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beneficial to apply the proposed algorithm to obtain more accurate results
(by the parsimony principle [2]) and more efficient computations than is
possible with the usual unconstrained models. In the white noise case, the
algorithm becomes a recursive prediction error method, and as such its
covariance attains the Cramér-Rao lower bound asymptotically when the
true order is used (see, €.g., [3]). In the more general nonwhite noise
case, the algorithm’s covariance can be evaluated using methods
described, e.g., in [2, ch. 7]. This algorithm can be used for filter design
and adaptive Nyquist rate estimation. The basic method used here can
be applied for deriving system identification algorithms for other
constrained transfer functions, such as band-pass and band-stop. Exten-
sion to adaptive parameter estimation of constrained ARMA signals with
unknown inputs in the presence of noise is presented in [12].

APPENDIX

THE DERIVATIVE OF POLYNOMIAL COEFFICIENTS WITH RESPECT TO
POLYNOMIAL ZEROS

In this Appendix we provide a simple proof of the formula (13). Let C
denote the following companion matrix:

—-a, 1\ 0
C= : .

—a,_ o

-a, 0---0

associated with the polynomial 2"4(z™") = 2" + @12" ' + -+ + a,. It
is well known that the zeros { A, } of 274(z~') are equal to the eigenvalues
of C (see, e.g., [11]). Let
we={t14 Uk ]TEO
denote a (nonzero) eigenvector corresponding to A¢. Thus,
Cup= Nty (A.])

or, in a more detailed form
Uy p=a U+ )\ku“‘
(A.2)
Up o =Tno1 Uy o+ Niclln_ 1k
O=a,ty x+Nelny-

It readily follows by contradiction from (A.2) that &, # 0 implies u; x #
0. Thus, we can set #; 4 = 1. In the following we assume that the
eigenvector u, has been normalized such that u; , = 1.

Using forward substitution, we find from (A.2) that

u,=Hy, (A.3)
where H is the Hankel matrix
A
g
H= e (A4)
1”2 -
and
P LRIV | L (A.5)
Next, it can easily be verified that
vIC=AwT (A.6)

which means that vy is a left eigenvector of C. Left and right eigenvectors
associated with different eigenvalues must be orthogonal
for i#k

VT =0 %)
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which can be seen as follows. From (A.1) and (A.6), we get

NvTue—NewTue=vICup— v Cu =0

which implies (A.7) since \; # \,. Writing out (A.7) fori = 1, ---, n,
i # k, we obtain
An-t PN Uy
n-1 AA-2
x*;} +.4 =0. (A.8)
)\2¢1 )\k+l
a [ Un

Since {M\} are distinct by assumption, the vander Monde matrix
appearing in (A.5) is nonsingular. Therefore, u; is uniquely determined
by {A1, ***5 Me—1s M1, © 75 An} and, in particular, does not depend on
M. Using this property we get by differentiating (A.2) with respect to Ay

0a/dNe= — tiy. (A9)

From (A.3) and (A.9) the Jacobian matrix da/d\ is equal to

da

b_)\=_[ul

u, 1= —HV (A.10)

where H was defined in (A.4) and V is the vander Monde matrix V = [v;
+ - y,]. Expression (15) is now proven immediately from the /, k entry of
the matrices in (A.10). [ |
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adaptive control where the model is parameterized in terms of the desired
control law parameters. This is done, for example, in direct model
reference adaptive control and in direct pole assignment adaptive control
algorithms. It is shown that the parameters appearing in these nonmini-
mal models can be uniquely estimated if and only if a certain design
identity has a unique solution. The result is used to develop persistency of
excitation results for these models.

I. INTRODUCTION

The problem of persistency of excitation for parameter convergence in
estimation and adaptive control received a great deal of attention in the
recent literature (see, e.g., [11-[9]).

While in many cases minimal models (which have no redundancies
through common factors) are used for estimation of parameters, there are
situations where the employment of nonminimal models is necessary.
This occurs typically in direct adaptive control applications where plant
models are specially structured to be parameterized by the adaptive
controlier parameters. Examiples of these instances are direct model
reference adaptive control [10], direct pole assignment adaptive control
[11), direct model reference adaptive pole assignment [12], as well as in
multivariable systems where a simple left MFD is employed having a
diagonal ‘‘denominator’’ matrix.

In these nonminimal models the question arises as to whether or not the
parameters can be uniquely estimated from the plant input-output data.
This often has important implications, e.g., in deciding whether an
adaptive design is stable and cohvergent and in choosing suitable inputs
that guarantee the desired stability and convergence.

In the present note we show that the parameters in structured (generally
nonminimal) models can be uniquely determined if and only if a certain
design identity has a unique solution. The latter is shown to be related to
the output-reachability of an associated-signal system which in turn is
used to develop persistency of excitation results.

The note focuses on single-input single-output systems but similar
results can be developed for the multiinput multioutput case.

II. A GENERAL PARAMETERIZATION PROBLEM

We consider discrete time, time-invariant single-input single-output
plants of the form

P(D)y()=r(D)u(r) 2.1

where p(D) and r(D) are real polynomials in the unit delay operator D
[i.e., D*x{(t) = x(t — k)] of the form

p(D)=1+, pD’ @2

r(D)= }n: rnD.

i=1

2.3)

We assume that the model (2.1) of the plant is minimal, that is, the
polynomials p(D) and r(D) are coprime.

As a key step in setting up the parameter estimation problem we replace
the minimal model (2.1) by a structured nonminimal model of the form

&g(D)y(t)y=h(D)u(t)

where the polynomials g(D) and (D) are assumed to be parameterized
as follows:

.4

g(D)=c(D)+ Y, aiD) @.5)

i=1

mp
h(D)=d(D)+ 3, BibAD) 2.6

i=1
where m, and mg are positive integers, where a;, ***, Qm,, B1, ***

’ me
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are real parameters and where

1 ! .
a(D)=Y auD*, i=1, -+, my; b(D)=Y, buD*, i=1, -+, my;

k=1 k=1

! !
(D)= Y, cD*, d(D)=, d;D*.

k=0 k=0

It is assumed that the polynomials a(D), i = 1, -+ -, m, are linearly
independent over the reals, i.e., that there exists no nontrivial set of
constants v, * * *, Ym, Such that £7% v,a(D) = 0 (the zero polynomial).
It is similarly assumed that the b(D), j = 1, -+, m, are linearly
independent. These assumptions imply that max (m,, m,) < .

We note that for (2.4) to represent (in a generally nonminimal way) the
plant (2.1) it is necessary (and sufficient) that g(D) = k(D)p(D) and
H(D) = k(D)r(D) for some polynomial k(D).

We illustrate the parameterization (2.4) for two cases of interest in
adaptive control.

Example 2.1 (Direct Model Reference Adaptive Control): We
assume that in 2.3) r; = 0 for i < d, r; # 0 [d is usually called the
relative degree of (2.1)]. The reference model for the closed-loop plant is
given by

PHD)ym(t)=D%() @7
where p*(D) = 1 + 2¢_,p¥D'is a prespecified (stable) polynomial and
where y,,(f) and v(f) are the reference model output and the command
input, respectively. The control law is of the form

[ul q(D)+E(D)] u(t)=-F(D)y()+q(D)v() 2.8

where g(D) = 1 + X7_,q;D' is a prespecified (stable) polynomial and
where the polynomials E (D) = S ,eD’ énd F(D) = Z]_, f;D' as well
as the constant v, are to be determined so as to satisfy the closed-loop
performance specification, i.e., (2.7).

Substitution of (2.8) in (2.1) to eliminate #(#) and equating the resultant
expression with (2.7) yields the following nonminimal parameterization for
2.4):

g(D)=p*(D)q(D)—-D?F(D) 2.9)

h(D)=D* [vlq(D)+E(D)] ) @.10)

Equating (2.9) and (2.10) with (2.5) and (2.6), respectively, gives m, =
n,m,=n+ 1,a(D) = b(D) = DU\, i =1, ,n by (D) =
Dég(D), c(D) = q(D)p*(D) and d(D) = 0. The parameters to be
estimated in the resultant model are o; = — f;, ;i = €, i =1, -+, n,and
Bns1 = 1/v,. Note that the o; and B; of the nonminimal model directly
parameterize the model reference control law.

Example 2.2 (Direct Pole-Placement Adaptive Control): Since
p(D) and r(D) are coprime, there exist polynomials y(D) = 1 +
2;’=1'y,-Df, D) = Zr_&D', p(D) = 1 + zr pD' and o(D) =
2" ;D' such that

i=1

(D) p(D)+(D)r(D)=p*(D)q(D) @.11)

p(D)p(D)+o(D)r(D)=1 (2.12)

where p¥(D) = 1 + X lp;"D" and g(D) = 1 + 2,’.‘=lq,-D‘ are
prespecified stable polynomials.
Multiplying (2.1) by o(D)y(D) and using (2.11) gives
a(D) pXD)q(D)y(t) = o (DIH(DSD)y(t) +y(D)u(®)]. (2.13)
Similarly, multiplying (2.1) by p(D) - 6(D) and using (2.11) gives
p(D)p*(D)q(D)u(t)=p(D)p(D)B(D)y (1) +y(D)u()]. (2.14)

Adding (2.13) and (2.14), and making use of (2.12) gives the following
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nonminimal model of the plant:
[6(D) - p*(D)q(D)a(D)y (1) = [p*(D)q(D)p(D) - y(D)]u(t). (2.15)

This model is of the form (2.4) with the polynomials g(D) and h(D)
parameterized as

&(D)=6(D) - p*(D)q(D)o(D) (2.16)

h(D)=p*(D)q(D)p(D)-v(D). 2.17)

Comparing (2.16) and (2.17) to (2.5) and (2.6), respectively, gives

¢(D)= —p*(D)q(D); d(D)=p*(D)q(D) 2.18)

m, =my = 2n,a(D) = b(D) = D’;i =1, ++,n,a(D) = b(D) =
d="pXD)g(D);i=n+1, ", 2n,0;= 8,8 = —yii=1,"+",n
ando; = —0;_p, Bi = piepyi=n+ 1, -+, 2n.

Note that the common factor k(D) of g(D) and A(D) in this case is the
polynomial [o6(D)y(D) — p(D)8(D)]. Following a procedure similar to
the development in Example 2.1, it is readily verified that the nonminimal
model (2.15) is obtained by using in (2.1) the control law

Y(D)u(t)= —8(D)y(t)+ q(D)v(t) 2.19)
which yields upon making use of (2.11) the closed-loop equation
PXD)y(t)=r(Dyv(2). (2.20)

Thus, the parameters v; and §; directly parameterize the pole assignment
control law.

II. CONDITIONS FOR UNIQUENESS OF PARAMETERS

Equation (2.4) with g(D) and ~(D) given by (2.5) and (2.6) constitutes
a model for the plant (2.1) if and only if the following design identity is
satisfied

i=1 i=1

mg mb

[cw)+2 afai(u)] r(D)= [d(D)+2 B.b,-(D)] pD). .1
Since we wish to use the (possibly nonminimal) model (2.4) to uniquely
estimate the parameters oy, ***, Qmg, By, ***, B/m,, from the plant input-
output data, we conclude that a necessary and sufficient condition for
existence and uniquengss of these parameters is that (3.1) is solvable by a

unique vector
0*=[ay, =+, Amys By * 7, Byl (3.2
For parameter estimation purposes it is convenient to represent the

model (2.4) by a linear regression equation

c(D)y(t)—d(D)u(t)=¢7(1)6* 3.3
where
PO =[-aD)y®), -+, =8, (D)y(), bi(D)ult), -+, by (D)u(?)].
3.4

One can now use standard estimation procedures [10] to estimate the
parameter vector 6* using input-output data from the plant. For example,
one could employ the recursive least squares (RLS) algorithm.
Consider now a sequence of vectors {¢(i)} f2;» #(i) € R™and denote
by @, v(k) the m X N matrix °
O (k) := [pk+1), -+, dk+N)]. (3.5)

We say that {¢(i)} is spanning (of order N) if there exists a number ¢ >
0 and integers k and N such that
Anin( B, n(K)B], ((K)) 2 €. (3.6)

The sequence will be called persistently spanning (of order N) if there
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exists a sequence of positive numbers {¢;} = ; and positive integers k and
N such that for all i = 0

Nain( @k +INYET (K +iN)) =€, 3.7

and it will be called uniformly persistently spanning (of order N) if for
all i = 0, the ¢; in (3.7) can be chosen so that ¢; > ¢ for some ¢ > 0.

For a scalar sequence {u(i)} > i, We first construct an associated m-
vector #,,(i) as follows:

() =[G+ 1), u(i+2), -, uli+m). (.8)
We then denote by Uy, (k) the m X N matrix
Un (k) 1= [k +1), -, Gn(k+N)]. 3.9

The spanning properties of U, x(k) are defined just as for ®,, y(k).

Now it is known [10] that the RLS algorithm with covariance resetting
yields a sequence of estimates that converges exponentially fast to 6*,
provided the sequence {¢(¢)} of regression vectors is uniformly persist-
ently spanning. It is further known [1}, [3], [10] that the persistent
spanning property of {¢(f)} can be generated from the input u(f)
provided a certain reachability property of ¢(¢) holds.

In Section IV we shall exhibit a linear plant in state-space form that
generates the vector ¢(¢) as its output. We shall show that this plant,
called the associated-signal system of (2.4), is output-reachable if and
only if the design identity (3.1) has a unique solution vector 6*.

Finally in Section V we will use this result to develop necessary and
sufficient conditions on the input u(z) so that {¢(#)} is uniformly
persistently spanning.

IV. REACHABILITY OF THE REGRESSION VECTOR
We let the state of the associated-signal system be defined as
xO=[y=1), ==+, y(t=D, u(t=1), -+, u@t-N1". “.1)

It follows from (2.1) that x(¢) satisfies the following discrete-time linear
state equation

x(t+ 1) =Ax(t) + bu(t) 4.2)
where
ApA b
A= |7t p= | 2 4.3
[AZIAZZ] b, @3
with A; / x / matrices and b; / X 1 matrices as follows:
—-py 7p"0 cae 0
0
Ay = ) (4.42)
/ *
0
r r,0:-0
Ap= 0 (4.4b)
Ay=0 (4.4c)
0 I 0
An= (4.4d)
5, -
0
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1
0 0

b= b= 1. (4.4¢)

0 0
The signal vector ¢(¢) is obtained by passing x(¢) through the following
output equation:

o(1)=Cx(?) “.5)
where
| Cu O
C= [ 0 sz] (4.6)
with Cy; an m, X [ matrix and Cy, an m;, X [ matrix as follows:
a;, °°° ay by o by
Cu=| - Cles=] %))
Amgt """ Qmgt bmy1 =+ byt

We note that our assumption of Section II that the a;(D) as well as the
b;(D) are linearly independent sets implies that rank Cy; = m, and rank
Cy; = my, whence rank C = m, + m,.

We recall that a linear system is output-reachable (from the input) if and
only if every vector in its output space can be generated (reached) using a
suitable input sequence. Stated equivalently, the system is output
reachable if and only if the only vector orthogonal to all reachable outputs
is the zero vector. Thus, the associated signal system (4.2)-(4.7) is
output-reachable provided the only vector g = [u11, ***5 Bimgs Ha1s ** 7>
pam,) 7 satisfying

wTe(®)=0 4.8)

for all ¢(#) is p = 0. Using the definition of ¢(7) in (3.4), (4.8) becomes

g my
PGE [2 m.-a,-(D)] yO+ [E u2jb,(D)] u(t)=0 (4.9)

i=1 i=1

whence the associated-signal system is output-reachable if and only if
(4.9) has as its only solution, for all signal sequences generated by (2.1),
the trivial solution ¢ = 0. Multiplying (4.9) by p(D) and employing
(2.1), gives the (obvious) equivalent condition that the associated-signal
system is output-reachable if and only if the equation

My mp
[2 Illiai(D)] r(D)+ I:E ll-zjbj(D)] p(D)=0 4.10)

i=1 j=1

has only the zero solution for u. But (4.10) is the homogeneous equation
of (3.1), whence the latter statement is equivalent to saying that (3.1) has a
unique solution for (a1, ***, @mg Bis ** 5 Bmy)- We thus have the
following elementary but important:

Theorem 4.1: Assume that (3.1) is solvable. Then this solution is
unique if and only if the associated signal system is output reachable. [J

We illustrate Theorem 4.1 by applying it to the second example in
Section II.

Example 2.2 (Continued).

Equation (3.1) for this problem is

[6(D) - p*(D)q(D)a(D))r(D)=[p(D)q(D)p(D)—v(D)lp(D) (4.11)

and this equation is of course solvable in view of the coprimeness
assumption for r(D) and p(D). This equation has a unique solution if and

115

only if the homogeneous equation

[8(D) ~ p*(D)q(D)s (D)Ir(D)

=[pMD)q(D)p(D)- 1)~ (v(D)- D1p(D) (4.12)
has no nonzero solution for the parameters 6y, ***, s, 01, ** "5 On» P15
e Pmy Y1» " s Yn- Writing (4.12) alternatively as

D {[E 5,-1)"—1] D)+ [2 . ] p(D)}
i=1 i=1

- Dq(D)p*(D) {[E mDH] r(Dy+ [E p.«D"~'] p(D)} =0)

i=1 i=1
(4.13)

it is seen that (4.12) can have nontrivial solutions if degree (g(D)p*(D))
< 2n. If on the other hand, degree (¢(D)p*(D)) = 2n then every
solution of (4.12) must satisfy

[2 5,-D"-'] D)+ [2 7,fo1] pD)=0 (419

i=1

I:En; o;Di“] r(D)+ [ﬁ: o,»D""] p(D)=0. (4.15)
i=1

Finally, for (4.14) and (4.15) to have no nontrivial solutions, it is
necessary and sufficient for p(D) and r(D) to be coprime. (This is based
on the well-known fact that two polynomials f(\) and g(\) of degree n are
coprime if and only if the equation AV S(N) + k(Ng(N) = 0 has no
nonzero solution polynomials #(N\) and g(\) whose degrees are at most n
— 1.) We conclude the example with the following summary: The
associated-signal system of the direct pole placement adaptive controller
(as described, for example, in [11]) is output-reachable if and only if the
following conditions both hold: i) p(D), r(D) are coprime; and ii) degree
(w*(D)q(D)) = 2n. o

V. UNIFORM PERSISTENT SPANNING

We consider in this section the problem of achieving uniform persistent
spanning of the output from the input of linear plants

x(k+ l)=Ax(k)+bu(k)}
5.1)

$(k)=Cx(k)

where u(k) € R', x(k) € R", and ¢(k) € R™.

We first establish the following fact which extends a result of [3] to the
case of output-reachability. We denote by u the dimension of the
reachable subspace of (5.1), i.e.,

u := rank [b, Ab, -+, A" 'D]. (5.2)

Lemma 5.1: Assume that the plant (5.1) is output-reachable. Then for
any nonzero m — vector c, there exist nonzero vectors and £ (dependent
of &) such that for any arbitrary reachable x; and any arbitrary w1, * ",
Uk +ps

', (k) =a’ .1 ()€ (5.3)
where &,,,41(k) and ii,y(k) are as defined in (3.4) and (3.8).

Proof (Adapted from [3]): Define z(k) = a’¢(k). The sequence
{z&} can be regarded as an output of (5.1) evolving from x, via the input
SeqUeNCe Ug 41, * *°» Ui+, Hence, it is related to {u(k)} by an equation
of the form

m(D)z(k)=n(D)u(k) 5.4
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where

n(D)y=mD+ -+ +n,D*, 5.5

m(D)=1+mD+---+m,D* (5.6)

The polynomial z#m(z) = D~#*m(D~?) is a divisor of the characteristic
polynomial of 4. Further, the polynomial n(D) is nonzero by virtue of
the output-reachability of (5.1).

From (5.4) we then have

zZk+p+)+mzk+p)+ - +mz(k+1)

=multk+p)+ - +nuk+1), (5.7
whence (5.3) follows with
g=lm, my_y, -y my, 117 (5.8)
=, tyoyy oo m7 (5.9)
O

With the aid of Lemma 5.1 the following result is easily established.
Proposition 5.2: Assume that the system (5.1) is output-reachable and
let x,, be an arbitrary initial state. Then {¢()} will be uniformly
persistently spanning of order N provided {#,(f)} is uniformly persist-
ently spanning of order N — pu.
Proof (After [3]): With the use of (5.3) and the Cauchy-Schwarz
inequality, we obtain
nTa(K)E] (kn= T @y, (K)EETRT, |

=€l%a®m 1 (k)BT

mau+1

(K)o
(k)

hence,

k0+N—y

h u;(k)a[(k)] )

k=k,+1

MU n-u kU (K)In=nT [

ko+N-u
suzuw[ > ém,w‘(k)@:,“,(k)] a

k=ky+1

kot N=p jipys1
=[teT ] Y Y e | @

k=ko+1 j=k+1

ko+N+1

=@+ D[E)R” Y ¢(j)¢’(f)] a

k=ky+2
=(u+ DIENaTn ko + DT\ (ko+ l)] a.

It follows that
min o7[&, n(k,+ 1)®] (ko + D

fladl =1 "
2% AminfUpn- (ko) UT (k)] (5.10)
where
Il = min (@] and £%]7 1= max £ )]?
and the proof is complete. O

In typical adaptive control applications, the input u(k) to (5.1) is
accessible only through a feedback law of the form

u(k) = Fix(k) + v(k) 6.11)

where F; is a periodically changing feedback-gain matrix (or vector in
the case of single-input plants) with the subscript j denoting the jth period
and where v(k) is an external command input.

The closed-loop equation for (5.1) is then

x(k + 1) = A;x(k) + bu(k)
(5.12)
(k)= Cx(k)
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where A; = A + BF; and the problem of persistent spanning becomes
that of spanning the output ¢(k) of (5.12) from v(k).

Since the reachable subspace of a linear system is invariant under state
feedback, so is the dimension u and if (5.1) is output-reachable, so is
(5.12) for every feedback gain F;.

Suppose now that the F; all take value in a compact region, so that the
Aj(=A + bF)) lie in a compact region as well, say D. Since the #* and
£* of (5.10) depend continuously on the system data A, b, C, it follows
that there are positive numbers v and p such that p = min |n*||2and v =
max || £*]}2, where the minimization and maximization are performed over
all systems A, b, C, with A4 taking value in D. From (5.10) we then have
that the output of every output-reachable system A4, b, C, with A taking
value in D satisfies the persistent-spanning inequality

min o7 [®mn(k,+ 1T (ko + )]

o =1 i
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Inequality (5.13) implies immediately the following result which forms
the basis for parameter convergence proofs in direct adaptive control
algorithms employing parameter estimation in nonminimal models.

Theorem 5.3 (Uniform Persistent Spanning Under Block-Invariant
State Feedback): Consider an output-reachable linear plant of the form
(5.12) with Aj(=A + bF)) taking values in a compact region D. Suppose
that A; is allowed to change only at time instances £; = k, + JN,j = 0,
1,2, -+ with N = 2u and is held constant otherwise. If for each index j
=0,1,2, -

Al Vi 0 VT ()] 2

for some fixed € > 0, then the sequence {¢(k)} of (5.12) is uniformly
persistently spanning (of order N) for any reachable initial state x,. [

As a final remark it should be noted that Theorem 5.3 focuses attention
on readable initial states and (in general) not on all arbitrary initial states.
For the case of arbitrary initial states the reader is referred to [13].
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