
On Supervisory Control of Concurrent Discrete-Event

Systems

Yosef Willner∗ Michael Heymann†

March 27, 2002

Abstract

When a discrete-event system P consists of several subsystems P1, . . . , Pn that oper-

ate concurrently, a natural approach to the supervisory control problem is to synthesize

a ’local’ controller Si for each subsystem Pi and operate the individually controlled sub-

systems Si/Pi concurrently. Such an approach is called concurrent supervisory control

and is closely related to decentralized supervisory control as studied in [4] and [5]. In the

present paper simple and easily computable conditions are developed, that guarantee

when concurrent supervisory control can achieve the optimal behavior achievable by

a global supervisor. To achieve the optimal behavior, two specific concurrent control

strategies are introduced.

Key words: discrete event systems, supervisory control, concurrency, decentralization,

separability.

1 Introduction

In recent years a control theory for a general class of Discrete Event Systems (DES) has

been proposed by Ramadge and Wonham [1-3]. In this theory, the DES is modelled as a

tuple

P = (Q, Σ, δ, q0) ,

∗Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
†Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. Com-

pleted in part while the author was on leave as a NRC-Senior Research Associate at NASA-Ames Research

Center, Moffett Field, CA 94035.

1



where Q is a set of states, Σ is a set of symbols called the transition alphabet, δ : Σ×Q → Q

is a (partial) function called the state transition function, and q0 ∈ Q is the initial state.1

Let Σ∗ denote the set of all strings over Σ, including the empty string ε. A subset L ⊂ Σ∗

is called a language over Σ. A string u ∈ Σ∗ is a prefix of v ∈ Σ∗, denoted u < v, if for some

string w ∈ Σ∗, v = uw. The closure of L ⊂ Σ∗, denoted L, is the set of all prefixes of strings

in L. L is closed if L = L.

For a DES P , the transition function δ : Σ × Q → Q is extended to δ : Σ∗ × Q → Q in

the standard way. Then the language generated by P is defined by

L(P ) = {t ∈ Σ∗ | δ(t, q0) is defined} .

The transition alphabet Σ consists of two disjoint subsets, ths set Σc of controlled events

that can be disabled by external control, and the set Σu of uncontrolled events that cannot

be prevented from occurring.

A supervisor S for P is a device that follows the behavior of P and at each state of

P disables a subset of the controlled events. The language generated by the (closed-loop)

system, i.e., by the combination of P and S, is denoted by L(S/P ).

Let M be a closed sublanguage of L(P ). Then there exists a supervisor S such that

L(S/P ) = M if and only if M is controllable with respect to L(P ) (see [1]), namely, if and

only if

MΣu
⋂

L(P ) ⊂M .

For any language M ⊂ L(P ) there exists a supremal (in the sense of languages inclusion)

controllable sublanguage of M, denoted by supC(M). Let a specification of legal behavior

for P be given as a nonempty sublanguage E ⊂ Σ∗. The basic control problem is then

to construct a supervisor S such that L(S/P ) ⊂ E . It is then known (see e.g. [1]) that

the optimal solution to this problem is the supervisor S that satisfies the condition that

L(S/P ) = supC(L(P ) ∩ E).

Cieslak et al. in [4] and Lin and Wonham in [5] developed decentralized control schemes,

in which instead of a single global supervisor, there are several local supervisors that operate

concurrently. Each local supervisor observes and controls only a subset of the events of the

system. In [4] a necessary and sufficient condition was introduced which guarantees that the

decentralized control scheme achieves the global optimal behavior.

Most practical real-life discrete event systems are concurrent DESs, i.e. they consist of a

large number of subsystems that operate concurrently. The event sets of the subsystems may

be (pairwise) disjoint, in which case the systems operate concurrently but asynchronously,

1We omit from the model the subset of marked states, which is not used in the present paper.

2



or they may partially overlap, yielding a degree of synchronization through the simultaneity

of events.

In the present paper we examine the decentralized control of concurrent DESs. We assume

that the DES P is composed of concurrent subsystems, Pi, with event sets Σi, i = 1, 2, . . . , n.

Suppose that for each subsystem Pi there is a local supervisor Si that observes and controls

only the events in Σi. The global controlled system can then be obtained as the concurrent

operation of the individually controlled subsystems Si/Pi, 1 ≤ i ≤ n.

While the results of [4] and [5] apply to the present situation as well, they have been

developed without any assumption on the structure of the DES under consideration. In the

present paper we explore some specific properties of decentralized supervisory control that

do not apply in the case of unstructured systems.

The paper is organized as follows. In Section 2 we define the key property of separability

of languages and describe some properties of separable languages. The formal definition of

concurrent DES and the correspondence between a global controllable language and local

controllable languages are discussed in Section 3. In Section 4 we formulate the concurrent

supervisory control problem and develop two concurrent control schemes under which optimal

global behavior can be achieved.

2 Separable Languages

Let φ 6= Σ̂ ⊂ Σ and define the projection π : Σ∗ → Σ̂∗ by

π(ε) = ε

π(tσ) =







π(t)σ if σ ∈ Σ̂

π(t) otherwise.

(2.1)

The effect of π on t ∈ Σ∗ is to delete from t all symbols not in Σ̂.

Let Σi, 1 ≤ i ≤ n, be nonempty (not necessarily disjoint) alphabets, and write

Σ =
n
⋃

i=1
Σi . (2.2)

Define projections πi : Σ∗ → Σ∗
i as described in (2.1). For a finite set of languages {Li ⊂

Σ∗
i }n

i=1 we define the synchronized product of {Li}, denoted ‖n
i=1Li, as

‖n
i=1Li = {t ∈ Σ∗ | (∀ i) πi(t) ∈ Li} . (2.3)

Clearly, (2.3) is equivalent to the following definition

‖n
i=1Li =

n
⋂

i=1
π−1

i (Li) . (2.4)

3



If (∀ i 6= j) Σi
⋂

Σj = φ then ‖n
i=1 Li is the usual language interleaving, or shuffle product

(see [9]) and if (∀ i, j) Σi = Σj then ‖n
i=1Li =

n
⋂

i=1
Li.

Definition 2.1 Let Σ be defined as in (2.2) and let L ⊂ Σ∗. We shall say that L is separable

with respect to (w.r.t.) {Σi}n
i=1 if there exists a set of languages Li ⊂ Σ∗

i , 1 ≤ i ≤ n, called

a generating set of L, such that L = ‖n
i=1Li.

Examples

Let n = 2, Σ1 = {α, β, γ1}, Σ2 = {α, β, γ2}. The language L = γ1γ2 + γ2γ1 is separable

w.r.t. {Σ1, Σ2} since L =‖2
i=1 Li, where L1 = γ1 and L2 = γ2. Consider now the language

L = γ1γ2. Clearly the languages {γ1, γ2} are not a generating set of L. It is easy to verify

that there do not exist languages L1 and L2 such that L =‖2
i=1 Li, thus L is not separable.

Let L = γ1γ2α + γ2γ1α. It is easy to verify that for L11 = γ1α and L12 = γ2α as well as for

L21 = γ1αβ and L22 = γ2αα, L =‖2
i=1Lji for j = 1, 2.

As we can see from the last example, for a separable language there may exist several

generating sets. For a nonempty separable language L ⊂ Σ∗, let B(L) be the set of all

generating sets of L, that is,

B(L) = {(L1α,L2α, . . . ,Lnα) | (∀ α)Liα ⊂ Σ∗
i and L = ‖n

i=1Liα} . (2.5)

The following two properties are automatic

‖n
i=1

(

⋃

α
Liα

)

⊃ L , (2.6)

‖n
i=1

(

⋂

α
Liα

)

⊂ L . (2.7)

For each i, 1 ≤ i ≤ n, let {Liα} be the family of languages consisting of the i-th components

of all the elements in B(L). A question that arises is whether the inclusion (2.7) is, in fact,

an equality. In other words, whether B(L) contains a generating set (L1, . . . ,Ln) such that

each Li is the infimal element (in the sense of language inclusion) of {Liα}. The answer is

given in the following proposition.

Proposition 2.1 For each i, 1 ≤ i ≤ n, the nonempty family {Liα} is closed under

arbitrary intersection and
⋂

α
Liα = πi(L) . (2.8)

Corollary 2.1 A language L ⊂ Σ∗ is separable w.r.t. {Σi}n
i=1 if and only if

L = ‖n
i=1 πi(L) . (2.9)

4



Corollary 2.2 Let (L1, . . . ,Ln) ∈ B(L). Then for each i,

(L1, . . . ,Li−1, πi(L),Li+1, . . . ,Ln) ∈ B(L) .

The last corollary states that if we replace in a generating set (L1, . . . ,Ln) of L, any

of the components, say Li1 , . . . ,Lik , with the corresponding projections πi1(L), . . . , πik(L),

then the result is also a generating set of L.

The next proposition states that the family {Liα} is closed also under union.

Proposition 2.2 For each i, 1 ≤ i ≤ n, the nonempty family {Liα} is closed under

arbitrary union, and
⋃

α
Liα = πi(L)

⋃

(Σ∗
i − πi(L̂i)) , (2.10)

where L̂i =
n
⋂

j=1
j 6=i

π−1
j (πj(L)).

We conclude this section with the following result.

Proposition 2.3 The set of all separable (w.r.t. {Σi}n
i=1) languages, over Σ, is closed under

arbitrary intersection.

3 Concurrent Discrete Event Systems

Interconnected subsystems can be represented by modelling each subsystem as a DES

and describing the connections between them in such a way that the combined DES can be

obtained in a mechanical way. One such connection is as follows (see e.g. Hoare [10, section

2.3]) Let Pi = (Qi, Σi, δi, q0i), i = 1, 2 . . . , n, be DESs with control partitions Σi = Σic
⋃

Σiu

such that

(∀ i 6= j) Σiu
⋂

Σj = φ . (3.1)

This assumption means that there is no synchronization between uncontrolled events of one

subsystem with events of another (because we regard uncontrolled events as resulting from

spontaneous and unpredictable behavior of the individual subsystems). For each σ ∈ Σ let

In(σ) = {i | σ ∈ Σi}. The model of the entire system P is defined by

P = (Q, Σ, δ, q0) , (3.2)

5



where Q = Q1 × Q2 × · · · × Qn, Σ =
n
⋃

i=1
Σi (with Σc =

n
⋃

i=1
Σic, Σu =

n
⋃

i=1
Σiu), where

q0 = (q01, q02, . . . , q0n), and where δ : Σ×Q → Q is given by

δ(σ, (q1, q2, . . . , qn)) =











































(q′1, q
′
2, . . . , q

′
n) where q′i = δi(σ, qi) for all i ∈ In(σ) provided that

and q′i = qi for all i 6∈ In(σ) δi(σ, qi) is defined

for all i ∈ In(σ)

undefined otherwise

We shall use the notation P = ‖n
i=1 Pi for the entire system2.

Thus, in the system P , an event that belongs to exactly one subsystem can occur asyn-

chronously and independently. But if an event belongs to several subsystems, then it occurs

in the composite system if and only if it occurs simultaneously in all the corresponding sub-

systems. In particular, if the Σi are all disjoint, then P is the shuffle product of Pi, (see

[1]).

The next proposition follows immediately from the definition of P .

Proposition 3.1 Let P = ‖n
i=1 Pi, then L(P ) = ‖n

i=1L(Pi).

Example 3.1 We consider two machines P1, P2 that operate concurrently. The Pi are DESs

with state diagrams as shown in Fig. 3.1. In state Ii, Pi is idle and in state Wi it is working.

Initially the system is in state (I1, I2). The sets of uncontrolled events are Σ1u = {b1}, Σ2u =

{b2}, respectively. The system operates as follows. There is an external storage of three types

of workpieces for processing. Machine P1 takes a workpiece either from the external storage

(event a11, if the workpiece is of the first type, or event a12 if it is of the second type), or from

machine P2 (shared event α). If the processing of a workpiece is successfully completed, then

P1 passes the workpiece to an external storage of processed workpieces (event b1). Otherwise,

it passes the workpiece to machine P2 (shared event β). Machine P2 operates in the same

way, but takes from the external storage only workpieces of the third type (event a2). The

state diagram of the entire system P =‖2
i=1 Pi is given in Fig. 3.2.

As we mentioned in Section 1, the controllability property plays the key role in super-

visor synthesis problems. For concurrent DES P = ‖n
i=1 Pi the controllability property has

two aspects; global controllability, i.e.; w.r.t. L(P ), and local controllability, i.e.; w.r.t.

L(Pi). More specifically, let M⊂ L(P ) be a “global” sublanguage, the corresponding local

2We denote by ‖n
i=1 the synchronized product of languages as well as the concurrent composition of

systems. The precise meaning will be clear from the context.

6



languages are πi(M), 1 ≤ i ≤ n. The question now of interest is whether the global con-

trollability of M implies the local controllability of πi(M) or vice versa. (Similar questions

appear in [4] for unstructured systems). The answer is given in the Main Lemma.

Lemma 3.1 (Main Lemma).

Consider a DES P = ‖n
i=1 Pi.

(a) If M ⊂ L(P ) is closed and controllable w.r.t. L(P ), then for each i, 1 ≤ i ≤ n,

πi(M) ⊂ L(Pi) and πi(M) is closed and controllable w.r.t. L(Pi).

(b) Let Mi ⊂ L(Pi), 1 ≤ i ≤ n, be closed and controllable w.r.t. L(Pi) and write M =

‖n
i=1Mi. Then M⊂ L(P ) and M is closed and controllable w.r.t. L(P ).

The Main Lemma motivates all the results about synthesis of supervisors for concurrent

DES that we develop in the next Section.

4 The Supremal Controllable Legal Behavior and Su-

pervisor Synthesis

Consider a DES P = ‖n
i=1 Pi as defined in (3.2). Let E ⊂ Σ∗ be a nonempty closed

language, which we interpret as a specification of legal behavior for P . The basic control

problem is to synthesize a control device whose task is to restrict the behavior of P to within

the specified legal behavior E . As was mentioned in Section 1, a global supervisor S achieves

optimal behavior of P by synthesizing the language

K = supC(L(P )
⋂

E) ⊂ Σ∗ . (4.1)

Instead of using a single global supervisor, we propose a decentralized control scheme,

called concurrent control. By concurrent control we mean that for each substem Pi there is

a local supervisor Si. Each supervisor Si observes and controls only the events that belong

to Σi. The concurrent operation of all controlled subsystems Si/Pi generates a new global

system Pcl, namely Pcl = ‖n
i=1 (Si/Pi). The behavior of Pcl is given by

K̃ := L(Pcl) = ‖n
i=1L(Si/Pi) =

n
⋂

i=1
π−1

i (L(Si/Pi)) . (4.2)

In the remainder of this section, we discuss the relations between the language K̃, that can

be achieved by concurrent control, and the global optimal language K.

The following proposition states the (fairly obvious) fact that concurrent control can

never be better than global control.

7



Proposition 4.1 Suppose that there exist local supervisors Si, 1 ≤ i ≤ n, such that K̃ ⊂ E.

Then K̃ ⊂ K.

The following theorem gives conditions under which a concurrent control scheme can

achieve the optimal global behavior.

Theorem 4.1 Let P = ‖n
i=1 Pi, where Pi = (Qi, Σi, δi, q0i), 1 ≤ i ≤ n. There exist local

supervisors Si, 1 ≤ i ≤ n, such that K̃ = K if and only if K is separable w.r.t. {Σi}n
i=1.

Remark: In [4] the following decentralized control scheme was examined. Let P be a DES

with controlled events Σc, where Σc is the union of n subsets Σ1c, . . . , Σnc. Also given are n

event sets ∆1, . . . , ∆n and maps (or masks) Mi : Σ → ∆i
⋃

{ε}. A decentralized supervisor

is a collection of local supervisors Si, where each supervisor Si observes only the symbols

belonging to ∆i and controls only the events of Σic. It was proved in Lemma 4.2 of [4] that

L((∧i Si)/P ) = K, (with K as defined in (4.1) above), if and only if K is ({Mi}, {Σic},L(P ))-

controllable. Namely, for σ ∈ Σc, for a set {si} of strings in K indexed by i ∈ In(σ), and for

s′ ∈ K

(1) siσ ∈ K for all i ∈ In(σ),

(2) s′σ ∈ L(P )

(3) Mi(si) = Mi(s′) for all i ∈ In(σ)

together imply

s′σ ∈ K .

It can be shown that if the masks Mi are deletion masks, that is, Mi(σ) ∈ {σ, ε} for all

σ ∈ Σ, and if Σic ⊂ ∆i for all i = 1, 2, . . . , n, then K is ({Mi}, {Σic},L(P ))-controllable if

and only if

K = L(P )
n
⋂

i=1
π−1

i (πi(K)) .

If, in addition, P =‖n
i=1 Pi, where Pi = (Qi, Σi, δi, q0i), and ∆i ⊂ Σi for all i = 1, 2, . . . , n,

then K is ({Mi}, {Σic},L(P ))-controllable if and only if

K =
n
⋂

i=1
π−1

i (πi(K)) .

Thus under the assumptions of Theorem 4.1, the condition of [4] is equivalent to the sep-

arability of K. The separability property can be verified algorithmically. The algorithmic

aspects will be discussed later.

8



Example 4.1 Consider the system P = ‖2
i=1 Pi as defined in example 3.1. Suppose that our

aim is to satisfy the following specification. Each processed workpiece of the first type must be

passed to the external storage only by P1. In other words, if P1 passes a workpiece of the first

type to P2 then P2 must return this workpiece to P1. Formally, the legal behavior E is described

by the state diagram displayed in Fig. 4.1. In this diagram Σ = {a11, a12, b1, a2, b2, α, β} and

we use also arcs labelled with a set of symbols instead of an individual arc for each symbol.

The supremal controllable sublanguage of L(P )
⋂

E , K and its projections on Σ∗
1 and Σ∗

2

are given in Figs. 4.2 and 4.3, respectively.

It is easily verified that K = ‖2
i=1 πi(K), whence the optimal behavior can be achieved by

using only a local supervisor for P1 such that L(S1/P1) = π1(K).

In the case that the language K ⊂ Σ∗ is regular it can be determined whether K is

separable w.r.t. subsets Σ1, Σ2, . . . , Σn. Let A = (X, Σ, ξ, x0) be a deterministic automaton

with m states such that L(A) = K. Clearly the separability of K can be checked simply

by employing the definition of separable languages. The complexity of such an algorithm is

O(mn+1). Clearly, this exponential complexity makes the verification of separability generally

infeasible.

Next we introduce an algorithm for checking the separability of a language K when the

subsets Σ1, . . . , Σn are pairwise disjoint. It is easy to see that in this case the separability of

a language is equivalent to its being the shuffle product of its projections. We shall see that

the algorithm has only polynomial complexity.

First we prove the following motivating lemma.

Lemma 4.1 Let L ⊂ Σ∗ be a prefix closed language, and let Σ1, . . . , Σn be pairwise disjoint

subsets of Σ. Then L is separable w.r.t. {Σi}n
i=1 if and only if for any t ∈ L and σ ∈ Σi

tσ 6∈ L =⇒ (∀ s ∈ L) either πi(s) 6= πi(t), or sσ 6∈ L .

We introduce now the algorithm. Again, let A = (X, Σ, ξ, x0, X) be a deterministic

automaton that accepts K and has m states. Let Σ1, . . . , Σn be pairwise disjoint subsets of

Σ.

Algorithm 4.1 (1) For each i = 1, 2, . . . , n, construct the automaton Ai = (X, Σi, ξi, Xi0X)

as defined in step (2) of Algorithm 4.1.

(2) For each pair (i, x), where i ∈ {1, 2, . . . , n} and x ∈ X, define Aix = (X, Σi, ξi, Xi0{x}),
and define di(x) = {σ ∈ Σi | ξi(σ, x) = φ}.

9



(2a) Construct the product automaton Aix×Ai = (X×X, Σi, δ,Xi0×Xi0, {x}×X).

Define Xix ⊂ X to be the set of all states x′ ∈ X such that (x, x′) is an accessible state

in Aix×Ai, that is

Xix = {x′ ∈ X | (∃t ∈ Σ∗
i , ∃x10, x20 ∈ Xi0)(x, x′) ∈ δ(t, (x10, x20)} .

(2b) If there exists x′ ∈ Xix such that di(x′) 6⊃ di(x), then stop.

(3) If all the pairs (i, x) were checked then stop. Else repeat step (2) for another pair (i, x).

The intuitive concept of the algorithm is as follows. For each (i, x), L(Aix) is the set of

all strings πi(t), such that t ∈ K and ξ(t, x0) = x, and di(x) is the set of all σ ∈ Σi such

that tσ 6∈ K. By constructing Aix×Ai the algorithm identifies the set Xix which is the set

of all states x′ ∈ X such that there exist s, t ∈ K which satisfies that πi(s) = πi(t) and that

ξ(t, x0) = x and ξ(s, x0) = x′. Now if di(x′) 6⊃ di(x) then there exists σ ∈ Σ such that tσ 6∈ K
and sσ ∈ K which contradicts the condition of Lemma 4.1.

The correctness of this algorithm is formally stated in the following proposition.

Proposition 4.2 K is separable w.r.t. {Σi}n
i=1 if and only if Algorithm 4.2 stops at step

(3).

The complexity of algorithm 4.2 is O(n ·m3).

In the system Pcl there are two mechanisms that restrict the behavior of the subsystems

Pi. One is the control mechanism, i.e.; the local supervisor Si prevents the occurrence of

some events in Pi. The second is the synchronization mechanism that prevents a shared

event σ ∈ Σi from occurring in Pi if σ cannot occur simultaneously in all subsystems Pj that

satisfy σ ∈ Σj. These mechanisms can overlap in the sense that an event σ ∈ Σi can be

prevented from occurring, in some local state of Pi, by both mechanisms.

The possibility of overlapping disabling mechanisms leads us to think about two possible

control strategies. The first is, the most restrictive control, in which the behaviors of the

subsystems are restricted by the supervisors as much as possible. In this case the effect of

the synchronization mechanism on the subsystems behavior is minimal. The second is, the

least restrictive control, in which the effect of the synchronization mechanism is maximal

and the supervisors disable an event only if it is not already prevented from occuring by

the synchronization mechanism. To formalize this issue, let C(K) be a class of all sets of

supervisors that by acting concurrently synthesize the language K,

C(K) = {{S1α, . . . , Snα} | (∀ α) L (‖n
i=1 (Siα/Pi)) = K} .

The following theorem addresses the issue of the most restrictive control.

10



Theorem 4.2 If K is separable w.r.t. {Σi}n
i=1, then there exists a set of supervisors {Si, . . . , Sn} ∈

C(K) such that for all {S1, . . . , Sn} ∈ C(K),

L(Si/Pi) = πi(K) ⊂ L(Si/Pi), i = 1, . . . , n .

There does not, in general, exist a least restrictive control law. To see this, let us examine

the following example.

Example 4.2 Consider the systems P1, P2, P and the language K as shown in Fig. 4.4. Let

(S11, S12) and (S21, S22) be pairs of supervisors such that

L(S11/P1) = a1, L(S12/P2) = L(P2), L(S21/P1) = CL(P1) and L(S22/P2) = a2 .

Clearly, for j = 1, 2, L(‖2
i=1 (Sji/Pi)) = K. Thus there does not exit a pair (S1, S2) that

synthesizes the language K and that S1 and S2 are the least restrictive supervisors for P1 and

P2, respectively.

We wish to show that if the supervisors Si are synthesized according to some order, then

there exists a least restrictive control law. Let I = {1, 2, . . . , n} and let ≺ be an order on the

elements of I. We denote by i1, . . . , in the elements of I that are ordered according to ≺ i.e.;

ij ≺ ij+1 for j = 1, 2, . . . , n − 1. Suppose that we synthesize the supervisors Si, 1 ≤ i ≤ n,

according to ≺, namely the first supervisor is Si1 , the second is Si2 and so on. In practical

applicatins the order ≺ can frequently be determined according to the ability to implement

the control law. That is, for i, j ∈ I, i ≺ j if it is more difficult or less desirable to implement

the disablement of events in Pi than in Pj.

The question now of interest is whether for each j we can synthesize a least restrictive

supervisor Sij under the condition that the previous supervisors Si1 , . . . , Sij−1 are already

given. In other words, does there exist a set of supervisors {Si1 , . . . , Sin} ∈ C(K) such that

Si1 is the least restrictive supervisor for Pi1 , Si2 is the least restrictive supervisor for Pi2

under the condition that Si1 is given and so on. For simplicity we assume below, without

loss of generality, that ij = j for j = 1, . . . , n.

Suppose that K ⊂ L(P ) is a nonempty separable language (w.r.t. {Σi}n
i=1) and denote

by BP (K) the set of all generating sets of K where each component is a closed sublanguage

of the corresponding subsystem, that is,

BP (K) =
{

(L1α, . . . ,Lnα) | (∀ α)Liα ⊂ L(Pi), Liα is closed and K =
n
⋂

i=1
π−1

i (Liα)
}

.

We define, inductively, a sequence of closed languages Ki ⊂ L(Pi), i = 1, 2, . . . , n, as follows:

K1 =
⋃

α
L1α .

11



Let (K1, . . . ,Kl−1) be given and denote by BPl(K1, . . . ,Kl−1) ⊂ BP (K) the collection of all

generating sets of K in which the first l − 1 components are K1, . . . ,Kl−1. That is,

BPl(K1, . . . ,Kl−1) = {(K1, . . . ,Kl−1Llβ, . . . ,Lnβ) | (∀ β)(K1, . . . ,Kl−1,Llβ, . . . ,Lnβ) ∈ BP (K)} .

Clearly BP1 = BP (K). The l-th language is defined by

Kl =
⋃

β

Llβ .

The properties of the sequence (K1, . . . ,Kn) are given in the following two lemmas the first

of which states that the above construction is sound, i.e.,

Lemma 4.2

(K1, . . . ,Kn) ∈ BP (K) .

The meaning of the last lemma is as follows. If K is separable, then among all the

generating sets of K for which the components that correspond to the first j subsystems are

fixed, there is a set in which the component corresponding to the j+1 subsystem is maximal.

Lemma 4.3 For each j, 1 ≤ j ≤ n, the language Kj is controllable w.r.t. L(Pj).

The last two lemmas motivate the following result.

Theorem 4.3 If K is separable w.r.t. {Σi}n
i=1, then there exists a set of supervisors {S1, . . . , Sn} ∈

C(K) such that for each l, l = 1, 2, . . . , n, the following property holds. If {S1, . . . , Sl, . . . , Sn} ∈
C(K) such that for all j < l, L(Sj/Pj) = L(Sj/Pj), then

L(Sl/Pl) ⊂ L(Sl/Pl) = Kl .

We present now an algorithm to compute the languages Kj. Let

K̂j =





j−1
⋂

l=1

π−1
l (Kl)





⋂





n
⋂

l=j+1

π−1
l (πl(K))



 , j = 1, 2, . . . , n .

The following result states that for given languages K1, . . . ,Kj−1, the supremal element Kj

can be computed as follows. First construct K̂j the synchronized product of K1, . . . ,Kj−1

and of the infimal elements πj+1(K), . . . , πn(K). Then compute the supremal sublanguage

Lj,max of L(Pj), such that the synchronized product of K̂j and Lj,max yields K.

Proposition 4.3

Kj = πj(K)
⋃

[L(Pj)− πj(K̂j)], j = 1, 2, . . . , n .

12



Example 4.3 Let P = ‖2
i=1 Pi be the system described in Example 3.1. When P1 and P2

operate concurrently, there is a possibility that one subsystem, say P1, is an “exploiter”.

Namely, P1 does not process any workpiece, it passes all the workpieces to P2. Clearly this

is an undesirable situation. Suppose that we require that the passing of workpieces between

the subsystems be fair. In particular, it may be required that if Pi passes a workpiece to Pj

then it will not do so again until Pj passes a workpiece to Pi. Thus, a string t of the closed

loop behavior is legal only if its projection on {α + β}∗ belongs to (αβ)∗ + (βα)∗. The legal

behavior E is described by the generator displayed in Fig. 4.5. The optimal language K and

the projections of K on Σ∗
1, Σ

∗
2 are described in Figs. 4.6 and 4.7, respectively. It can be

verified that K = ‖2
i=1 πi(K), so K is separable w.r.t. (Σ1, Σ2).

Most Restrictive Control

¿From Theorem 4.2 it follows that the most restrictive control can be implemented by

supervisors S1, S2 such that L(Si/Pi) = πi(K).

Least Restrictive Control

Case (i): 1 ≺ 2

In this case i1 = 1 and i2 = 2, that is, first we synthesize the least restrictive supervisor

S1 and afterwards the least restrictive supervisor S2 under the assumption that S1 is given.

To construct Si we use Proposition 4.4.

K̂1 = π−1
2 (π2(K)),

K1 = π1(K)
⋃

[L(P1)− π1(π−1
2 (π2(K)))] .

It can be verified that π1(π−1
2 (π2(K)))

⋂

L(P1) = π1(K), thus

K1 = L(P1) .

Now we compute K2.

K̂2 = π−1
1 (L(P1)),

K2 = π2(K)
⋃

[L(P2)− π2(π−1
1 (L(P1)))] .

It is easy to verify that π2(π−1
1 (L(P1))) = Σ∗

2, thus

K2 = π2(K) .

Hence the least restrictive control under the assumption that 1 ≺ 2 is the supervisor S2 such

that

L(S2/P2) = π2(K) .

Case (ii): 2 ≺ 1

13



By using the same arguments as in the previous case, it can be shown that the least

restrictive control under the assumption that 2 ≺ 1 is the supervisor S1 such that

L(S1/P1) = π1(K) .

All the results up to this point are concerned with the language K. To compute K it

is necessary to compute the global behavior of the system, L(P ). It is well known that

the number of states of P , where P = ‖n
i=1 Pi increases exponentially with n, the number

of subsystems. This fact often makes the computation of L(P ) infeasible. Therefore, it is

important to find conditions which ensure that the equality K̃ = K holds and which can

be verified without the computation of L(P ). Such conditions are given in the following

theorem.

Theorem 4.4 Consider a DES P = ‖n
i=1 Pi, where Pi = (Qi, Σi, δi, q0i), 1 ≤ i ≤ n. Suppose

that E ⊂ Σ∗ is separable w.r.t. {Σi}n
i=1 and let (E1, . . . , En) be a generating set of E, where

Ei are closed languages. Let Ki = supCi(L(Pi)
⋂

Ei), where supCi(·) denotes the supremal

controllable sublanguage w.r.t. L(Pi). Then there exist supervisors Si, 1 ≤ i ≤ n, such that

L(Si/Pi) = Ki, 1 ≤ i ≤ n, and

K̃ = K .

If the legal behavior E is given and is separable, then to synthesize the local supervisors it

is necessary to compute the language πi(E) and Ki = supCi(L(Pi)
⋂

πi(E)), i = 1, 2, . . . , n.

So the computation of L(P ) is not needed.

So far, we assumed that the desired legal behavior of the DES is represented by the

language E within which, the language of the controlled system must reside. In some cases,

however, the desired legal behavior is specified by n individual requirements each of which

constitutes a restriction on the sequences in L(Pi), 1 ≤ i ≤ n. In other words, the i-th

requirement specifies the desired legal behavior of Pi. Let Ei ⊂ Σ∗
i be the set of all strings

in Σ∗
i that satisfy the i-th requirement, we assume that Ei are closed languages. Suppose

further that the desired global legal behavior is given by

E =
n
⋂

i=1
π−1

i (Ei) . (4.3)

Since (E1, . . . , En) is a generating set of E , then by using Theorem 4.4 we get the following

result.

Theorem 4.5 Consider a DES P = ‖n
i=1 Pi and let E be as defined in (4.6). Then there

exist supervisors Si, 1 ≤ i ≤ n, such that L(Si/Pi) = supCi(L(Pi)
⋂

Ei) and K̃ = K.

The last theorem states that if the constraints are given locally, then the synthesis pro-

cedure, of supervisors that achieve the optimal behavior, is based only on local information.

14



5 Conclusion

A specific version of decentralized supervisory control for concurrent discrete-event systems

has been introduced. A necessary and sufficient condition and another sufficient condition

(which can be verified by using only local information) were obtained which guarantee that

the decentralized control is equivalent to global control.

The special aspects of the concept of least restrictive supervision in concurrent systems

were also discussed.

References

[1 ] Ramadge P.J. and Wonham W.M., “Supervisory control of a class of discrete event

processes”, SIAM J. on Control and Optimization, 25(1), pp. 206-230, January 1987.

[2 ] Ramadge P.J. and Wonham W.M., “Modular feedback logic for discrete even systems”,

SIAM J. on Control and Optimization, 25(5), pp. 1202-1218, September 1987.

[3 ] Wonham W.M. and Ramadge P.J., “On the supremal controllable sublanguage of a given

language”, SIAM J. on Control and Optimization, 25(3), pp. 637-659, May 1987.

[4 ] Cieslak C., Declaux C., Fawaz A. and Varaiya P., “Supervisory control of discrete event

systems with partial observations”, IEEE Trans. Automatic Control, Vol. AC-33, pp.

249-260, March 1988.

[5 ] Lin F. and Wonham W.M., “Decentralized supervisory control of discrete event sys-

tems”, Information Sciences, 44, pp. 199-224, 1988.

[6 ] Lu W. and Chen Y., “Structuralized control logic for discrete event system”, Proc. of

the International Conference on Control and Application, Jerusalem, Israel, 1989.

[7 ] Kuratowski K., Topology, Academic Press, New York, 1966.

[8 ] Tadmor G. and Maimon O., “Control of large discrete event systems: constructive

algorithms”, IEEE Trans. Automatic Control, Vol. AC-34, pp. 1164-1168, November

1989.

[9 ] Eilenberg S., Automata, languages and machines, Volume A, Academic Press, New

York, 1974.

[10 ] Hoare C.A.R., Communicating sequential processes, Prentice Hall, Englewood Cliffs,

1985.

[11 ] Hopcroff J.E. and Ullman J.D., Introduction to Automata Theory Languages and

Computation, Addison-Wesley Pub. Co. Reading, 1979.

15


