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Abstract

In this paper, we study the control of Composite Hy-
brid Machines (CHMs) subject to configuration-based
safety specifications. CHMSs are a class of hybrid sys-
tems modeled in modular fashion as the concurrent op-
eration of Elementary Hybrid Machines (EHMs). We
recall the algorithm introduced in [14}, {15}, [16] for syn-
thesis of minimally-interventive controllers that guar-
antee constraint satisfaction. The paper focuses on es-
sential questions associated with viability of a synthe-
sized controller as related to the possibility of Zenoness
of the controlled system. A hybrid system is Zeno if it
can undergo an unbounded number of transitions in a
bounded length of time.

1 Introduction

Various formalisms have been proposed in the litera-
ture to capture the basic structure of hybrid systems
as dynamical systems in which discrete and continuous
behaviors interact [2] [3] [8] [9] [17] {20]. In recent years
interest in hybrid systems and their control has been
rapidly growing (see e.g. [10], [6], [4], [19]).

Typical hybrid systems interact with their environ-
ment both by sharing signals (i.e., by transmission
of input/output data}, and by event synchronization
(through which the system is reconfigured and its struc-
ture modified). Thus control of hybrid systems can be
achieved by employing both interaction mechanisms si-
multaneously. Yet, while this flexibility adds signifi-
cantly to the potential control capabilities, it clearly
makes the problem of design very difficult.

A simplified interaction mechanism for control, is to al-
low the controller to interact with the system only dis-
cretely, that is, to permit the controller to trigger only
discrete changes in the system. Synthesis of controllers
of this type for restricted classes of hybrid systems re-
cently received significant attention in the literature {7},
[12], [14], [15), [16], [18], [21]. In [7] and [18] attention
was focused on controller synthesis for timed automata
[1], and emphasis was placed on the question of solv-
ability. It was shown there that for timed automata

the synthesis problem is solvable (that is, finite ter-
mination is assured). In [12] and [21] the decidability
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question was explored for linear and rectangular hybrid
automata and it was shown that although the synthe-
sis problem is generally undecidable (see e.g. [11]), un-
der special conditions such as finite delay, rectangular
automata are decidable and synthesis algorithms are
guaranteed to terminate.

In [14], [15], [16], we examined the control problem for
a class of hybrid systems that we called rate-bounded
Composite Hybrid Machines (CHMs). We described
a detailed algorithm for synthesis of a minimally inter-
ventive safety controller (that prevents the system from
ever entering a specified set of illegal configurations).
A (legal) controller is minimally interventive if, when
composed to operate concurrently with any other legal
controller, it will remain inactive except at the bound-
ary of the legal region where controller inaction might
lead to inevitable safety violation.

A major difficulty associated with hybrid systems is
the Zenoness phenomenon. Intuitively, a system is
Zeno if it can undergo an unbounded number of dis-
crete changes (transitions) in a bounded length of time.
When a controlled CHM 1s Zeno, it cannot be guaran-
teed to satisfy the safety specification indefinitely, and
hence violates the basic viability requirement. If for
a given CHM no legal controller exists such the con-
trolled system is non-Zeno, we must conclude that the
CHM is uncontrollable. The computational verification
of non-Zenoness has been shown to be algorithmically
a hard problem [5].

In the present paper we continue the investigation of
[14], [15], [16] and focus our attention on the prob-
lem of Zenoness. In particular, we show that when our
controller synthesis algorithm terminates, then the syn-
thesized controller is legal and minimally interventive if
the resultant closed loop system is non-Zeno. To exam-
ine the non-Zenoness, we introduce two concepts: In-
stantaneous Configuration Clusters (ICCs) and Hybrid
Attractors. We then show that the system is non-Zeno
if and only if it has no ICC that is a hybrid attractor.

2 Hybrid Machines

We first introduce a modeling formalism for a class of

hybrid systems which we call hybrid machines. An el-

ementary hybrid machine (EHM) is denoted by
EHM = (Q’E,D:I;Ea (110,130))-

The elements of EHM are as follows.

Q is a finite set of vertices.

Y is a finite set of event labels. An event is an input

event, denoted by ¢ (underline), if it is received by
the EHM from its environment; and an output event,



denoted by & (overline), if it is generated by the EHM
and transmitted to the environment.

D ={d; = (2q,yq,u g € Q} is the dynamics
of the ?HM where tqhe éynamlcs at the vertex g, is
given by:

&g = fo(®q, ug),

Yg = hq(zq, ug),
with x4, ug, and y,, respectively, the state, input, and

output variables o approprlate dimensions. f, is a Lip-
schitz continuous function and h,; a continuous func-
tion. (A vertex need not have dynamlcs associated with
it, that is dq = @, in which case we say that the vertex
is static.)

I ={I; : ¢ € Q} is a set of invariants. I, represents
condltlons under which the EHM is permitted to reside
at g. A formal definition of I; will be given below.

E={(q,Ghe 7", ¢, 20,) 1 ¢,¢ € Q}is aset of edges
(transition-paths), where ¢ is the exiting vertex, ¢’ the

entering vertex, ¢ the input-event, o/ the output-event,
G the guard to be formally defined below, and mg, the

initialization value for & upon entry to ¢'.

(¢,GAg—d, ¢, azg,) is interpreted as follows: If G is
true and the event o 1s recelved as an input, then the
transition to ¢’ takes place with the assignment of the
initial condition 4 (to) =z, (here to denotes the time

at which the vertex ¢’ is entered and z0, is a vector of

e q
constants). The output-event ¢’ is transmitted at the
same time.

If o/ is absent, then no output-event is transmitted.
If :1:2, is absent, then the initial condition is inherited
from 2, (assuming z, and z, represent the same phys-
ical object and hence are of the same dimension). If o
is absent, then the transition takes place immediately
upon G becoming true. If GG is absent, the guard is
always true and the transition will be triggered by the
input-event &.

(g0, z0) denote the initialization condition: ¢o is the
initial vertex and z4,(to} = zo.

For the EHM to be well-defined, we require that all
vertices be completely guarded. That is, every invari-
ant violation implies that some guard associated with a
dynamic transition becomes true*. (It is, in principle,
permitted that more than one guard become true at the
same instant. In such a case the transition that will ac-
tually take place is resolved nondeterministically.) We
do not require the converse to be true. That is, a tran-
sition can be triggered even if the invariant is not vio-
lated. We further require that, upon entry to a vertex
¢’, the invariant I be true. It 1s however possible that,
upon entry to ¢’, one of the guards at ¢’ is already true.
In such a case, the EHM will immediately exit ¢’ and
enter a vertex specified by (one of) the true guards.
Such a transition is considered instantaneous.

*Complete guardedness prevents the possibility that an invari-
ant becomes false while no transition out of the current vertex is
dynamically triggered.
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In this paper we shall study a restricted class of hybrid

machines called bounded-rate hybrid machines!, char-
acterized by the following assumption.

Assumption 1 The dynamics described by f,; and hq
has the following properties: (1) hy(zq,uy) is a linear
function; and (2) f, (24, u4) is bounded by a lower limit
k{ and an upper limit k¥'; that is, the only information
given about fy(zg, ug) i 1s that foleq, uq) € [KE, kY.

A composite hybrid machine (CHM) consists of several
elementary hybrid machines running in parallel:

CHM = EHM\EHM?||...|\EH M™

Interaction between EHMs is achieved by means of sig-
nal transmission (shared variables) and input/output-
event synchronization (message passing) as described
below.

Shared variables consist of output signals from all
EHMs as well as signals received from the environment.
They are shared by all EHMs in the sense that they are
accessible to all EHMs. A shared variable s; can be the
output of at most one EHM. The set of shared variables
defines a signal space S = [s1, 82, ..., 5m] € R™.

Transitions are synchronized by an input/output syn-
chronization formalism. That is, if an output-event @ is
either generated by one of the EHMs or received from
the environment, then all EHMs for which ¢ is an active
transition label (1 e., ¢ is defined at the current vertex
with a true guard) will execute o (and its associated
transition) concurrently with the occurrence of &@. A
specific output-event can be generated by at most one
EHM. Clearly, input-events do not synchronize among
themselves!.

By introducing the shared variables S, we can now de-
fine invariants and guards formally as boolean combi-

nations of inequalities of the form (called atomic for-
mulas)

si > C; or s <Cj,

where s; is a shared variable and C; is a real constant.
We shall assume that all invariants are closed (that is,
the sets in which the invariants are true are closed).
To describe the behavior of

CHM = EHM'||[EHM?||...||[EHM",
we define a configuration of the CHM to be
LaE>EQ X @ x . x QP

where Q7 is the set of vertices of EH MJ {components
of the EHMs are superscripted).

q=<4,,4, -

tSimilar classes of hybrid automata [2] have been termed
“rectangular”.

{Notice that this formalism is a special case of the prioritized
synchronous composition formalism [13], where each event is in
the priority set of at most one parallel component.



A transition
l
< qilliqizg’ ey q?,. >—< Qz}'ly%'zlz; ---;Q?In >

of a CHM is a triple, where ¢ =< ¢} ,¢7,...,q}, >
is the source configuration, ¢’ =< ¢} ,q2_,...,q}} >
the target configuration, and ! the label that triggers

the transition. [ can be either an event, or a guard
becoming true. Thus, if I = g is an event (generated

by the environment), then either qf,j = qu if o is not

) . o i A
active at qu, or qf,j is such that (¢}, g = o', q,?,j, 205 )
R 7
is a transition (edge) in £7. On the other hand, if
Il = G is a guard, then there must exist a transition
(¢, G = o', ¢ ,xqm ) in some EHM™, and for j #

m, either ¢}, = ¢ if ¢’ is not defined at ¢f , or ¢}, is
7 J

such that (q{j,g’ — o, q{;, ’“’21.‘,) is a transition in FY.
3

For brevity we shall sometimes denote the transition

simply by (¢,!, ¢'). Note that for simplicity, we do not

specify the output events and initial conditions, since

they are defined in the EHMs.

The transitions are assumed to occur instantaneously,
and concurrent vertex changes in parallel components
are assumed to occur exactly at the same instant (even
when constituting a logically triggered finite chain of
transitions).

A run of the EHM is a sequence

e1,t ea,tb ests
qo =3 q1 =5 g2 =5 ..

where e; i1s the 7th transition and #; is the time when
the ith transition takes place. The trajectory of the
run is the sequence of the vector time functions of the
state variables:

Tgo) Lgrs Lygs -
where x4, = {xg,(t) 1t € [ti, tig1)}.

Recall that our model also allows guarded event tran-
sitions of the form
Ghae |,
qg—>q.
However, since for the transition to take place the

guard must be true when the event is triggered, a
guarded event transition can be decomposed into

G

= o
9 .qg 92— 79,

Pt

where ¢ has been partitioned into ¢; and ¢, with
Iy, = I; A=G and I, = I; AG. Thus, transitions
in CHMs can be classified into two types: (1) dynamic
transitions, that are labeled by guards only, and (2)
event transitions, that are labeled by events.

3 Control

Our goal is to design a controller that will ensure that
the controlled (or closed-loop) system satisfies a pre-
scribed set of safety specifications. More precisely, it
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will be required that the controlled system never enter
a set of illegal (or bad) configurations denoted by Q.
We call such a controller a legal controller.

Formally, a (legal) controller of a CHM is an EHM C
running in parallel with the CHM. In this paper, we
assume that the interaction between C and CHM is by
means of input/output event synchronization only.

A legal controller C is said to be less interventive (or
less restrictive) than another legal controller C” if every
run permitted by C’ is also permitted by C (a formal
definition will be given below). A legal controller is said
to be minimally interventive if it is less interventive
than any legal controller.

To synthesize the minimally interventive legal con-
troller for the CHM

CHM = (Q,X,D, 1, E, (40, 20)),

we employ an invariance algorithm [16] whose brief out-
line 1s as follows.

Initially, we let the “bad” configurations consist of the
illegal ones:

BC :=Q».

The remaining configurations may or may not be bad,
so we classify them as pending:

PC::Q——Q(,.

Our synthesis algorithm examines each configuration in
PC iteratively as described below. The configurations
(or some “parts” of them) that pass the examination
are then placed in the set of new pending configurations,
which is initially empty:

NPC = 0.

During the synthesis, each pending configuration is
marked by its configuration-origin, which is initially
set as

CO(g) =4q.
The algorithm is iterative. During each iteration we

partition, the invariant of every configuration ¢ € PC
into two subsets:

Iy, == Ig A(Ag,6.q)eDT(q.BCYPE(2, G, q'))
V(V(q4,0.0)eET,(¢,BC)5¢(4, 2, 9"))),
Igo = Iy AN(~(Ag,6.¢)eDT000,B0)PE(0, G, 1))

AV (q,0,¢" BT, (¢,BC)5¢(¢, 2, ¢')))-

I,, represents the “pending part” of the configuration
q, because when I, is true, either a bad dynamic
transition (¢,G,¢) € DTy(g, BC) to a bad configu-
ration will be preempted (since the preemptive condi-
tion pe(q, G, ¢') is satisfied), or a good event transition
(¢,0,9") € ET,(q, BC) to a pending configuration can
be triggered (since the safe-exit condition sc(q, g, ¢’) is
satisfied) [16].



I,,, the complement of [, , represents the “bad part”
of the configuration gq.

If Iy, # false, we set

NPC :=NPCU{q},
CO(q1) := CO(g).

If 1;, # false, we set
BC :=BCU {QQ}

After examining all configurations in PC, we check
whether the stop-condition PC=NPC is true. If not,
we set

PC := NPC,
NPC :=0.

and go to the next iteration.

When the stop-condition PC=NPC is satisfied, all con-
figurations in PC are “good”. Therefore, we can pro-
ceed to construct the minimally interventive legal con-
troller

C= (Qc’ Ec; Dc) IC) Eca (qg, 1‘8))

as follows.
Q° := PC,
D¢ =,
I = Ich

In other words, the configurations of C consist of the
set of all “good” configurations with their invariants as
calculated during the iteration. C has no continuous
dynamics so it is “driven” by the CHM. The transi-
tions of C are then triggered when the boundary of the
invariant of the current configuration, as described by
the critical condition critical(.) [16], is reached. Specif-
1cally,

EC

{(g, eritical(I,) A wp(g,0,q')

A(~(Aq,G,9eDTo(q,BC)PC(2, G, ¢"))) = 7, q') :

7,9'€Q°AN(CO(g),2,CO(¢'))EE}.

The controller as just synthesized is minimally inter-
ventive. Its interaction with the system is restricted to
the exclusive objective of preventing safety violation.
Since other control objective are possible, we augment
our controller by “environment-triggered” transitions
given by
E¢:= E‘U{(q,wplg,0,d')ANG—7,¢):
1,4'€Q°N(CO(q),2,CO(¢'))EE}

with the event set 2¢ being defined as
Y= BuU{g:0c €}

Thus, the events & are allowed to be generated by the
environment (possibly by an additional controller) and
trigger transitions in C' and hence in CHM whenever
such transitions are not preempted by C. A preemption
will occur only if otherwise a safety constraint would
be violated.
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4 Zenoness

We shall call a run of a CHM dynamic if all its transi-
tions are dynamic transitions. An unbounded dynamic
run

€1,t1

€a,t est3
go —> q1 -——-—; g — ...

is called a Zeno run if
limi,eoti =T < 0

A CHM is called Zeno if it possesses Zeno runs. Oth-
erwise 1t is called viable or non-Zeno.

Clearly Zeno CHMs are ill defined, in that they may
uncontrollably execute an unbounded number of tran-
sitions in a finite (and bounded) time interval and
thus describe systems whose lifetime is limited, con-
trary to our intention of modeling ongoing behaviors
(that never terminate). To illustrate the Zenoness phe-
nomenon, let us examine the following example.

Example 1 Consider the hybrid system modeled by
the CHM shown in Figure 1, where & and [ are constant
real numbers.

X15>0
Xy >0
k1=k Ie] )'(1= -l
. =2 .
Xy= -l Xy =k
{x,>0IN 5 [x,>0]N
[%,>0] =1 [x,>0]
[x€0Iv|[*,50] [x,$0lv|[[X,< 0]
c
Illegal

Figure 1: CHM of Example 1

It models a two-tank water system, where both tanks
are leaking with rate I. A pump fills one of the tanks at
rate k+/, and it can be switched between the two tanks
(events oy and g3). The system starts with both tanks
non-empty (21(0) = 19 > 0,23(0) = z20 > 0). The
system becomes 1illegal if and when the level in one of
the tanks gets to be below zero$. This is represented
by a transition to the illegal configuration ¢ that has
no dynamics and invariant “true”. It is readily seen
that the rate of change of the total volume of water in
the system is independent of the pump-switching policy
and 1s given by k-I. Thus, if k-I< 0, then at time no
later that T' = (210 + 20)/(k-!) the total volume of
water will become zero, so that the system must have
become illegal no later than 7. On the other hand, if
k-I1> 0, the volume of water does not diminish and, as
easily seen, a viable controller actually exists.

The controller synthesis algorithm can be carried out
for arbitrary & and !, and 1t terminates after just one
step.

$For technical reasons we denote the guards by weak inequal-
ities rather than strict ones.



The (augmented) controller C generated by the algo-
rithm is shown in Figure 2. The guard G; triggering
the event transition o5 is calculated as follows.
Gy =212 0 A[z2=0],Ga=[z1=0]A[z2 > 0]

In other words, the controller switches the pump to a
tank whose level reaches 0. If k—I < 0, then the switch-
ing becomes faster and faster, with infinite switching
rate occurring after finite time. Thus, the closed-loop
system CHM||C is Zeno.

[x,01 [%,300A G| — 5,

[x,>00A [%,> 00~ G, — T,

Figure 2: Controller of Example 1

To examine the Zenoness phenomenon and its relation
to control synthesis, we begin by introducing the con-
cept of an instantaneous configuration cluster (ICC).
Let v = [s1,...,5m] € S be a valuation of the signal
vector and let ¢ be a configuration. Suppose that ¢ is
entered by a guarded transition G whose value is true
at v. Assume further that ¢ has an outgoing guarded
transition G’ which becomes (or is) true at the entry
value of the signal vector ¢. (This value will be v if the
signal vector is not re-initialized, or it will be v/ € S if
it is re-initialized to this value upon entry to ¢.) Since
G’ follows G instantaneously, we say that the transition
associated with G’ is triggered by that associated with
(. We say that a sequence of transitions G, Gg, G3, ...
is triggered by v if G is true at v and G4 1s trig-
gered by G; for all £ > 1. For a signal value v, con-
sider all transition sequences in the CHM triggered by
v. Let CHM (v) denote the CHM obtained by delet-
ing all transitions that are not elements of transition
sequences triggered by v. A strongly connected com-
ponent (SCC)Y that consists of two or more configu-
rations is called an ICC. The triggering value v of the
signal vector will be called a Zeno point of the CHM.
We emphasize that a ICC consists of the set of config-
urations, the transitions and the associated triggering
value v of the signal vector. In the two leaking tank
example, v = [0,0] is a Zeno point associated with an
ICC which includes the configurations (a, a), (b, b) of
the controlled system CHM||C.

The following theorem gives a necessary condition for
Zenoness.

Theorem 1 If a CHM is Zeno, then there exists an
instantaneous configuration-cluster.

The existence of an instantaneous configuration-cluster
does not in itself imply Zenoness. In the two leaking

TA SCC is a set of configurations for which there is a directed
path from any configuration to any other.
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tanks of Example 1, for instance, if k—{ > 0 the closed-
loop system is non-Zeno, although v = {0,0] is a Zeno
point associated with an ICC.

To obtain a necessary and sufficient condition for
Zenoness, we shall now refine our examination of ICCs.
Clearly, once at an ICC, the behavior of the CHM is
necessarily Zeno. Thus, the question must be exam-
ined, whether if initialized outside (or away from) an
ICC, a possible run will enter the ICC after a bounded
length of time. We shall say that an ICC is a hybrid at-
tractor whenever there exist initializations of the CHM
outside the ICC such that for some run, the ICC will
be reached in bounded time.

Theorem 2 A CHM is non-Zeno if and only if its ini-
tialization set does not intersect an ICC and its has no
hybrid attractor.

Thus, the problem of checking Zenoness of a CHM (or,
in particular, a closed-loop system) consists of identify-
ing its ICCs, if any, and checking whether they include
hybrid attractors. The detailed investigation of these
issues will be presented elsewhere.

5 Correctness of the Algorithm

It is clear from Algorithm 1 that whenever a controlled
systems CHM]||C' undergoes a transition, it moves
from a legal configuration to another. Thus, there re-
main two questions with respect to the correctness of
the algorithm. The first is whether the controlled sys-
tem is safe and viable. Since the safety is clear, this
boils down to the question of non-Zenoness, which was
discussed in the previous section. The second question
is whether the synthesized controller is minimally in-
terventive. To this end, we define the conjunction of
C with another controller D as follows. First, all the

output-events @ in D are replaced by & to obtain D.
Then the composite controlled system is given by

CHM||C||D.

Theorem 3 If Algorithm 1 terminates in a finite num-
ber of steps and the closed-loop system CHM||C is
non-Zeno, then the controller synthesized is a min-
imally interventive legal controller in the following
sense.

1. For any controller D (legal or not), a run of
CHM]||C||D never visits illegal configurations in
b
2. For any legal controller D, every run of NC'HMHD
has a corresponding run in CHM||C||D.

Proof

Since Algorithm 1 terminates in a finite number of steps
and the closed-loop system C'HM||C is non-Zeno, it is
safe and viable.



Notice that it is possible that the closed-loop sys-

tem C'HM||C||D may generate a Zeno run due to D.
Although such an ill-defined controller D should be
avoided in practice, the correctness of C will not be
affected.

To prove part 1, it is sufficient to show that a run in
CHM]||C||D will only visit configurations in

QCQ—CQe.

If this is not the case, then there exists a run

e1,t en,tn
go = g1 — ..m¥n_1 =F qn

»qn-1 € Q° but ¢, ¢ Q°.

Let us consider the transition from ¢,..1 to ¢,. It can-
not be an event transition because such illegal event
transitions are not permitted by C. If it i1s a dynamic
transition, then since it is not preempted at ¢,_1, it
implies that ¢,—1 € Q°, a contradiction.

such that qo, g1, ..

To prove part 2, observe first that in view of the fact
that Algorithm 1 progressively removes illegal behav-
iors, a controller will be legal only if it does not exceed
the configurations and invariants of C. Assume that

ety €n,tn

qo = q1 —> ... qn-1 —7 qn

is a possible run of CHM{|D and the first n—1 transi-
tions are also possible in CH M ||C||D but the last tran-
sition from ¢,_1 to ¢, is impossible in CHM||C||D,
that is,.it is preempted by C'. Since C only takes ac-
tion at its invariant violation boundary as specified by
the critical condition, the inaction of D at that point
implies that for some trajectory associated with this
run, the invariant of C' will be violated, contradicting
the hypothesis that D is legal.
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