314 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

Multiuser Discrete-Event Control With Active Events "

Michael Heymann, Feng Lin, and George Meyer

Abstract—The traditional framework for discrete-event control is ex- ¥
tended to include the case of control with active events, in which both the 1
user and the environment have events that they can trigger. A variety of Y, B
liveness and safety specifications can be considered within this extended
framework. A synthesis algorithm of minimally restrictive controllers is
outlined. Multiuser systems are also discussed.

o B2

Fig. 1. Manufacturing System.
Index Terms—Discrete-event systems, manufacturing systems, multia-
gent, safety and liveness, supervisory control.

The system is controlled by two operators. The first oper@tohas
exclusive access to machidé; and has shared access with operator
O to the bufferB. MachineM- is fed from the buffer, and is operated

In the traditional paradigm of supervisory control theory for disby operatoiO-. The buffer has the capacity of exactly one part.
crete-event systems, all events are assumed to be triggered by the efihe system is operated in the following way: Operétorcan send a
vironment. To achieve the required behavior, the user has the abifpgrt for processing to machire; (eventx,). He/she can then choose
to control the system only by disabling some of the events (which d@allow machinel/; to complete processing the part, and then remove
called controllable events). The supervisory control problem is thenttee finished part from the machine (evehy or, if the buffer is empty,
synthesize a supervisor which, through suitable disablement of contrfag/she can remove the partially processed part fiémto the buffer
lable events, confines the system’s behavior to within specified legdl(event~;) for finishing on machiné\/,.
requirements (usually in a minimally restrictive way) [1]-[14]. OperatorO, can feed a part directly into buffel8, provided the

Although in the resultant mathematical theory of discrete-event copuffer is empty (eventz). At any time, he/she can feed a part from
trol, the precise nature of the events is not always crucial, the thedhg bufferB (provided it is not empty) to machin®, for processing
cannot always be adapted to alternate setups. In particular, when Hetrenta») which, upon completion, is ejected from the machine (event
the user and the environment can trigger events in the system, the fig- OperatoiO, has the ability, at any time, to disabje or to enable
ture of the control problem can change substantially, and the traditioital
supervisory control framework must be modified. Note that the interpretation of controllable and uncontrollable events

In the present note we present an extended framework for supeere is different from that in traditional supervisory control. From the
visory control, in which certain events can be triggered by the us&igwpoint of operatof);, an event is controllable if it can be executed
certain events can be triggered by the environment, and both the u#isroccurrence enforced) by the controlléX(in this case) and cannot
and the environment can disable a subset of the other’s events. Anlexdisabled by the environmer{ in this case).
ample is provided to illustrate this situation. While control for safety To study liveness properties of the manufacturing system, we desig-
specifications remains quite similar to the traditional setup, control foate the states where all parts are completely processed as the marked
liveness is quite different since several versions of liveness can cstates. That is, we wish to guarantee that each part be processed suc-
vincingly be defined. For example, it may be required that the user bessfully and completely.
able to complete tasks using only events that he/she can trigger and tHeote that if we consider liveness to be the notion of nonblocking
environment cannot disable. This leads to a new framework for livas in supervisory control, then the manufacturing system as described
ness control and to a suitable modification of safety control. The theaapove is live: that is, from each state there exists a path to a marked
is developed and a synthesis algorithm is outlined. We also apply tetate, and the system is nonblocking.

. INTRODUCTION

framework to multiuser systems. Upon a closer look, we find, however, that such liveness is at the
mercy of the environment. In particular, there exist states from which,
II. |LLUSTRATIVE EXAMPLE for the system to reach a marked state, it depends on cooperation of

_ o _ the environment (i.e., on2). We refer to such reachability as weak
Example 1: Consider the following simple manufacturing systemgeachability.

The system consists of two machines and a buffer, as shown in Fig. 1.1o guarantee that a system is live even if its environment is not co-

operative, we need to introduce a stronger notion of reachability: We
require that, from any state, there exists a path to a marked state that

Manuscript received August 11, 2000: revised August 2, 2001. Recoff@N be execut_ed by the controller and cannot be disabled by the envi-
mended by Associate Editor R. S. Sreenivas. This work was supportedrainment (that is, a path that consists only of controllable events).
part by the National Science Foundation under Grants INT-9602485 andBased on this definition, the manufacturing system is not strongly

ITR-0082784, NASA under Grant NAG2-1043, and in part by the Techni o ;
Fund for Promotion of Research. The work of the first author was comple?g(éia(:hable' Intuitively, to ensure strong reachability, must not be

while he was visiting NASA Ames Research Center, Moffett Field, CA 94038€rMmitted to send the part to the buffgr
USA, on a grant with San Jose State University. With this illustrative example in mind, we shall develop the theory
M. Heymann is with the Department of Computer Science, Technion—Ilef active control for discrete-event systems that deals with both weak
rael Inst_ilt)ute of Technology, Haifa 32000, Israel (e-mail: heymann@cs.te¢ind strong reachability, among other things.
nion.ac.il).
F. Linis with the Department of Electrical and Computer Engineering, Wayne

State University, Detroit, Ml 48202 USA (e-mail: fin@ece.eng.wayne.edu). IIl. CONTROL WITH ACTIVE EVENTS
G. Meyer is with the NASA Ames Research Center, Moffett Field, CA 94035 . . .

USA (e-mail: gmeyer@mail.arc.nasa.gov). In this section, we propose a new framework for modeling and con-
Publisher Item Identifier S 0018-9286(02)02072-X. trol of discrete-event systems in which both the user and the envi-

0018-9286/02$17.00 © 2002 |IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002 315

ronment can trigger some of the events. We call such systems dis-+ the empty string belongs toL(~/G);
crete-event systems with active events. The system is modeled by ar after a sequence € L(v/G),sc € L(~/G) fore € X, if and
automaton only if & is possible inL(G) and is not disabled or disallowed by

~, that is
G= (E>Q<é& quQm)

where the event sét, the state s&f, the transition function, the ini-

tial statego, and the marked state 4, have their usual meaning as in Although our interpretation of the syste and controllery are
discrete-event control [14]. The system has two participants (playergayy different from those in traditional supervisory control, we have
the user and the environment.As discussed earlier, events of thenanaged to keep their mathematical definition identical to those in tra-
system are triggered either by the user or by the environment. Theg&ional supervisory control, if we vielE. as the set of controllable
fore, the event seX is expressed as events in traditional supervisory control. Therefore, the existence con-
dition for our controller is characterized by the controllability condition
[14], just as in traditional supervisory control.

whereX,... is the set of events that can be triggered by the user, whileP&finition 1 Alanguagel” C L(&) is said to beeontrollablewith
S... is the set of events that can be triggered by the environment./fSPect ta=, and L(G) if

general the two event sets need not be disjoint, and there may be events
that can be triggered both by the user and the environment. The event
set¥,.s consists of two disjoint subsets

so € L(v/G) & so € L(G) Ao & y(s).

Y = Yue UXeny

(Vs € K)(Vo € X —S4)s0 € L(G) = so € i

whereK is the prefix closure ofy’.

The following theorem, that characterizes conditions for the exis-
tence of a controller, is then the suitable restatement of the well-known
whereX¢_, is the subset of the user-triggered events that can be digsult of [13, Prop. 5.1].
abled by the environment arid’,, the subset of the user-triggered Theorem 1: For a nonempty language C L(G), there exists a
events that cannot be disabled by the environment. Similarly, the evefifitrollery such thatZ(y/G) = K if and only if K is closed and

v = Y°¢ gnu
~usr — HIISTUEHST

setSe,y is partitioned into two disjoint subsel,,, = £¢, ULy, . controllable.
In traditional supervisory control of discrete-event systems, it is as-With this theorem, we can now discuss the specification and syn-
sumed that all events are triggered by the environment (thgtis,= thesis of controllers.
() and that the user can only disable event&ip,) from taking place.
In this sense the control that the user can exert on the system is purely IV. SAFETY AND LIVENESS
supervisory.

. th)As stated, the objective of our controller is to guarantee the safety
. . - d liveness of a system. Safety requirements specify what behaviors
the_ events fronﬁ_mv that he/she can disable, a_1|so the eventSiin, are not allowed in the system. One way of specifying safety is by stating
which we cal_lactlveevents, that he/she can trigger. As we shall Segg 1), C Q of illegal states that the system must never enter. We call
se;{eral neV\t/ issues must be addressed because of the |ntroduct|o§h8 a specification atatic safety specification [6]. A more general
active events. Caafety requirement is dynamicspecification, given by a closed lan-

t

We are still interested in supervisory control issues, in that we ageE = E that describes the maximally allowsdfeor legal be-
not introduce any goal for our controller, other than to guarantee

. . . Svior. (For obvious reasons, we assume fiaf L(G).) The safety
safety and I|vene§s of the s_ystem,_from the pomt of view of the gs%guirement is then that the controlled system neverExthat is
as to be further discussed in Section IV. This goal must be achieve
by a controller or supervisor through the disablement, or disallowing L(v/G) C E.
the execution of, certain events@h Clearly, the user has no authority N
over events irk¢,.., which he/she cannot prevent from occurring. Ion the other hand, the liveness requirements are stated so as to
other words, the controller can only disable or disallow the followinguarantee that certain specified tasks can always be completed by the
“safety” events. system. To this end, we specify a nonclosed langubigecalled the
marked languagethat specifies the set of completed ta3k&iven
a marked languagé@/, the liveness requirement implies that every
run of the controlled system must be extendable to a string of the
marked language. In other words, liveness implies that every run can
v L(G) — 2% be extended to a completed task. Now in view of the classification
of events allowed in the present framework, we can be somewhat
and operates as follows: After the occurrence of a sequence of ayentmore discriminating with respect to the question of what precisely
the controller “disables” the set of eventss) C X,. Specifically, the we mean by the requirement of extendability to completed tasks.
subset of events(s) N X, is disabled from being triggered by theFor example, in traditional supervisory control, liveness consists of
environment, and the subset of events) N ... (which can be trig- the “nonblocking” condition, where task completion always implies
gered by the user) is disallowed. On the other hand, eveldisin(s) the participation of the environment, since the user has no capability
can be triggered by the user or the environment if they are physicatlf/ triggering events. Thus, in the present setting, we may also be
possible. satisfied with a corresponding nonblocking condition that consists
To specify the behavior of the controlled systeyz, we study the of the ability of the controlled system to complete tasks through the
languageL (/@) generated by the controlled system, which is givenooperative participation of the user and the environment. That is,
as follows: every run can be completed to a stringlifi by concatenating to it a

_ ¥ u _ y¢ U
ES = X - Eenv = Eenv U 2usr — Henv-

Formally, a controller is defined as a mapping

IThe environment models everything other than the user, and may includé€This kind of specification is more general than specifying a set of marked
other users. states),,, C @, as is customary in traditional supervisory control.

316 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

string of suitable events fro. Alternatively, we may insist that the Before showing how to calculatE' in the next section, let us first
user be able to complete tasks by executing only the events that thmark about two related issues.
user can trigger and the environment cannot disable; that is, event§irst, if we takeX; = ¥ andM = L,..(G), then liveness is equiva-
from Z\.,,. Another possibility is, that we may allow task completiorient to the nonblocking requirement in traditional supervisory control,
by executing events from,..; that is, any user triggered events. Thuswhich is characterized by the condition that
we define a suitable set dif/eness eventy;, with respect to which _
task completion to strings i/ must be possible. To state the liveness Ln(y/G) = L(v/G).
specification formally, we require that the langudge,//G) be suffix
completableas defined below.

Definition 2: A languageKX C L(G) is said to besuffix com-
pletablewith respect ta~; and M if L.(v/G) = L(+/G)

#L0/GIN Ln(G) = L(/G)
SL(7/G)N Lin(G) D L(~/G).

To see that this is indeed the case, note that sibgé~v/G) =
L(W’/G) n L’IIL(G)

(Vs € K)(3t € X7)st € K N M.

In words, a languag&” is suffix completable, if every string in its
prefix closure, can be completed to a string in the marked langlage The last step is due to the fact thaty/G) N L (G) C L(7/G) N
by concatenating to it some events frain We define suffix complete- Lm(G) = L(7/G) is always true.
ness of’ based on the prefix closure &f becausd.(v/G) is always ~ On the other hand, liveness is equivalent to the property
closed. Clearly, with this definition, a language is suffix completable - , ,
and only if its prefix closure is suffix completable. &5 € L(+/G)) 3t € T)st € L(v/G) N Ln(@)

Note that, unlike in traditional supervisory control, where liveness or < L(v/G) C L(v/G)N Lw(G)
task completion is modeled by a set of marked statés we consider
task completion as specified By . This gives us more freedom in task

specification, just as specifying alegal languages more general than observe events in some observable eventsethen a partial obser-

specifying a set of |Ilggal st'ates_. . . . yation controller is defined as a map
From the above discussion, it is now clear that in order to satley

both safety and liveness requirements, the language generated by a con- v: PL(G) — 9

trolled systemL(~/G), must 1) be contained i&' and 2) be suffix

completable with respect 8, andM . However, there may exist many whereP : ¥* — X7 is the natural projection. It is known from [8],
controllers that achieve this requirement. In view of the fact that o{f], that the condition for existence of a supervisor under partial obser-
control objectives are supervisory in nature, in that we only want uation is controllability and observability of the supervised language.
guarantee safety and liveness (rather than some kind of preferred “Gjpservability is defined as follows.

timal” performance), we would like, just as in traditional supervisory Definition 3: A languagek’ C L(G) is said to beobservablewith
control, to find the minimally restrictive controller that permits theespect ta-, and L(G) if

maximal possible set of legal behaviors to survive. Clearly, such a mini- , R ,
mally restrictive controller would generate the largest languggeich (Vs, s € K)Ps = Ps' = (Vo € T)

that 1) i is closed and controllable (required by Theorem 1 for the ex- sc E KANs'c € L(G)= s'0c € K.

istence of a controller); 2) is contained in® (required by the safety .))) .
specification): and 3% is suffix completable (for liveness). Thus, in Asinthe case of full observation, the supervisor synthesis problem is
order to synthesize a minimally restrictive controller, it must first bgeduced to finding a largest closed, controllable, observable, and suffix

shown that such a language actually exists. Let us proceed by definﬁg’g”pl_emb'e §ub|anguage5t In other words, we are interested in the
the set of closed, controllable, and suffix completable sublanguage/@fowing set:

£, as COL(E) = {K C E : Kis closed,
CL(E)={K C E: K is closed, controllable, observable and suffix completgble

which is the same as nonblocking.
The second issue is about partial observation. If a controller can only

controllable and suffix completalle ynfortunately, this set is not generally closed under union, since the
union of two observable languages may not be observable [8], [9].
Hence, the supremal element@OL(E) may not exist and we may
only be able to find some maximal element@HL(E). A controller

"Lan then be synthesized based on this maximal element. An algorithm
for finding a maximal element adEOL(E) is much more complicated
and will not be discussed in this note.

This set has the following very nice property.
Theorem 2: CL(FE) is closed under (arbitrary) union.

Proof: Let R be the union of an arbitrary set of languages i
CL(E). The fact thaf? is closed and controllable is known from [13].
So we only need to show thak is suffix completable. To this end, let
s € R be any string. Ther € K for some languag&”™ C R, and
since KX is suffix completable, V. CONTROLLER SYNTHESIS

(Ftexi)ste KNM = (3t € I7)st € RN M. In this section, we study the key to controller synthesis: How to find
_) ~ E'. We consider two cases: (1) where the specification is static, and
Therefore(Vs € R)(3t € ¥;)st € RN M and, henceR is suffix (2) the specification is dynamic.
completable. u As stated earlier, by a static specification, we mean that the safety
By Theorem 2, we cc;nclude that the supremal elemeritlofE’) and jiveness requirements are given by two sets of s@iend(Q, .
exists. We denote it by . By Theorem 1, we know that a controlleryere(), C () is the set of illegal states that the system must not visit.

can always be synthesized such tiidt/G) = E'. Therefore, the The corresponding legal language is then given by
problem of synthesizing the minimally restrictive controller that guar-

antees safety and liveness is reduced to the problem of firiding E={s€L(G): (Vt < 5)6(qo,t) € Qv}

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002 317

wheret < s meanst is a prefix ofs. Similarly, @, C Q is the B, 0\ l
set of marked states representing the completion of tasks. Hence, the Br ¢ B, (!
corresponding marked language is given by RER IER LIEI REI

M= {s € L(G) : (g0, s) € Qm }.

To find E' in the static case, the algorithm proceeds along the fol-
lowing lines. At each step, there is a set of bad states (BS) (which ini-
tially is, of course, equal t@),). We “shrink” E, to render it control-
lable, by adding to the set BS the set of “uncontrollable states”, from
which there exists an uncontrollable path to BS. That is, we augment
BS with

Que(BS) = {g € Q-BS : (Is € (T — T.)")8(q. 5) € BS}.

The states in this set are “uncontrollable” in the sense that when in any
of these states, the system can execute a sequence of events that cag@1ot Transition diagram of manufacturing system.
be disabled or disallowed by the controller, that causes the system to

enter a state in BS. Obviously, any string leadingXea.(BS) cannot

be inE', and hence the statesh,.(BS) must be added to BS. users to trigger certain events on his/her behalf that the user him/herself
Next we shrinkE further, to make it suffix completable, by addingcannot trigger? The answers to such questions depend on the objective
the following “noncompletable” states to BS: of the user and the degree of cooperation of the other users. Therefore,
let us distinguish, from the viewpoint of usigrtwo sets of users
Qne(BS) = {g € Q-BS: ~(3s € ¥7)(6(q. 5) FA—the set of cooperative users;
€ Qm N (Yt < 5)6(q.t) € BS)}. EA—the set of noncooperative users.
As before, the objectives of the controller for user=1,2,...,nis

These are states from which the system cannot reach a marked
through event sequences that consist only of eventy iwithout in-
tercepting illegal states in BS.
Clearly, the addition of the sép...(BS) to BS can generate new ’ > > 3 f .
uncontrollable states from which a string(B — £.)* will lead to a disable or disallow. Thatis.; = T; U (X, — U;#i%5).
state in BS. Therefore the above procedure of enlarging BS must be?) O more optimistically, user relies for safety also on
repeated until it converges (when no new states are added). The precise °ther (coopere}ltklve) users to disable Lo disallow events.
algorithm is omitted here, but can be found in the full version of the Zs; = (Viera i) U (.U"EFAE'? = UjgraX;). .)
note at www.ece.eng.wayne.edu/~flin. On the otht_er hand, the Ilvc_ene_ss evehis can be specified differ-
The above algorithm shows how to calculdé when the specifi- €ntly: depending on the application at hand, as follows.
cation is static. In the general case, the specification may be dynamié€ase 1) At one extreme, usérwants to be absolutely sure and

%@E?chieve safety and liveness. For safety evEntsof user:, at least
two cases can be discussed.

1) User: relies for his/her safety only on events that he/she can

and given by a legal languadge and a marked language . Our ap- guarantee task completion without compromise. Therefore,
proach in this case is to translate the dynamic specification into a static he/she will rely only on the events that he/she can trigger
specification by possibly enlarging the state seGofThe details can but no other agents can disabfy, = S} — (U, 59).
be found in the full version of the note. Case 2) Inthe second case, usetll rely on the events that he/she
can trigger but no uncooperative agents can disahle=
VI. MULTI-USER SYSTEMS Sf — (UjeraSy).
)))] Case 3) In the third case, ugewill rely on the events that the coop-
In this section, we cor@der systems witlusers. For each user, two erative agents can trigger but no uncooperative agents can
sets of events are specified disable:S;, = (UicraS{) — (UjeraS)).
T{ is the set of events that usecan disable; Case 4) Finally, at the other extreme, usaray rely on everyone’s
¥} is the set of events that usecan trigger; = 1,2,....n. mercy to achieve livenes;, = . (This last case is as-
We do not put any constraints on the stk and ©!. Hence, we sumed in traditional supervisory control).

permit the possibility that an event can be triggered and/or disabled bypf;ar determining=,. andx;

more than one user. :
If we consider the user and environment in the previous sections

user 1 and user 2, respectively, then in termEpfand>t, i = 1,2,

;» we will then design a controller for
agent usef that ensures safety and liveness in the same way as dis-
&@sed in the previous sections.

Example 2: (revisited) We return now to the example presented in

we have Section Il and will show how controllers can be synthesized under var-

S =S Shev,, Yowo o wdowr ious assumptlons regarding the attitude of (or degree of cooperation
between) its two users (operators).

Hence The state transition diagram of the uncontrolled system is obtained

by the synchronous composition of its three components as shown in
_yd yu _yt_ wd Fig. 2, where the state labe[§Y Z mean: machine 1 is in staf§
(X = Idle or X = Ruu), bufferisin stat¢” (Y = Empty, Y = Full
What makes the multiuser problem different and interesting is tlee¢ ¥ = Jammed) and machine 2 is in stat&. The dashed states
various modes of possible cooperation among users. For example, @elnere the buffer is jammed) are illegal, and the legal subsystem (and
a user rely on some other users for disablement of certain events thaguage) can be obtained upon deletion from the system of these states
the user him/herself cannot disable? Or can a user rely on some otrad their associated transitions.

318 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

The sets of events that operators 1 and 2 can trigger are, respeds] M. Heymann and F. Lin, “On-line control of partially observed discrete

tively, Tt = {a1,B81,m} and T = {az, B2, 72 }. Similarly, the event systems Discrete Event Dyna. Syst.: Theory Appbl. 4, no. 3,
sets of events operators 1 and 2 can disable are, respeciiely; pp. 221-236, 1994. A
) d p [6] ——, “Discrete event control of nondeterministic systemi&EE Trans.
fa, fr,m} andXy = {az, B2, 2,1} Automat. Contr.vol. 43, pp. 3-17, Jan. 1998.
If user 1 wants to insure safety (i.e., prevent the system from reachinq7] ——, “Nonblocking Supervisory Control of Nondeterministic Sys-
any of the illegal states) and user 2 is not cooperative, then= ©¢. tems,”, Technion, Israel, CIS Report 9620, 1996.

The legal language in this case is not controllable and the supremal8l F- Lin, “On Controllability and Observability of Discrete Event Sys-

controllable sublanguade is empty. However. if user 2 is cooperative tems,” Ph. D. dissertation, Department of Electrical Engineering, Univ.
guag Py ! P ' of Toronto, Toronto, ON, Canada, 1987.

thenX,, = X, and the legal language is controllable. In contrast, If [9] F. Linand W. M. Wonham, “On observability of discrete event systems,”
user 2 wants to insure safety, thBp, = X7 in case user 1 is uncoop- Inform. Sci, vol. 44, no. 3, pp. 173-198, 1988.

era’“vel an@sz =Y in case user 1 |S Coopera'“ve In bo’[h cases thdlo] e “Decentralized SUperViSory control of discrete-event SySteh’lS,"
legal language is controllable. form. Sci, vol. 44, no. 3, pp. 199-224, 1988.

L L . éll] ——, “Decentralized control and coordination of discrete event sys-
et us now assume that the initial state IEI is the only marked stat tems with partial observationJEEE Trans. Automat. Conrvol. 35,
of the system, and that in addition to safety, the controller must satisfy ~ pp. 1330-1337, Dec. 1990.
the liveness condition specified by the marked language that consisi&2] —— “Supervisory control of timed discrete event systems under partial
of all the event strings that lead the system to this marked state. (1’ggir"at'°”"1EEE Trans. Automat. Confwvol. 40, pp. 558-562, Mar.
Let us now consider the two-user control problem with the requirey 31 R "3 'Ramadge and W. M. Wonham, “Supervisory control of a class of
ment that both safety and liveness must be satisfied. In case user 1 wants' discrete event processe§IAM J. Control Optim.vol. 25, no. 1, pp.
to achieve safety and liveness, only the situation where user 2 is coop- 206-230, 1987.
erative with respect to safety is relevant. Let us further assume that usB¢l P- J. Ramadge and W. M. Wonham, “The control of discrete event sys-
2 is cooperative also with respect to liveness, in which cBde= 0 tems,Proc. IEEE vol. 77, pp. 81-98, Jan. 1989.
andFA = {1,2}.
Incase 1 (wher&;, = ¥! — (U, 59)), we obtain;, = {1, 1}
By our synthesis algorithm, the resulting safe and live system consists
of states IEI and REI.
In case 2 (wher&;, = ¥! — (Ujerat?)), we obtainy;,
{au, 81,71 }. By our synthesis algorithm, the resulting safe and live
system consists of states IEl and REI.
In case 3 (Wher&;, = (UieraZi) — (UjeeaSy)), we obtain
3, = X. By our synthesis algorithm, the resulting safe and live system
consists of all the legal states. Abstract—\We present an extremum seeking control algorithm for dis-
In case 4 (wher&;, = X), we obtaint;, = . By our synthesis crete-time systems applied to a class of plants that are represented as a
algorithm, the resulting safe and live system consists of all the |eg$§|ries combination of_a linear input dyna_mics, a st_atic nonlinea_rily with
states. an extremum, and a linear output dynamics. By using the two-time scale
o . . . averaging theory, we derive a mild sufficient condition under which the
In a similar fashion, we can discuss how user 2 can achieve safgfyht output exponentially converges to anO(a®) neighborhood of the
and liveness. extremum value, whereex is the magnitude of modulation signal. The suf-
ficient condition is related to positive realness of linear parts of the plant
but only at the modulation frequency. The algorithm is illustrated with a
VII. CONCLUSION brief simulation study.

We have introduced an extended framework for discrete-event conldex Terms—Averaging, discrete-time systems, extremum seeking.
trol where, in addition to the events that can be triggered by the en-
vironment, the user has at his/her disposal a set of events that he/she
can trigger. Both the user and the environment can each disable cer-
tain events of the other. We examined the control problem where botrfEXtremum seeking, a nonmodel based method of adaptive control,
safety and liveness requirements can be specified in a somewhat nf§t@ls with systems where the reference-to-output map is uncertain but
general setting than in the traditional discrete-event control framewolk known to have an extremum. The objective of extremum seeking is
A particularly interesting generalization is obtained when the envirof? find the set point that achieves the extremum.
ment consists of (or includes) one or more additional users. This lead&rstic and Wang [1] presented the first stability analysis for an ex-
to a variety of interesting scenarios where the users have each their $/@fum seeking system applied to a general nonlinear dynamical plant.
control objectives (specifications) and capabilities. Their analysis used averaging and singular perturbations.”Kg@jtic

Extremum Seeking Control for Discrete-Time Systems

Joon-Young Choi, Miroslav Krstiartik B. Ariyur, and Jin S. Lee

|. INTRODUCTION

REFERENCES Manuscript received February 19, 2001; revised July 23, 2001. Recom-
mended by Associate Editor L. Y. Wang. This work was supported by Grants
[1] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.from Air Force Office of Scientific Research, the Office of Naval Research, the
Wonham, “Formulas for calculating supremal controllable and norm&lational Science Foundation, and the Ministry of Education, Korea through
sublanguages 3yst. Control Lett.vol. 15, pp. 111-117, 1990. the BK21 program of the ECE division at POSTECH.
[2] S. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in J.-Y. Choi and J. S. Lee are with the Department of Electronic and Electrical
supervisory control of discrete-event systemg&EE Trans. Automat. Engineering, Pohang University of Science and Technology, Pohang 790-784,

Contr, vol. 37, pp. 1921-1935, Dec. 1992. Korea (e-mail: cjy@postech.ac.kr).
[3] M. Heymann, “Concurrency and discrete-event contritZE Control M. Krstic and K. B. Ariyur are with the Department of Mechanical and
Syst. Mag.vol. 10, no. 4, pp. 103-112, 1990. Aerospace Engineering, University of California at San Diego, La Jolla, CA
[4] M.Heymann and G. Meyer, “An Algebra of Discrete Event Processes,92093-0411 USA (e-mail: krstic@ucsd.edu).
NASA Technical Memorandum 102 848, 1991. Publisher Item Identifier S 0018-9286(02)02073-1.

0018-9286/02$17.00 © 2002 IEEE

