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Abstract

Discrete-Event processes are modeled by state-machines in the
Ramadge-Wonham framework with control by a feedback event-
disablement mechanism. In this paper concepts of stabilization of
discrete-event processes are defined and investigated. We examine the
possibility of driving a process (under control) from arbitrary initial
states to a prescribed subset of the state set and then keeping it there
indefinitely. This stabilization property is studied also with respect to
*open-loop’ processes (i.e., uncontrolled processes) and their asymptotic
behavior is characterized. To this end, such well known classical
concepts of dynamics as invariant-sets and attractors are redefined and
characterized in the discrete-event control framework. Finally, we
provide polynomial time algorithms for verifying various types of
attraction and for the synthesis of attractors.

1. Introduction

This paper is a preliminary investigation of the concepts of
stabilization of discrete-event processes (DEP). We adopt a slightly
modified version of the framework proposed by Ramadge and Wonham
[1-3] for the study of DEP. Qur model is thus a state machine with a
means of external control: a feedback event-disablement mechanism.
Unlike [4-6], we consider a state model describing the possible order of
elementary events but not their exact timing.

In most of the works concerning supervisory control of DEP (e.g.,
[7-10]) it is assumed that the initial state of the process is fixed, known
apriori and one of the "legal’ states of the process. The control problem is
then to synthesize a supervisor which confines the behavior of the
process, initialized at the prespecified initial state, to within legal
bounds. However, there are cases in which either the initial state is not
one of the legal states of the process or it is unknown apriori. In such
cases the question of stabilization is of great interest.

In this paper we study the ability of a process to reach a set of
target states from an arbitrary initial state and then remain there
indefinitely. This stabilization property is examined under different
control strategies. To this end, the classical concept of attraction [11] is
reformulated and characterized in our framework. Polynomial time
algorithms are provided for the verification of different types of
attraction.

This paper is organized as follows. In the remainder of this section
we give some terminology and notation. Invariant sets of states and
realizable processes are defined in section 2. In section 3, the notion of
strong attraction is introduced and examined with respect to processes
without external control. Further, an efficient algorithm for computing
the asymptotic behavior of such processes is proposed. Section 4
develops control strategies under which strong attraction can be
achieved. To this end, a weaker form of attraction is introduced. An
efficient algorithm for computing the region of weak attraction is
provided in section 5. In section 6, an illustrative example is given and
the relation between attraction and recovery of failure is mentioned.

1.1 Processes
Let Z be a finite alphabet (event set). A process over X is modeled

as a finite (directed) graph G =(V,E) where V is a set of states
(vertices) and E C VXZXV is a set of edges. An edge of G is thus an
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ordered triple e = (v,0,u) € E and it is said to be directed from v to u.
The state v is called the start-state of e, the state u is called the end-
state of ¢ and G € I is the event associated with e¢. If (v ,6,u)e E we
say that v is a predecessor of u and u is a successor of v. Edges with
the same start state and the same end state are called parallel. It is
assumed that there are no two edges going out of the same state
associated with the same event, that is, for each pair of edges in E

[ v,ou),(v,Bw)e E and o=§ ] implies u=w .

We interpret G as a device that starts its execution at an arbitrary state
v € V (v may be determined by a nondeterministic mechanism in G or
forced externally) and thereafter executes a sequence of state transitions
as permitted by E.

A path is a finite sequence of edges e, 5, ..., e, such that the end
state of e;_; is the start state of ¢;. The number of edges in a path is
called the length of a path. The start of the path is the start state of e,
and its end is the end state of e,. To each path
V001,V1), (V1,62 V2, ....(V,1,0,,V,) there corresponds a unique
(state) trajectory v, vy, ..., v,. Further, if vy=v, the trajectory is said to
be closed. A closed trajectory in which no state (except the start and end
states) appears more than once is called a cycle. A graph without cycles
is called acyclic.

A state v is reachable from a state u if there exists a path from u to
v. A state v is said to be reachable from a subset of states A if v is
reachable from at least one state in A. The reach of A in G, denoted
rg(A), is defined as the set of all states in G that are reachable from A .

Let G =(V ,E), @#AcV. We say that a state v e V-A is
connected to A if there is a path from v to a state in A. Further, G is
called A-connected if each v € V-A is connected to A. A process
G’=(V’,E’) is called a subprocess of the process G = (V , E), denoted
G'cG,if VgV and E’CE.

The union of two processes G;=(V,E,) and G,=(V,,E) is
another process Gj3 (written G3=G,UG,) whose state set is
V3=V {UV, and whose edge setis E; = E;UE,. If v is astate in G then
G-v denotes the subprocess of G obtained by deleting v from G.
Deletion of a state always implies the deletion of all edges incident on
that state. If e is an edge in G, then G—¢ is a subprocess of G obtained
by deleting ¢ from G. Deletion of an edge does not imply deletion of its
end states.

A subprocess G’'=(V',E"Y)gG =(V ,E) is called an induced
subprocess if E* contains all the edges of E whose end points are in V;
in this case we say that G is induced by V’. The process induced by v’
is denoted <V'>¢.

1.2 Supervisors

As in [1], we assume that I consists of two disjoint subsets Z, and
Z, : uncontrolled and controlied events. Events in I, can be disabled by
external control while events in X, cannot be prevented from occurring.
Clearly, this classification of X induces a similar classification of E, that
is, E =E,\_JE, where E, =EN(VXE,XV)and E, =E — E,.

A supervisor for G isamap S:V — 2% Foreach state v € V the
supervisor specifies a subset of controlled events that must be disabled.
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The concurrent operation of the process G and a supervisor §,
denoted (S/G) and called the closed-loop process, is defined as the
subprocess (V.ES) of (V,E) satisfying the condition that for all
e=(W,0,u)e E

ecES iff oe SO .

2. Invariant Sets of States and Realizable Processes

LetG =(V,E)beaprocessandlet A cV, E'CE. We say that A
is E"-invariant iff

(V(¥,o,u)e E) VEA DucA.

That is, there is no edge in E’ leading out of A. We remark that the
important special case where A is E, -invariant has been discussed in [2],
in connection with a modular-approach solution for the problem of
maintaining a predicate on V invariant.

A subprocess G’ =(V’,E’) of the process G =(V ,E) is called
realizable iff

(V(v.,o,u)eE,) veV = (v,0,u)e E’ .

That is, a subprocess G’ G is realizable iff every uncontrolled edge
going out of a state in G’ is an edge of G’. Moreover, it is easily seen
that a subprocess G” = (V’,E”) is realizable iff there exists a supervisor
S such that the closed-loop process (S/G ) and the subprocess G’ have
the same "behavior’ in the sense that for each state v € V”, the set of all
paths starting at v is the same in G’ and (S/G). In fact, the notion of a
realizable subprocess is closely related to the concept of controllable
language [1].

3. Strong Attraction

In this section we examine some properties of *open-loop’
processes, i.e., processes without external control. First we introduce the
concept of strong attraction.

3.1 Strong attractors

Let G=(V,E) be a process and let A,B <V such that
%] =GtA <B. We say that A is a strong attractor for B w.r.t. G, denoted

A & B, iff the following conditions are satisfied:
(al) A is E -invariant.

(a2) foreachstate v € rg(B) there is a path that starts at v and ends in
A,

(a3) there are no cycles of G inrg(B)—A.
G
Thus, if A < B then whenever the process G is initialized at state v € B

it always reaches A within a finite number of state transitions and
remains in 4.

We show now that for each nonempty E -invariant subset A of V
there exists a unique largest subset for which A is a strong attractor. To
this end, let @ #4 ¢V be E-invariant, and define Tg(A) to be the
(finite) class of all subsets of V for which A4 is a strong attractor, that is,

G
TcA)={BcVI|IAcB ad AcB) .

Proposition 3.1
The class 7 (A) is nonempty and closed under set union.

Most of the proofs of the Propositions that appear in this paper will
be omitted for the limitation of space.

An immediate consequence of proposition 3.1 is that T (A(); has a

unique maximal element. The maximal set B for which A < B is
denoted Ag(A) and called the region of strong attraction of A w.rt. G.

For a subset A which is not E -invariant we will say that Ag(4) = & . If
Ag(A)=V we say that A is a global strong attractor w.r.t. G (denoted
G

A <=). In cases of no confusion we shall not mention the underlying
process and write, e.g., that A is a global strong attractor. It is readily
verified that in the case of global strong attraction conditions (a2) and
(a3) can be written as

(a2") G is A-connected.
(@3") G — A is acyclic.

3.2 Asymptotic behavior

The meaning of a subset A cV being a global strong attractor is
that there exists a number N < | V-4 | such that every trajectory of G of
length greater than N ends in A . Further, the subset A is reachable from
each state in V. In other words, initializing the process at an arbitrary
state v € V causes the process to reach a state in A in a finite number of
state transitions. Once the process reaches a state in A it remainsin A.

A natural question that arises is whether we can maximally restrict
the state domain in which the process, initialized at an arbitrary state, can
be ’found’ after a sufficient large number (bounded by v |) of state
transitions. That is, we are interested in the asymptotic 'behavior’ of the
process.

Thus, let G =(V,E) and let g(G) be the (finite) class of all
subsets of V' that are global strong attractors w.r.t. G. That is,

G
gG)={AgV ]| Ae .

First we need the following obvious observations.

Observation 3.2
The state set of G is a global strong attractor (w.r.t. G ).

Observation 3.3

Let C be a cycle of G. Then C is a cycle of <A>¢ for every
A e g(G).

Using observations 3.2 and 3.3, the following proposition is readily
proved.

Proposition 3.4
LetG =(V ,E). Theng(G)= QD ,andifA;,A; € g(G)then
@ %A NAe gG) .

Proposition 3.4 implies that the finite class g(G) contains a unique
infimal element w.r.t. inclusion, which is denoted inf [g (G)]. Further,
this infimal element satisfies the condition that ]

inflg(G=n{AlAecg@G)) .

For an effective computation (i.c., a polynomial time algorithm) of
the minimal global strong attractor we need the following proposition.

Proposition 3.5

Let G =(V,E) and v € V. Then v € inf[g(G)] if and only if
either

(i) v isreachable from a state of a cycleinG ;or
(ii) v has no successors.
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Proof
For abbreviation let W £ inf[g(G)].

(f). Clearly, every global strong attractor of G contains all the states in
G which are 'dead-end’, namely without outgoing edges. Otherwise,
condition (a2’) cannot be satisfied. Thus condition (i) is a sufficient
one. As regards condition (i), we note that conditions (al) and (a3’)
imply that every cycle of G is contained in every global strong attractor.
Moreover, since every global strong attractor A is E -invariant it follows
that every state reachable from a state in A must be also in A. So we
conclude that every state reachable from a state of a cycle in G is in W,
which is one of the global strong attractors of G

(Only if). Fix v, € W and suppose, towards a contradiction, that v,
does not satisfy conditions (i) and (ii), that is,

(iii) v, has at least one successor ; and

(iv) the subset X of all states in V from which v, is reachable satisfies
the condition that every state in X is not a state of a cycle in G.

We shall show now that W~X is a global strong attractor, contradicting
our assumption that W is the minimal one.

Let Y be the set of all states in W from which v, is reachable, i.e.,
Y=WnX. Clearly, Y is not empty (since v, e WNX =Y) and
W —X =W —Y. First we claim that W —Y is E-invariant. To see this,
suppose W —Y is not E-invariant, and that for some ¥ € W —Y there
exists an edge (4 ,c,w)g E such that w ¢ W — Y. By the definition of

W it is clear that W <= and thus the E-invariance of W implies
w e W. Since

(weW and weW-Y ) implies weYcX,

it follows that v, is reachable from w. Consequently, (v ,0,w)e E
implies that v, is reachable also from u, i.e., ¥ € Y, contradicting our
assumption that u e W —Y. So W —Y is E -invariant.

Next we have to show that G is (W — Y)-connected, that is, there
exists a path from each state in V — (W —Y) to a state in (W —Y). First
we consider the state v,. Since v, € Y ¢W and W is E -invariant then
every successor v, of v, is in W (by assumption (iii), v, has at least one
successor). Further, vy ¢ Y <X since otherwise v, is reachable from v,
meaning that v, is a state of a cycle, in contradiction to assumption (iv).
Thus, vie W —Y and v, is connected to (W —Y). Moreover, by the
definition of X , v, is reachable from every state in X and thus each state
in X is connected to (W —Y). Finally, W is a global strong attractor and
thus, by condition (a2’), every state in V — W is connected either to
(W —Y)orto Y <X, which is connectedto W — Y.

It remains to be shown that G — (W —Y) is acyclic, namely that
every cycle of G intersects (W —Y). To this end, let C be a cycle of G.
Since G — W is acyclic and W is E -invariant then C is contained in W.
Further, by assumption (iv), every state in ¥ <X is not a state of C and
thus C must be contained in (W ~Y). Thatis, G — (W —Y) is acyclic.

To summarize, we have showed that W — Y is also a global strong
attractor w.r.t. G, contradicting our assumption that W = inf[g (G)].

Using proposition 3.3 and the transitive closure of G (ie., the
directed graph in which there is an edge from v to u iff there is a
nonempty path from v to u in G [12, Ch. 1]), the infimal global strong
attractor inf[g(G)] canbe computed in polynomial time.

4. Weak Attraction

In this section we introduce a weaker form of attraction which can
be obtained under a suitable control.

4.1 Weak attractors

Let G =(V,E), O+#AcB c\‘/;. The subset A is called a weak
attractor for(sl?c )w.r.t. G, denoted A « B, iff there exists a supervisor §
suchthat A < B.

Clearly, strong attraction implies weak attraction but the converse
is in general not true. Further, it is easily seen that a necessary condition
for a subset A to be a weak attractor for another subset is that A be E,, -
invariant.

Necessary and sufficient conditions for an E, -invariant subset A to
be a weak attractor for B are given by the following proposition.

Proposition 4.1
LetG =(V ,E), D#A B cV,suchthat A is E, -invariant. Then
G

A « B if and only if there exists a subprocess G’ =(V’,E") of G such
that B ¢ V' and the following conditions are satisfied:

(b1) G’is A -connected.
(b2) G’ isrealizable.
(b3) G’-A is acyclic.

Corollary 4.1
If A is E, -invariant and G’ = (V’, E’) satisfies condition (b1)—(b3)
G
thenA « V'.

Proposition 4.1 provides necessary and sufficient conditions for the
solvability of the Weak Attraction Problem (WAP), namely given a
process G =(V ,E) and subsets A B cV, verify whether WAP is
solvable or not. Notice that if %, =@ (ie., every edge of G is
controlled) then WAP is solvable iff each state in B is connected to a
state in A. However, if the former condition does not hold (.e.,
I, # @) then WAP is not necessarily solvable even if the latter
condition is satisfied.

So far we considered only E, -invariant subsets of V as candidates
for weak attractors. Clearly, this is a necessary condition. Suppose,
however, that we are given two subsets A and B, such that A cBcV
and A is not E,-invariant. An irgeresting question is whether there

exists a subset A’ A such that A’ « B. That is, find (if exists) a subset
A’ of A for which a supervisor S can be synthesized, so that from each
initial state v € B, the closed-loop process (S/G) reaches A’ in finite
number of state transitions and remainsin A’

The following intuitive proposition states that the problem above is
solvable iff the maximal E, -invariant subset of A is a weak attractor for
B. The fact that every subset A CV contains a unique maximal E,-
invariant subset, denoted A*, can be easily verified (cf. [2, sec. 7]).

Proposition 4.2
Let G=(V,E), O#ACB g‘é. There exists a subset A’c A
G
suchthat A’ «- B ifandonlyif A* « B .

An effective computation of A* is provided in {2, sec. 7], based on
a fixed point characterization of A¥. The verification whether A* is a
weak attractor for B can be accomplished by using the algorithm
presented in section 5.

4.2 Region of weak attraction

Let G =(V ,E) be a process. In a previous section we showed that
for every g -invariant subset A there is a (unique) maximal subset B for

which A < B, and thus the notion of the region of strong attraction is
well defined. In this section we examine whether an analogous notion
can be defined for weak attraction. That is, given a nonempty subset
A cV, we want to know whether the class of subsets that are weakly
attracted by A is closed under set union, and hence has a maximal
element.

Let A be E,-invariant and define the class of subsets Wg(A)
according to

G
WeA)={BcV|AcB and A< B ).
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Proposition 4.3:

Let A be an E,-invariant subset of V. Then the class Wg(A) is
nonempty and closed under set union.

Since Wg(A) is finite and closed under set union it follows that
Ws(A) contains a unique supremal element w.r.t. inclusion, denoted
Qg (A) and called the region of weak attraction of A w.rt. G. If A is
not E,-invariant we say that Qg(A)= @ . Further, if 26 A)=V we

say that A is a global weak attractor w.r.t. G, denoted A .
It is easily seen that

Ac(A)cQs(4)

foreveryA V.

5. Computation of Q;(A4)

Fix G=(V,E), D#AcV. In this section we propose an
algorithm for the computation of the region of weak attraction Qs (A).
A by-product of this algorithm is a subprocess of G satisfying conditions
(b1)~(b3). Further, the question of whether A is a weak attractor for a
subset B DA is equivalent to the question of whether B € Q;(A). Thus,
the algorithm provides a constructive method for verifying weak
attraction.

Throughout this section we assume that A is E,-invariant, for
otherwise Qg (A)= J.

We derive now an intuitive consequence of proposition 4.1
conGceming the region of weak attraction. Since, by definition,

A < Qg(A), it follows by proposition 4.1 that there exists a subprocess
G’=(V’,E") of G such that Q;(A)cV’ and G’ satisfies condition
(b1)~(b3). Moreover, G’ must satisfy the condition that V'=Qs(A).
Otherwise the process G’ would have been a contradiction to the
assumption that Q5 (A) is the largest subset for which A is a weak
attractor.

We have proved:

Proposition 5.1

Let G’'=(V’,E")c G be a subprocess such that Qs A)cV’. If
G’ satisfies (b1)—(b3), then

V'=Qs(A) .

The subprocess G’ =(V’,E’) in proposition 5.1 is not necessarily
unique. However, its state set V' is unique. The result of the algorithm
below for computing Qg;(A) is a subprocess of G that satisfies
conditions (b1)-(b3) and whose state set is Qg (A). But first we need the
following definition.

Let G'=(V',E")cG =(V ,E) be a process satisfying conditions
(b1)—(b3), that is, G’ is realizable and A -connected and G’ —A is
acyclic. We say that a state v € V=V’ is G’-attractable iff v is a
predecessor of a state in V'’ and every uncontrolled edge of G leaving v
ends in V', thatis, v € V-V’ is G "-attractable iff
i (F@.o,u)ekE)
() (V(v.o,u)eE,)

Now we are ready for the following

ueV’ ;and
ueV’.

ALGORITHM

Input : A process G =(V ,E) and asubset A CV.

Output : A subprocess P whose state setis Qg(A4).

(1) LetP, 2, ,D,)=<4>; , j:=0.

(2) If there are no P;-attractable states in V — U;
then P =P;, stop.

(3) LetveV-U '; be a P;-attractable state.
Define Py 2 (U}4y,Dj4p) 2

Uia=U;u{v}

Djyy=D;Lu{(v.c,u)eE | welU;} .

Ji=j+1, goto(2).

That is, the construction of a subprocess G’ whose state set is
Qg (A) is started from the subprocess P, induced by A (step (1) ). Then,
in each iteration j a new subprocess P, is constructed (step (3) ) from
P; by adding a P;-attractable state v together with every edge going
from v to a state of P;. This procedure terminates when P; has no more
attractable states (step (2)).

Since in each iteration the state set of P; increases by one state, the
number of iterations is bounded by |V |. Further, it is easily seen that
the verification of step (2), namely that there exists a P;-attractable state
in V —Uy, is of complexity O (1Z11V ). Thus, the complexity of the
algorithm above is O (1Z11V 13,

The correctness of this algorithm is formally stated in the following
theorem.

Theorem 5.1

Let P = (U ,D) be the process obtained in step (2). Then
(i) P satisfies conditions (b1)-(b3).
(i) U=Qz(A).

For the proof of Theorem 5.1 we need the three following
propositions. Intuitively, the first proposition states that A is a weak
attractor for the state set of each process P;. Formally, we have the
following

Proposition 5.2

For every iteration j, the process P; satisfies conditions (b1)—(b3),
that is, P; is reatizable and A -connected and P, ~ A is acyclic.

The second proposition clarifies the role of attractable states.

Proposition 5.3 .

Let P =(U ,D)cG such that A cU and P satisfies conditions
(b1)~(b3). Then every P -attractable state v € V — U is in the region of
weak attraction of A4, i.e.,

v e Qp(A).

The final proposition required for the proof of theorem 5.1
characterizes the class of subprocesses of G whose state set is the region
of weak attraction of A.
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Proposition 5.4

Let P =(U,D)cG such that AU and P satisfies conditions
(b1)-(b3). Then

U=Qs(4)

if and only if there are no P -attractable states in V — U,

Proof of proposition 5.4

Let P=(U,D)gG =(V ,E) such that AcU and P satisfies
conditions (b1)—(b3).
(If). LetX denote the set of all states in V — U that are predecessors of
astate in U, i.e.

X=(xeV-Ul(3@x.0,u)eE) uelU},

and suppose that every state in X is not P -attractable. We have to prove
that U = Qg (A).

First notice that P satisfies conditions (b1)-(b3) and thus, by
corollary 4.1, U € Qs (A). For the reverse inclusion we shall show first
that none of the states in X can be in the region of weak attraction of A,
ie.,

XnQA)=0 .

For this let x; € X ¢V — U and suppose, towards a contradiction,

that x € Qg (A). According to proposition 4.1, if (UU { x; }) ¢ Qs (A)

then there exists a subprocess G’=(V’,E’) of G such that

(Uu{x,})cV’ and G’ satisfies conditions (b1)-(b3). Since none of

the states in X is P-attractable then there exists an edge

e;=(x1,0,vy) € E, suchthatv, ¢ U. The edge e, is uncontrolled and
thus e, as well as v,, must be included in G’. Otherwise G’ could not
be realizable (condition (b2)). Moreover, G’ is A -connected and thus it
must contain a trajectory from v to a state in U (notice that every state
in U is connected to A ). Now, since v, ¢ U there are two possibilities:

eitherv, e V-U -Xorv,e X.

(i) Ifv,e V -U -X then every trajectory of G’ from v, to a state in
U must include at least one state in X (this is because every
predecessor of a state in U is in X). Let ¢ be such a trajectory,
namely a trajectory connecting v; to U, and let x, be the first state
in X traversed by ¢. Subsequently, denote by ¢, the subtrajectory
of ¢ connecting v, to x5, i.e., £; =vy,...,x,. Notice that none of
the states of ¢, is a state in U (written ;U = @). Also, the
condition x, # x, must be satisfied in order that G’ — A will be
acyclic (otherwise G’ — A will contain the cycle x;,¢, ).

(i) Ifvye X thenx;=v; and ¢, is the empty trajectory.

Since ¢, is a trajectory of G then x5 is also a state of G, So we conclude
that

x1€ V'  implies x,eV’.

Following the argument of the previous paragraph we get that G’
must contain a trajectory, say f,, connecting x, € X to x5 € X, where
X3#Xxy, x3#x and xz3e V',

Continuing this procedure we end up with the following
conclusions regarding the process G* : x is connected to x5 by ¢y, x5 is
connected to x3 by f3, -+ %, is connected to x, by t,_;, X, is
connected 0 x; ,1<j <n, by ¢, and

X1, X9, " X, €V,

where n is number of states in X and Xi#EX;, i#f.

It is readily verified that the trajectory tiitis1, o1, forms a
cyclein G'~A (notice that A cU and #,nU = @& ,1<i <n ). Thus
we conclude that the assumption x;e V'CQg(A) implies X cV’.
However, the requirement from G’ to be A-connected implies the
existence of a cycle in G’ — A, contradicting condition (b3). So

XNnQ;A)=0 . 5.1

As regards the rest of the states in V = U ; since every path from a
state in V — U — X 10 a state in A must traverse at least one state in X it
is clear that

V-U-X)"QA)=D . (5.2)

From (5.1) and (5.2) we get that Qz(A)c U, which concludes the "if"
part of this proof, i.e.,

U=QgA) .

(Only if). Suppose U =Q;(A) and assume there exists a state
v € V = U such that v is P -attractable. However, by proposition 5.3 it
follows that v € Qg (A), contradicting our assumption that U is the
region of weak attraction of A.

O

Proof of Theorem 5.1

LetP =(U ,D)cG =(V ,E) be the process obtained in step (2) of
the algorithm. By proposition 5.2 it is clear that P satisfies conditions
(b1)-(b3). Further, since every state in V-U is not P -attractable
(according to the condition of step (2) ) then by proposition 5.4

U=Q;@).

6. Example
Let G =(V ,E) be a process as displayed below:

Ug C3

The state set of G is V={0,1,...,7}, and the edge set is
E={u; }u{c;}. The edges denoted u; arc uncontrolled while c;
denotes a controlled edge.

First we comment that the subset A; = { 1,2} cannot be a strong
attractor for any subset of V (since A is not E-invariant). Nevertheless,
A, is E,-invariant and thus it has a potential to become a weak attractor
(e.g., by the deletion of cs).

Next we consider the subset A = {0,1,2}. Clearly A is E-
invariant, and if Bg=AU { 3 } then A is a strong attractor for By w.r.t.
G. It is easily seen that B is the maximal subset of V which is strongly
attracted by A. That is, Ag(A)=B,. Further, we remark that the
region of strong attraction Ag(A) can be computed in polynomial time
by using the transitive closure of G (see at the end of section 3).
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We examine now the weak attraction problem, namely given two
subsets A ,B of V, decide whether there exists a supervisor S such that
A is a strong attractor for B w.rt. (S/G). To this end, let
A=1{0,1,2}, B1=AU(G3,4 } and By=AuU{7}. Recall that we

defined weak attraction A « B as the possibility of driving G (under
control) from every initial state in B to some ste(l;te in A. Consequently,

the deletion of the controlled edge ¢, implies A «— B;. Furthermore, it is
readily verified that the subprocess < B> (i.e. the subprocess induced
by the states of B ) satisfies the conditions of weak attraction, as stated
in proposition 4.1.

As regards B,, it can be shown that no subprocess of G, whose
state set contains B, satisfies the conditions of proposition 4.1 (i.e.,
(b1)-(b3)). Thus we conclude that A is mot a weak attractor for Bj.
Intuitively, this result can be explained as follows: Suppose G is
initialized at state 7 € B,. Then either G reaches state 0 (and then is
captured in A) or it executes u, and reaches state 6. Since the edge u; is
uncontrolled (and thus cannot be removed from G) it follows that the
edge c9 must not be deleted from G. Otherwise the subset
A=(0,1,2} is not reachable from state 6. However, the latter
conclusion and the fact that 4 is uncontrolled imply the existence of the
cycle C =6,5,6. The cycle C prevents the guaranteed attraction of
state 7 to a state in A, i.e., if G is initialized at state 7 then no control
strategy can assure that G (under control) will reach the subset A after
executing a finite number of state transitions.

The existence of a subprocess G * as required in proposition 4.1 can
be effectively verified by using the algorithm of section 5 for computing
the region of weak attraction. If we apply the algorithm to this example
we obtain the following steps:

()} Start with the subprocess
{usz,ug,cq,c5}); (step (1)).
A candidate state for the next step is any predecessor of a state
in A which is P,-attractable. Since the uncontrolled edges u-,
ug and us lead to a state in V—A, none of the states 7 or § is
P, -attractable. Thus, choose for example state 3 and construct
(step (3)) the subprocess

Py=({0,1,2,3}, {u3,u4,cq4.C5,C2,u;})

P,=<A>;=({0,1,2},

@)

=<(0,1,2,3}>5 .

(iii) Only state 4 is P;-attractable and thus construct (step (3) again)

the subprocess

P2=({0,1,2,3,4}, (u3,u4,c4,¢5,C3,U1,U3,¢;})

=<{0,1,2,3,4}>; .

@iv) There are no Pj-attractable states and thus the algorithm

terminates; (step (2)).

By theorem 5.1 we conclude that Qs (A)= (0,1,2,3,4} =B,,
and that P, satisfies the conditions of proposition 4.1. Based on P,, a
control patiern achieving weak attraction of By by A is readily
synthesized (see the proof of proposition 4.1).

As was explained in the paragraph following proposition 5.1, the
resulting process in step (2) is not unique. For example, if we had
interchanged steps (i) and (iii) we would have ended up with the process
P3—c¢y. Nevertheless, the region of weak attraction of A is yet B, since
the state set of P,~c, is By. This illustrates the consequence of
proposition 4.3, namely that the region of weak attraction is well defined.

Our inwitive conclusion that A is not a weak attractor for B, is
now an immediate consequence of the fact that B, is not a subset of

Qc(A).

We end this example by pointing out the close relation between
attraction properties and the problem of recovery from control failures.
For example, suppose A = { 0,1,2) is the "legal’ state set of V, and
that a control failure may cause G to reach the illegal state 7. Since A is
not a weak attractor for B, no control strategy can assure a guaranteed
recovery (i.e., a guaranteed return of G (under control) Ct;o a legal state in

A) from this control failure. On the other hand, A « B, implies the
existence of a supervisor achieving guaranteed recovery from control
failures causing G to reach states 3 or 4. Such a supervisor is readily
synthesized by using the output of the algorithm in section 5.

7. Conclusion

The paper has presented the concept of strong attraction which
plays a key role in the investigation of the following problems. The first
one is the ability of a process to reach a set of target states from an
arbitrary state and then remain there indefinitely. Another problem,
which is closely related to the former, is the recovery from control
failures. Finally, a special kind of asymptotic behavior of a process has
been characterized as its minimal strong attractor. The first two
problems were examined also under control, and an efficient procedure
for synthesizing controllers that improve the attraction ability of
processes has been proposed. The properties of such controllers and the
extension of the above results for other representations of discrete event
processes are interesting topics for further research.
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