <z <x]=Xx;);

(b) w;_; passes z to the right (x;-, <z <x]_,<x]=x;);

(c) w; passes z to the left (x;_; <xj_<x;<z <x;).

(We cannot have x;_; (or x}) equal to z since this would force x; to move right
of x; (or xj-; to move left of x;_,).) z must be a node of T, since otherwise x;_
would be forced right of z, and so would all its descendants, in particular x; <xj ;.
This contradicts the hypothesis that xj_, <x;=x;.

Let L(z) be the partial tree containing all the nodes left of z in T and the
paths connecting them to the root of T. Define R(z) in the same fashion on the
nodes right of z in T. L'(z) and R'(z) are the analogous partial trees of T".

Case (a). w;-, and w; do notpass z. SL(z) ={1, - - -, j— 1} = SL'(z) (the leaves
of L(z)). Construct T? from L(z) and R'(z). The leaves of T* are {1, -, n+1}
the same as of T".

WT?=WL(z)+ WR'(z)=2 WT'= WL'(z) + WR'(2).

If WT? = WT' we have constructed, contrary to the hypothesis, an optimal tree for
(w1, -+, Wa, W,yy) in which no weights move right.

Therefore WL(z)> WL'(z). Construct T° from L'(z) and R(z). WT®
= WL'(z)+ WR(z) < WL(z)+ WR(z) = WT. T consists of the same weights as
T, so the last inequality contradicts the optimality of T.

Case (b). w;_, passes z to the right. In this case,

SL(z)={1,---,j—-1}, SL(z)={1,---,i-1},
SR(z)={j,- -, n}, SR'(z)={i,*--,n+1},

Let M’ be a tree partial to T", which consists of all the leaves SL N SR’ and the
paths connecting them to the root of T. (SM'=SL N SR'={i, - - -, j— 1} is the set
of indices of weights which have moved to the right of z.)

When w;_; moves right it must stay left of x} = x;. x;# x; since we must make
space for w;_,. Consequently, w; moves down left. x;, the old position of w;, is an
internal node of T"; and as it is an ancestor of x|, it is an internal node of M’ with
all members of SM' belonging to its left subtree.

Construct a partial tree T” consisting of L(z) and R'(z) from which we have
deleted the elements of SM’. This enables us to bring w; up one level. Possibly w;
can be raised by more than that. However, for simplicity we shall raise it by exactly
one level.

WT?= WL(z)+ WR'(z)—w;— WM'= WT' = WL'(z) + WR'(z).

i<j.

The inequality arises from the fact that T> and T’ are built on the same weights
(ST'=ST*={1,---,n+1}) and T’ is optimal.

14 ALON ITAI

In case of equality, T? is an optimal tree in which no weight has moved right.
Otherwise, WT?>> WT'. Construct the tree T? from L'(z) and R(z). The elements
of SM' are still missing. M’ is a partial tree whose root is the root of T'. We may
insert M’ such that its internal nodes above x; coincide with the corresponding
nodes of R(z). Node x; of R(z) can be moved down-right one level. This makes
space for inserting the rest of M’ (which includes all of its leaves).

WT?= WL'(z) +(WM'+w,)+ WR(z) < WL(z)+ WR(z) = WT.

As T? and T have the same set of weights, this contradicts the optimality of T.

Case (c). w; moves left of z. This case is analogous to (b), and the proof goes
along the same lines. Q.E.D.

Theorem 1 is now an easy consequence of Lemma 6, since the optimal tree
found in Lemma 6 fulfills all the requirements of Theorem 1.

Now instead of adding a weight let us consider deleting one. The following
lemma will enable us to prove Theorem 2.

LemMMA 7. Let T1, n, k] be an optimal tree. There exists an optimal tree
T'[2, n, k] such that x|=x, fori=2,- -, n.

The proof is similar and, in some respects, simpler than that of Lemma 6 and,
therefore, will not be pursued here.

We are now ready to prove Theorem 2. The first inequality of part (a),
bli,j—1, k]=b[i, j, k], is just Theorem 1. The second inequality, b[i,j, k]
=b[i+1,j, k], follows from Lemma 7 just as Theorem 1 from Lemma 6.

Part (b), b'[i,j—1,k]=b'[i,j,k], is true since if b'[i,j, k]<b'[i,
j—1, k], then by the second inequality of part (a) and symmetry there exists an
optimal tree T'[i, j—1, k] such that

bli, j—1, k1=b'i, j, k1<b'[i, j— 1, k].

This contradicts the definition of T'[i, j —1, k] as an optimal tree with the smallest
breakpoint. The second inequality follows similarly and concludes the proof of
Theorem 2.

6. Applications and related problems. The results of the previous sections
lend themselves to several applications. First consider the K restricted Huffman
problem [1]. Given n source words, each with a predetermined frequency of
occurrence, construct a code with minimum average message length satisfying the
restriction that no codeword has length greater than K. Just as in Huffman’s
original problem, we consider the order between the source words immaterial.
The following lemma enables us to use the previous results to solve this problem.

LemMA 8. If K=[log, n]| and w,= --- Zw,, there exists an optimal K
restricted tree for (w, - - -, w.) such that the leaves associated with the weights
preserve the order (i.e., x; is left of x,.1, i=1, - - -, n—1). The proof is well known

[3].

As a consequence of this lemma, we obtain an algorithm for the K-restricted
Huffman problem:

(a) Sort the weights such that w,=Zw,= -+ - =w,.

(b) Apply the algorithm of § 4 to the new sequence. This is the algorithm
which was proposed by Garey [1].

OPTIMAL ALPHABETIC TREES 15

As previously mentioned, a nonrestricted version of the algorithm was first
suggested by Knuth [4]. He used the algorithm to find an optimal alphabetic tree
in which information may be stored in the internal nodes as well as in the leaves.

The extended algorithm may be applied to the K restricted version of
Knuth’s problem; i.e., find a tree of minimum cost in which weights are associated
with all nodes, the order of the weights is preserved and no path has depth greater
than K. The proof is essentially similar to that of § 5 and will not be presented.

Note that Knuth’s original problem may be viewed as a special case of the
K-restricted problem when K is sufficiently large (K = n).

7. Alphabetic trees of degree o>2. Up to now, all algorithms heavily
depended on the fact that we dealt with binary trees. Even though binary codes
are of greatest importance, it is worthwhile to consider codes over an alphabet of
more than two letters. Similarly, there are applications of o -ary search trees for
o>2.

Define a tree of degree o (o-ary tree) as consisting of a distinguished node, root
and at most o subtrees (the subtrees are ordered). Alphabetic o-ary trees are
defined similarly to alphabetic binary trees. Our object is to find optimal alpha-
betic o-ary trees, i.e., such trees of minimum cost. We shall outline how to find
optimal trees of nonrestricted depth. The extension to trees of restricted depth is
straightforward.

Let an s-forest be a sequence of s trees. The cost of an s-forest is the sum of
the costs of all its trees. Denote an optimal s-forest on weights (w;, - - -, w;) by
E[i, j]. Note that F[i, j]= T[i, j]. The cost of the s-forest, s >1, is

WR[I’]] = ml}n {WFS’[l, b]+ WF;—s’[b + 1’]]}
i=b<j
for any s’ 1 =5’ <s. The cost of a g-ary trees is
WTTi, j1= W; + WF,[i, j], where W, = Z’: W,

Using these equations we may extend the dynamic programming solutions of the
previous sections to find optimal trees and optimal forests. When 6 =j—i=o,
there is always an optimal o-ary tree for (w,, - - -, w;) with exactly o subtrees.

For each §=1,---,n—1, we shall find optimal o-trees and s-forests for
weights (w,, - - -, w;), j=i+8. The values of s for which we shall find optimal
s-forests will depend on o as follows: First, include the numbers
2,4,8,---,2%=" next include the sequence (o, " *, Sm), Where $o=0, i+t
=g, —2U= and s, is the last number which is not a power of 2. From the
construction, it is clear that a forest of s; trees can be constructed by combining a
forest of s;,; trees and a forest of 2!°%% trees. As m = |log, o |, we conclude that
we need to consider at most 2 |log, o] values of s.

Applying this extension to Gilbert and Moore’s [2] algorithm yields an
n’log o algorithm.

Given a forest F[i, j], let s be constructed as s =s'+(s—s’) in the above
sequence; define the breakpoint as the index of the rightmost weight of the s'th
tree.

16 ALON ITAI

Using this definition, we notice that Theorems 1, 2 hold also for s-forests and
o-ary trees. This enables us to take advantage of Knuth’s observation and cut the
running time down to n’log; o.

8. Alphabetic trees with letters of unequal cost. An interesting problem
arises when we consider constructing an optimal alphabetic tree with letters of
unequal cost. Specifically, for an alphabet of o letters, let (c,, - * -, ¢,) be the cost
of the letters. The cost of an edge (a, b) in a o-ary tree is ¢; where b is the ith son of
a. (In general, the o-ary tree need not be full; i.e., not every node has o sons. For
o =5, a node may have a second and fourth son while lacking the first, third and
fifth sons.) The cost of a node is the sum of the costs of all the edges of the unique
path from the root to that node. For weights (wy, - - -, w,.), an alphabetic tree is a
o-ary tree with weights on the nodes such that if i <j, then w; is left of w;. The cost
of an alphabetic tree is WT[1, n]=Y;-, pw, where p; is the cost of the node
associated with w;.

Our aim is to find, for given weights, an alphabetic tree of minimum cost
(optimal tree). Note that, as the tree is alphabetic, we may not assume that the
costs of the letters satisfy ¢c;=c,= + - - =c¢,. (We may well have ¢, <c,, ¢2>¢3.)
We shall consider the case in which the weights are only at the leaves.

Let T, c[i, j]be an optimal tree for weights (w;, - - -, w;) in which the root has
no son smaller than « and none greater than B. For every o,B8,i,j (1=a=p
=o0;1=i=j=n), we shall find WT,4[i, j], the cost of an optimal tree T,[i, j].
(This implies that T, has at least one edge).

The following equations will provide means to calculate WT, g[i, j]:

WT.,.[i, i]= caws;

the tree T, ,[i, i] uses at least one edge, in this case that edge must be a.
WTLuli,i]= min (WT,[i,)l, a<B;
the root must have exactly one son (edge 7).
) Wl /1= caWy+ min {WT,,[i, b]+ WT,.1,[b+1, T, i <.
15y<o

The root has exactly one son (edge «). The son must have at least two sons; let the
first be y. We choose y and b, the index of the rightmost weight of T, ,[i, b], so as to
minimize the sum of the cost of the two trees—WT,,[i, b]+ WT,.,.[b+1,]].

WT, .l j1= gbigf{WT"”’B[i’ jl, WT..[i, b]

+ WTa+1,B[b + 19]]’ WTa,a[ia]]}’
a<B,i<].

We should consider three cases: In the first, it is not worthwhile to use edge a at
all, hence the optimal tree is WT,.,,[j, j]; in the second, « is truly the first edge,
but there are additional edges. The cost of the optimal tree is WT,.[i, b]

OPTIMAL ALPHABETIC TREES 17

+ WT,.15[b+1,]]. The last case is when only edge a is used (this might make
some smaller edges available). The cost then is WT,.[i, j]. (Now we shall use (2)
above, where y <o and b <j, and hence we are not led into an infinite loop).

We compute WT, g[i, j]in order of increasing j — i = p, and for a fixed value of
p in order of increasing B — . This insures that we never reference values which
have not yet been computed.

This algorithm can be improved by use of the fact that adding an additional
rightmost node does not cause any weight to move to the right. The statement and
proof are similar to that of Theorems 1, 2. This enables us to reduce the
computation time by a factor of n to o’n’.

Thus, if we consider o fixed (e.g., o =2), the requirement for letters of
different cost does not increase the known time complexity of the problem.

9. Alphabetic trees and nonalphabetic trees. The problem of alphabetic
trees is closely related to that of nonalphabetic trees (i.e., trees in which the order
of the weights is immaterial). However, the relation between the complexity of the
two problems is unclear. For given weights, there are n! times more nonalphabetic
trees than alphabetic trees. This implies a larger domain for the nonalphabetic
case. However, the lack of the order constraint may help us in our search.

We shall now give a closer look at some of the problems and show the
relationship between the alphabetic and the nonalphabetic cases.

Case (a). Binary trees, weights at all nodes, letters of equal cost. Knuth [4]
considered the alphabetic problem and found an n” algorithm. For the nonal-
phabetic case, there exists a linear solution as follows:

First notice that for weights (wy, - - -, w,,) all optimal trees must satisfy

(i) if w;<wj, then [=1;
(i) all nodes, except perhaps those of the last two levels, have exactly two
sons.
Without loss of generality, n = 2' — 1 (otherwise add weights (W1, * =+, wpi; =0),
2' <2n, when the tree is found delete those weights). For such n, the optimal tree is
the complete binary tree of depth [— 1. (The shape of the tree does not depend on
the weights, only on their number.)

We now have to distribute the weights in the tree. This can be done in linear
time by means of the median algorithm [5]. The deepest level will contain all
nodes less than or equal to the median. The second deepest level will contain all
nodes less than or equal the median of the remaining nodes.

Time (n)=CN+Cn/2+Cn/4+ -- - +C1

=Cn(l+3+i+--)=2Cn.

C is the constant of the median algorithm. The internal order of the nodes at each
level is arbitrary, since it does not change the cost of the tree.

Case (b). o-ary trees, weights only at the leaves, letters of equal cost. The
nonalphabetic case is Huffman’s problem, for which his algorithm yields an
n log n solution. In the alphabetic case with o = 2, the T-C algorithm [6], [7] also
yields an n log n algorithm. For o > 2, we may apply the algorithm of § 7, the time
bound of which is n*log o.

18 ALON ITAI

Case (c). Binary trees, weights at all nodes, letters of unequal cost. For the
nonalphabetic case, as in (a) above, the shape of the tree is independent of the
actual weights. Therefore, we can find a tree of n minimum cost vertices in time
n log n; number the nodes so that cost (node;) =cost (node;.,),i=1,---,n—1.

Order the weights so that w, =Zw,= - -+ Zw,; then associate with the ith
node the ith weight. The optimality of the tree resulting from this algorithm is
proven similarly to that of (a) above. The time bound on the algorithmis n log n.

For alphabetic trees an algorithm similar to that of § 7 yields an n” solution.

Case (d). o-ary trees, weights only at the leaves, letters of unequal cost. No
polynomially bound algorithm is known—see [8] for an integer programming
solution.

In § 8, we have given a a”n’ solution for the alphabetic case. It is not known
whether it is possible to reduce the nonalphabetic case to the alphabetic case since
no result similar to Lemma 8 of § 6 is known to hold.

Case (e). Restricting the maximum depth of the tree to K. For the alphabetic
case, this causes an additional factor of K. For the nonalphabetic case, (a) and (c)
retain their previous bounds, whereas the appropriate variant of (b) requires a
reduction to the alphabetic case (see Lemma 8, § 6).

In conclusion, we may say that in most cases there are slightly better
algorithms for the nonalphabetic case. However, there is a case (d) for which no
polynomially bound algorithm is known for the nonalphabetic case, whereas the
alphabetic case has a polynomial algorithm.

REFERENCES

[1] M.R. GAREY, Optimal binary search trees with restricted maximal depth, this Journal, 2 (1974), pp.
101-110.

[2] E. N. GiLBERT AND E. F. MOORE, Variable-length binary encodings, Bell System Tech. J.
38 (1959), pp. 933-968.

[3] DONALD E. KNUTH, The Art of Computer Programming, 1: Fundamental Algorithms, Addison-
Wesley, Reading, Mass., 1968.

[4] , Optimum binary search trees, Acta Informat., 1 (1971), pp. 14-25.

[5] ———, The Art of Computer Programming, 3: Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.

[6] T.C. Hu AND A. C. TUCKER, Optimum computer search trees, SIAM J. Appl. Math., 21 (1971),
pp- 514-532.

[7] T. C. Hu, A new proof of the T-C algorithm, Ibid., 25 (1973), pp. 83-94.
[8] R. M. KARP, Minimum-redundancy coding for the discrete noiseless channel, IEEE Trans.
Information Theory, IT-7 (1961), pp. 27-39.

