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Figure 1:

Example 3

Consider the process depicted in Figure 1 where
R consists of the transitions confined to the enclosed
area while the outgoing transitions (to z3, x4, s, Z9)
indicate transitions disabled by the application of
the supervisor v, that is,

Plo1) = {8}, ¥(w2) = Y(wr) = {n},¥(we) = {a}
Pla) =0

otherwise.

The observable and unobservable events are X, =
{a,v}and ¥, = {5, 1, 8,6}. The partially observed
closed loop system is obtained (on-line) by applica-
tion of Algorithm 1 as depicted in Figure 2:

Figure 2:

Sample Calculations

o Initialization

Zo = {wo,x1}
Yr(wo) = {8}

Tro = 150, %1

® Tr = Typ3 = {900796179667961079611}77
is observed

wra(v) = {r2, 710}
Zra(v) = {wo, 21, 22,210}
wﬁ(l’TrS(’V)) = {Mvé}

@Tra = En(v,@r3) = {zo, 21, 22,210}

a

It is important to note that the on-line computa-
tion of the partial observation supervisor 5 is uni-
versal in that it is independent of the specific prop-
erties of the underlying full-observation supervisor
5. This, in particular implies that if the supervisor
S is implemented on-line, say by a limited lookahead
policy ([5]), then the supervisor S, can also be im-
plemented on line. This last issue will be discussed
in detail elsewhere.

4 Complexity considerations

It has been well known for some time that synthesis
of supervisors for operation under partial observa-
tion is problematic in that: 1. optimal supervisors
(in the sense of supremal observable languages) do
not exist [14], and hence the typical synthesis has
been confined to supervisors that achieve only supre-
mal normal sublanguages, 2. the synthesis, even for
this non-optimal case, is an NP-complete problem
[21].

The on-line approach proposed in the present pa-
per circumvents the complexity problem in that
it bypasses the need to design the full supervisor.
This is achieved by relying on the predesigned full-
observation supervisor whose design can be accom-
plished with linear complexity even when the speci-
fication language is not closed [8]. Specifically, if the
size of the state set of the process G is n and that
of the state set of the recognizer of the specifica-
tion language K is m, then the design complexity of
the full-observation supervisor is O(| n || m |). The
adaptation of the full-observation supervisor to op-
eration under partial observation is performed step-
wise via Algorithm 1. FEach step of the algorithm
consists of at most two reachability tests in the state
set of the automaton R whose dimension is at most
| n || m |. These reachability tests can be performed
with complexity O(| n || m |) using standard algo-
rithms.

Thus, the on-line approach provides supervisor
computation with stepwise-linear complexity.



the set of initial states possibly reached upon appli-
cation of the initial control ¢.(z,) is not z2, but
rather,

wro = {z € X [ (3t € (Buo/vn(z0))")E(t,wo) = 7}

which is contained in z7,. Similar containment re-

lations hold after occurrences of observable events.
This leads to a supervisor S; = (R, 1) which is

less restrictive (has fewer disablements) than 52 as
follows.

Ry =trim(Zo, Xr,én, Tro)

where

én(o,or) = {z € X | (' € zx(0))
(3t € Ruo/tr(wx(2)))")é(t,2') = «}.

With the modified supervisor 5, the closed loop
language is given by L(5./G), which is characterized
by the following theorem.

Theorem 5 If supC(E) # (), then
supCN(E) C L(S2/G) C L(Sx/G) C supC(E).
a

It is clear that the straightforward implementa-
tion of 5, is computationally inefficient because of
the exponential blow-up in the size of the state set
X, of R, relative to the size of the state set X of R.
However, as we shall see below, the computation of
S need not be performed explicitly and in advance
for all states in X, in order to achieve successful im-
plementation. Indeed, having computed in advance
the supervisor S for implementation under full ob-
servation, we can proceed with the implementation
of S5 using an on-line approach.

By an on-line approach to supervisory control we
mean that at each stage of an actual execution, the
required control action is computed just for that
stage. More specifically, suppose that the process is
running and is currently at a state z,. Suppose fur-
ther that an observable event ¢ has just taken place.
First, all the controllable events are immediately dis-
abled. Next, we compute the control action required
by the supervisor S, when at z.(c). Upon com-
pletion of the computation of the required control
action, the events that need not be disabled at that
point are re-enabled. Under this control the closed
loop process makes a (partially observed) transition
to the state £,(o, 2-). Our basic assumption is that,
upon the occurrance of an observable event o, the
temporary disablement of all controllable events can
be accomplished before any other controllable event
takes place and that the computation time of the
control at each state is sufficiently short so that the
interim step of disablement of all controllable events
is of negligible duration.

The precise computational steps required for on-
line implementation of the supervisor 5 given above
are as follows:

Algorithm 1 On-line implementation.

Initialization

The initialization consists of computation of the
required initial control ¢.(2,) and its application,
and of the computation of the resultant state (set)

Tro-.

e Compute 7, ={z € X | (I € X,.7)
&(t,x,) = a} by removing from the process R
all transitions labeled by observable events and
computing the set of states reachable from z,
in the resultant process.

o Compute the control ¥x(z,) = Upez, ¥(2) and
apply it.

e Compute
Tro = {2 € X | (3t € (Zuo/Vr(2,))")
&(t,x,) = a} by removing from the process R
all transitions labeled by observable events and
all transitions labeled by events in ¥.(2,), and
computing the set of states reachable from z,
in the resultant process.

General step

Assume that the process is at an arbitrary
(known) state . € X, that ¥,(z,) is known and
applied. Assume further that an observable event
o € 3, has just taken place and that all controllable
events have just been temporarily disabled.

The algorithm computes the target state (set)
'y = &x(o,2,) and the control ,(2';) and ap-
plies the computed control upon completion of the
computation. (Note that /', = T.(o) so that

Vr(2h) = Vr(n(a)).)

e Compute

ex(0) ={r € X | (3’ € 2x){(0,2") = 2}
o Compute the unobserved reach T (o) of 2.(0),

Zr(o) ={z € X | (32’ € v7(0))(Tt € Tuc*)é(t,z') = z}.

e Compute the control

Ur(27(0)) = Upez, (o) ¥(2) and apply it.

e Compute the target state (set)

wh =éxlo,ox) ={o € X | 3’ € wr(0))
(3t € (Buo/dr(wn(0)))*)E(t ") = =}

by removing from the process R all transitions
labeled by observable events and all transitions
labeled by events in ¥.(2-(c)), and computing
the set of all states reachable from some state
in 2.(0) in the resultant process. a



that is, v, disables after each string s€ L(G), every
event o€, that is disabled by some element of s,
the equivalence class of s.

It is readily seen that +, acts as a supervisor under
partial observation, i.e., as a map

Yr : 7L(G) — 2xe

because it disables exactly the same events after ev-
ery s€S;y.

We turn next to the examination of various prop-
erties of the supervisor 7. Denote K = L(G,v) and
K. = L(G,v,). Then K is characterized as follows.

Theorem 1

(=

(Vs € Kx)so € Kr & s0 € L(G) A (Vs' € K)
((s’'€sxns’'o€L(G)) = s'oc € K).

a

Proposition 2 The language L(G,v,) is observ-
able with respect to L(G). ]

Theorem 2 L(G,v,) C L(G,7). O

From Theorem 1, we can conclude that K, is a
closed, controllable and observable sublanguage of
K. We show next that K, contains every closed
normal sublanguage of K and hence, in particular,
its supremal closed normal sublanguage, denoted by
supN (K).

Theorem 3 Let M CK be a closed normal sublan-
guage. Then MCK,. a

Corollary 1 supN(K)C K. O

The above approach to modifying a supervisor
is general in that it is independent of the partic-
ular way in which the original supervisor is de-
signed. If the original supervisor v is designed to
solve the supervisory control problem [18] [24], in
which L(G,v) = supC(FE), the supremal control-
lable sublanguage of the maximal legal language F,
then the modified supervisor v, generates a language
that contains the supremal controllable and normal
sublanguage of F, denoted by supCN(FE) [1] [14].
This fact is established in the following

Theorem 4 If supC(E) # (), then
supCN(E) C L(G,vr)
a

Next we give two examples that demonstrate some
properties of the modified supervisors. The first
example below shows that L(G,7;) can contain
supCN(L) as a strict subset.

Example 1 Let ¥ = Y. = {a,5,)}, ¥, = {a},
L(G) = apX+aXf, and £ = af +al. Then
supCN(E) = {c}. But L(G,v-) = {¢,a}. o

The following example shows that the language
L(G,7,) is not necessarily a maximal observable

sublanguage of supC'(L(G)).

Example 2 Let ¥ = Y. = {a,8,\,u}, ¥, =
0, L(G) = a(Bt N+ AT a i and E =
a+ 5+ pu. Then L(G,v,) = {¢,a}. But note that
the language M = {¢, a, u} is also observable and

L(G,7;) C M with strict inclusion. a

3 Implementation

In the previous section we have shown how a super-
visor 7 can be modified to a supervisor 7, suitable
for operation under partial observation. We have
shown the properties and advantages of v, as com-
pared with a supervisor that is synthesized directly
for operation under the condition of partial obser-
vation. In the present section we shall discuss the
issue of algorithmic implementation.

In many respects, the method for implemention of
~ depends on how « itself is implemented. Suppose,
for example, that v is implemented by a recognizer
R =(%,X,¢,2,) and a feedback map ¢ : X — 2%,
such that for each state x € X, () is the (smallest)
set of controllable events that must be disabled in GG
when R is in z. Thus, the supervisor is implemented
as the pair S = (R, ) where each string s€ L(S/G)
is represented by a unique state x€X. Furthermore
assume that, without loss of generality, the language
generated by 5 is equal to the language generated by
R,ie., L(S/G) = L(R) and 7 disables events only
when it is necessary to do so. Then a direct imple-
mentation of the modified supervisor in the previous
section is S2 = (R2,1,) defined as follows. First, for
any subset z, C X, define its unobserved reach T,

as
Tr ={z € X | (Tz’' € zx)(3t € Tuo™)E(t,z") = z}.
Then, the generator R? is given by

RS =trim(Xo, Xr,£2,22,)

T IO

where the state set X, = 2%, 29
E(o,2,) = Tr(o) with a.(0) =
z-)(o,2") = x}.

The control feedback map ), is defined for each
state z, as

bnen) = Uy ez, 00).

Notice that the control v, restricts the transition
behavior of the system and hence the possible states
that the supervised system may reach. For example,
since the events in ¥.(z,) = ¥.({z,}) are disabled,



Yue: ¥ = Y.U¥,.. It is also partitioned into the
observable event set X, and the unobservable event
set Yuos U= Y, UV ,,.

A supervisor is used to restrict the behavior of the
closed loop system by disabling some controllable
events. Under the condition of full observation, a
supervisor is characterized by a map

v L(G) — 2%e,

where for each s € L(G), v(s) is the set of events
disabled by the supervisor v after the string s. The
language L(G,v) generated by GG under supervision
by « is given recursively by

e € L(G,¥)
(Vs € L(G,~))soc € L(G,~) & so € L(G) Ao & ~(s).

It is well known [17] that given a sublanguage
K C L(G), there exists a supervisor 4 such that
L(G,v) = K if and only if K is closed and control-
lable.

Suppose now that ¥ = ¥,UY,, and let 7 : ¥* —
¥.,* be the projection map that erases from every
string the unobservable events. That is, 7 is defined
inductively as

m(e) =€
(Ve € 59 ifoex,

if o € Eyo

w(s)o

7(s)

r(so) = {

Under partial observation, a supervisor is character-
ized by

7 : 7L(G) — 2%¢,

that is, ¥ is a map defined on the set of projected
(observed) strings, and 4 o7 is a map from L(G) to
2%, The language L((,7) generated by G under
supervision by 4 is given inductively by

€ L(G,7)

€ 7’?
(Vs € L(G,¥))sc € L(G,4) & so € L(G) Ao & Y(rs).

The goal of supervisor synthesis is to design a su-
pervisor ¥ for a given language K C L((') such that
L(G,5) = K. It can be proved [14] that such a
7 exists if and only if K is closed, controllable and
observable. The definitions of controllability and ob-
servability, as given below, were introduced in [18]
[14].

A sublanguage K C L(G) is controllable (with
respect to L(G)) if

(Vs € F)(Vcr € Xuc)so € L(G) = so € K.

Let A C ¥ be any subset. A sublanguage K C
L(G) is A-observable (with respect to L(G)) if

(Vs,s' € K | 7(s) = 7(5")) (Vo € A)
(ss EKAs'o € L(G)) = s'0 €K.

K is called observable if it is Y-observable.

In [14], a stronger version of observability, called
normality is also defined. A sublanguage K C L(G)
is normal (with respect to L(G)) if

(Vs € L(G))n(s) € 7(K) = s € K.

It is readily shown that L((, %) is observable with
respect to L(G). We state this fact below for com-
pleteness.

Proposition 1 kL(G,7) is observable with respect
to L(G). ]

The design of full-observation supervisors can be
accomplished with linear computational complexity
(see e.g [8]). We shall show below how to modify a
full-observation supervisor so as to apply under the
condition of partial-observation. Our approach is
universal in that it applies to every full-observation
supervisor regardless of the method by which it has
been designed. A further major advantage is that
given any full-observation supervisor, our modifica-
tion algorithm for operation under partial observa-
tion can be implemented on-line with tep-wise linear
computational complexity.

2 Modified Supervisors

For a language L over 3, the projection map 7 in-
duces a natural equivalence relation F over L such
that for every two strings s, s’ € L

sEs' & n(s) = w(s').

This equivalence relation partitions L into equiv-
alence classes such that each s € I belongs to a
unique equivalence class s,

sm =1{s' € L|n(s') =n(s)}
= Lox~1x(s).

In the quotient language (L) C X,%, each equiva-
lence class s, is represented by a single string 7(s)
(s€s,). It is not difficult to see that the main prop-
erty of supervisors under partial observation is that
they act exactly the same way after all strings in
L(G) that belong to the same equivalence class. This
fact gives us an immediate clue as to how to modify
a given supervisor to one that is suitable for opera-
tion under partial observation.

To this end we proceed as follows. Let v be a su-
pervisor designed to solve a control problem under
full observation. Without loss of generality, we as-
sume that v disables events only when it is necessary
to do so. In other words,

) { {o|sc € L(G) — L(G,~)} if s€ L(G,v)
0

V(s) = otherwise.

Let F be the equivalence relation (as explained
above) over the language L(G). The modified su-
pervisor for partial observation 7, is then given as

vr(s) = Uslesﬂ_ (s,
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Abstract

It is well known that the design of supervisors
for partially observed discrete-event systems is an
NP-complete problem and hence computationally
impractical. Furthermore, optimal supervisors for
partially observed systems do not generally exist.
Hence, the best supervisors that can be designed
directly for operation under partial observation are
the ones that generate the supremal normal (and
controllable) sublanguage. In the present paper we
show that a standard procedure exists by which any
supervisor that has been designed for operation un-
der full observation, can be modified to operate un-
der partial observation. When the procedure is used
to modify the optimal full-observation supervisor
(i.e., the one that generates the supremal control-
lable language), the resultant modified supervisor
is at least as efficient as the best one that can be
designed directly (that generates the supremal nor-
mal sublanguage). The supervisor modification al-
gorithm can be carried out on-line with linear com-
putational complexity and hence makes the control
under partial observation a computationally feasible
procedure.

Key words: discrete event systems, supervisory
control, partial observation, on-line control.

1 Introduction

Supervisors have been used to solve different prob-
lems in the discrete event systems literature. Exam-
ples are the supervisory control problem [18], the su-
pervisory control and observation problem [14], the
decentralized control problem [6] [15] [19] [23], the
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Senior Research Associate at NASA-Ames Research Center,
Moffett Field, California 94035. Also supported in part by
the Technion fund for promotion of research.

TSupported in part by the National Science Foundation.

coordination problem [13] [16], the optimal attrac-
tion problem [2] [3], the language convergence prob-
lem [11] [22], the supervisory control problem with
infinite behavior [17] [20], the supervisory control
problem with blocking [4], the supervisory control
problem under tolerance [12], the supervisory con-
trol using Petri nets [10] and others [7]. In many of
these problems, the supervisors are obtained under
the assumption that all the events are observable.
However, this assumption is often violated in prac-
tice, because observing all events may be impossible
or inefficient. In such cases, observability becomes
an issue. In general, control problems under par-
tial observation are much more complicated mainly
due to the following two facts. (1) Observable lan-
guages do not have the nice properties that control-
lable languages have. In particular, the supremal
observable sublanguage of a given language may not
exist. (2) The computation of supervisors for control
under partial observation is an NP-complete prob-
lem and therefore impractical in most applications.
To overcome these two difficulties, we introduce in
the present paper a new method for construction of
supervisors for partially observed systems. We first
construct a supervisor under the assumption of full
observation. This can be accomplished by standard
methods as described in the above mentioned refer-
ences (see also [8]). We then modify the supervisor
to incorporate the constraint of partial observation.
We shall see that our approach has significant com-
putational advantages in addition to yielding super-
visors that are at least as efficient as the ones ob-
tained by direct synthesis. A complete version of the
paper including all the proofs is given in [9].

As usual, let G be the discrete event system to
be controlled and L(G') the language generated by
G. ¥* is the set of all strings over the event set X,
including the empty string . We say that a lan-
guage L is closed if all the prefixes of L also belong
to L. We will only discuss closed language in this
paper. The event set is partitioned into the control-
lable event set ¥, and the uncontrollable event set



