
314 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

Multiuser Discrete-Event Control With Active Events

Michael Heymann, Feng Lin, and George Meyer

Abstract—The traditional framework for discrete-event control is ex-
tended to include the case of control with active events, in which both the
user and the environment have events that they can trigger. A variety of
liveness and safety specifications can be considered within this extended
framework. A synthesis algorithm of minimally restrictive controllers is
outlined. Multiuser systems are also discussed.

Index Terms—Discrete-event systems, manufacturing systems, multia-
gent, safety and liveness, supervisory control.

I. INTRODUCTION

In the traditional paradigm of supervisory control theory for dis-
crete-event systems, all events are assumed to be triggered by the en-
vironment. To achieve the required behavior, the user has the ability
to control the system only by disabling some of the events (which are
called controllable events). The supervisory control problem is then to
synthesize a supervisor which, through suitable disablement of control-
lable events, confines the system’s behavior to within specified legal
requirements (usually in a minimally restrictive way) [1]–[14].

Although in the resultant mathematical theory of discrete-event con-
trol, the precise nature of the events is not always crucial, the theory
cannot always be adapted to alternate setups. In particular, when both
the user and the environment can trigger events in the system, the na-
ture of the control problem can change substantially, and the traditional
supervisory control framework must be modified.

In the present note we present an extended framework for super-
visory control, in which certain events can be triggered by the user,
certain events can be triggered by the environment, and both the user
and the environment can disable a subset of the other’s events. An ex-
ample is provided to illustrate this situation. While control for safety
specifications remains quite similar to the traditional setup, control for
liveness is quite different since several versions of liveness can con-
vincingly be defined. For example, it may be required that the user be
able to complete tasks using only events that he/she can trigger and the
environment cannot disable. This leads to a new framework for live-
ness control and to a suitable modification of safety control. The theory
is developed and a synthesis algorithm is outlined. We also apply this
framework to multiuser systems.

II. I LLUSTRATIVE EXAMPLE

Example 1: Consider the following simple manufacturing system.
The system consists of two machines and a buffer, as shown in Fig. 1.

Manuscript received August 11, 2000; revised August 2, 2001. Recom-
mended by Associate Editor R. S. Sreenivas. This work was supported in
part by the National Science Foundation under Grants INT-9602485 and
ITR-0082784, NASA under Grant NAG2-1043, and in part by the Technion
Fund for Promotion of Research. The work of the first author was completed
while he was visiting NASA Ames Research Center, Moffett Field, CA 94035
USA, on a grant with San Jose State University.

M. Heymann is with the Department of Computer Science, Technion—Is-
rael Institute of Technology, Haifa 32000, Israel (e-mail: heymann@cs.tech-
nion.ac.il).

F. Lin is with the Department of Electrical and Computer Engineering, Wayne
State University, Detroit, MI 48202 USA (e-mail: flin@ece.eng.wayne.edu).

G. Meyer is with the NASA Ames Research Center, Moffett Field, CA 94035
USA (e-mail: gmeyer@mail.arc.nasa.gov).

Publisher Item Identifier S 0018-9286(02)02072-X.

Fig. 1. Manufacturing System.

The system is controlled by two operators. The first operatorO1 has
exclusive access to machineM1 and has shared access with operator
O2 to the bufferB. MachineM2 is fed from the buffer, and is operated
by operatorO2. The buffer has the capacity of exactly one part.

The system is operated in the following way: OperatorO1 can send a
part for processing to machineM1 (event�1). He/she can then choose
to allow machineM1 to complete processing the part, and then remove
the finished part from the machine (event�1) or, if the buffer is empty,
he/she can remove the partially processed part fromM1 to the buffer
B (event
1) for finishing on machineM2.

OperatorO2 can feed a part directly into bufferB, provided the
buffer is empty (event
2). At any time, he/she can feed a part from
the bufferB (provided it is not empty) to machineM2 for processing
(event�2) which, upon completion, is ejected from the machine (event
�2). OperatorO2 has the ability, at any time, to disable
1 or to enable
it.

Note that the interpretation of controllable and uncontrollable events
here is different from that in traditional supervisory control. From the
viewpoint of operatorO1, an event is controllable if it can be executed
(its occurrence enforced) by the controller (O1 in this case) and cannot
be disabled by the environment (O2 in this case).

To study liveness properties of the manufacturing system, we desig-
nate the states where all parts are completely processed as the marked
states. That is, we wish to guarantee that each part be processed suc-
cessfully and completely.

Note that if we consider liveness to be the notion of nonblocking
as in supervisory control, then the manufacturing system as described
above is live: that is, from each state there exists a path to a marked
state, and the system is nonblocking.

Upon a closer look, we find, however, that such liveness is at the
mercy of the environment. In particular, there exist states from which,
for the system to reach a marked state, it depends on cooperation of
the environment (i.e., onO2). We refer to such reachability as weak
reachability.

To guarantee that a system is live even if its environment is not co-
operative, we need to introduce a stronger notion of reachability: We
require that, from any state, there exists a path to a marked state that
can be executed by the controller and cannot be disabled by the envi-
ronment (that is, a path that consists only of controllable events).

Based on this definition, the manufacturing system is not strongly
reachable. Intuitively, to ensure strong reachability,O1 must not be
permitted to send the part to the bufferB.

With this illustrative example in mind, we shall develop the theory
of active control for discrete-event systems that deals with both weak
and strong reachability, among other things.

III. CONTROL WITH ACTIVE EVENTS

In this section, we propose a new framework for modeling and con-
trol of discrete-event systems in which both the user and the envi-

0018–9286/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002 315

ronment can trigger some of the events. We call such systems dis-
crete-event systems with active events. The system is modeled by an
automaton

G = (�; Q; �; q0; Qm)

where the event set�, the state setQ, the transition function�, the ini-
tial stateq0, and the marked state setQm have their usual meaning as in
discrete-event control [14]. The system has two participants (players):
the user and the environment.1 . As discussed earlier, events of the
system are triggered either by the user or by the environment. There-
fore, the event set� is expressed as

� = �usr [�env

where�usr is the set of events that can be triggered by the user, while
�env is the set of events that can be triggered by the environment. In
general the two event sets need not be disjoint, and there may be events
that can be triggered both by the user and the environment. The event
set�usr consists of two disjoint subsets

�usr = �c

usr
_[�u

usr

where�c

usr is the subset of the user-triggered events that can be dis-
abled by the environment and�u

usr the subset of the user-triggered
events that cannot be disabled by the environment. Similarly, the event
set�env is partitioned into two disjoint subsets�env = �c

env
_[�u

env.
In traditional supervisory control of discrete-event systems, it is as-

sumed that all events are triggered by the environment (that is,�usr =
;) and that the user can only disable events (in�c

env) from taking place.
In this sense the control that the user can exert on the system is purely
supervisory.

In the present setting the user has at his/her disposal in addition to
the events from�c

env that he/she can disable, also the events in�usr,
which we callactiveevents, that he/she can trigger. As we shall see,
several new issues must be addressed because of the introduction of
active events.

We are still interested in supervisory control issues, in that we do
not introduce any goal for our controller, other than to guarantee the
safety and liveness of the system, from the point of view of the user,
as to be further discussed in Section IV. This goal must be achieved
by a controller or supervisor through the disablement, or disallowing
the execution of, certain events inG. Clearly, the user has no authority
over events in�u

env, which he/she cannot prevent from occurring. In
other words, the controller can only disable or disallow the following
“safety” events.

�s = �� �u

env = �c

env [�usr � �u

env :

Formally, a controller is defined as a mapping

 : L(G)! 2�

and operates as follows: After the occurrence of a sequence of eventss,
the controller “disables” the set of events
(s) � �s. Specifically, the
subset of events
(s) \ �c

env is disabled from being triggered by the
environment, and the subset of events
(s) \�usr (which can be trig-
gered by the user) is disallowed. On the other hand, events in��
(s)
can be triggered by the user or the environment if they are physically
possible.

To specify the behavior of the controlled system
=G, we study the
languageL(
=G) generated by the controlled system, which is given
as follows:

1The environment models everything other than the user, and may include
other users.

• the empty string� belongs toL(
=G);
• after a sequences 2 L(
=G); s� 2 L(
=G) for � 2 �, if and

only if � is possible inL(G) and is not disabled or disallowed by

, that is

s� 2 L(
=G), s� 2 L(G) ^ � 62
(s):

Although our interpretation of the systemG and controller
 are
very different from those in traditional supervisory control, we have
managed to keep their mathematical definition identical to those in tra-
ditional supervisory control, if we view�s as the set of controllable
events in traditional supervisory control. Therefore, the existence con-
dition for our controller is characterized by the controllability condition
[14], just as in traditional supervisory control.

Definition 1: A languageK � L(G) is said to becontrollablewith
respect to�s andL(G) if

(8s 2 �K)(8� 2 �� �s)s� 2 L(G)) s� 2 �K

where �K is the prefix closure ofK.
The following theorem, that characterizes conditions for the exis-

tence of a controller, is then the suitable restatement of the well-known
result of [13, Prop. 5.1].

Theorem 1: For a nonempty languageK � L(G), there exists a
controller
 such thatL(
=G) = K if and only if K is closed and
controllable.

With this theorem, we can now discuss the specification and syn-
thesis of controllers.

IV. SAFETY AND LIVENESS

As stated, the objective of our controller is to guarantee the safety
and liveness of a system. Safety requirements specify what behaviors
are not allowed in the system. One way of specifying safety is by stating
a setQb � Q of illegal states that the system must never enter. We call
such a specification astatic safety specification [6]. A more general
safety requirement is adynamicspecification, given by a closed lan-
guageE = �E that describes the maximally allowedsafeor legal be-
havior. (For obvious reasons, we assume thatE � L(G).) The safety
requirement is then that the controlled system never exitE; that is

L(
=G) � E:

On the other hand, the liveness requirements are stated so as to
guarantee that certain specified tasks can always be completed by the
system. To this end, we specify a nonclosed languageM , called the
marked language, that specifies the set of completed tasks.2 Given
a marked languageM , the liveness requirement implies that every
run of the controlled system must be extendable to a string of the
marked language. In other words, liveness implies that every run can
be extended to a completed task. Now in view of the classification
of events allowed in the present framework, we can be somewhat
more discriminating with respect to the question of what precisely
we mean by the requirement of extendability to completed tasks.
For example, in traditional supervisory control, liveness consists of
the “nonblocking” condition, where task completion always implies
the participation of the environment, since the user has no capability
of triggering events. Thus, in the present setting, we may also be
satisfied with a corresponding nonblocking condition that consists
of the ability of the controlled system to complete tasks through the
cooperative participation of the user and the environment. That is,
every run can be completed to a string inM by concatenating to it a

2This kind of specification is more general than specifying a set of marked
statesQ � Q, as is customary in traditional supervisory control.

316 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

string of suitable events from�. Alternatively, we may insist that the
user be able to complete tasks by executing only the events that the
user can trigger and the environment cannot disable; that is, events
from �u

usr. Another possibility is, that we may allow task completion
by executing events from�usr; that is, any user triggered events. Thus,
we define a suitable set ofliveness events�l, with respect to which
task completion to strings inM must be possible. To state the liveness
specification formally, we require that the languageL(
=G) besuffix
completableas defined below.

Definition 2: A languageK � L(G) is said to besuffix com-
pletablewith respect to�l andM if

(8s 2 �K)(9t 2 ��
l)st 2 �K \M:

In words, a languageK is suffix completable, if every string in its
prefix closure, can be completed to a string in the marked languageM
by concatenating to it some events from�l. We define suffix complete-
ness ofK based on the prefix closure ofK becauseL(
=G) is always
closed. Clearly, with this definition, a language is suffix completable if
and only if its prefix closure is suffix completable.

Note that, unlike in traditional supervisory control, where liveness or
task completion is modeled by a set of marked states inG, we consider
task completion as specified byM . This gives us more freedom in task
specification, just as specifying a legal languageE is more general than
specifying a set of illegal states.

From the above discussion, it is now clear that in order to satisfy
both safety and liveness requirements, the language generated by a con-
trolled system,L(
=G), must 1) be contained inE and 2) be suffix
completable with respect to�l andM . However, there may exist many
controllers that achieve this requirement. In view of the fact that our
control objectives are supervisory in nature, in that we only want to
guarantee safety and liveness (rather than some kind of preferred “op-
timal” performance), we would like, just as in traditional supervisory
control, to find the minimally restrictive controller that permits the
maximal possible set of legal behaviors to survive. Clearly, such a mini-
mally restrictive controller would generate the largest languageK such
that 1)K is closed and controllable (required by Theorem 1 for the ex-
istence of a controller); 2)K is contained inE (required by the safety
specification); and 3)K is suffix completable (for liveness). Thus, in
order to synthesize a minimally restrictive controller, it must first be
shown that such a language actually exists. Let us proceed by defining
the set of closed, controllable, and suffix completable sublanguage of
E, as

CL(E) = fK � E : K is closed,

controllable and suffix completableg:

This set has the following very nice property.
Theorem 2: CL(E) is closed under (arbitrary) union.

Proof: Let R be the union of an arbitrary set of languages in
CL(E). The fact thatR is closed and controllable is known from [13].
So we only need to show thatR is suffix completable. To this end, let
s 2 R be any string. Thens 2 K for some languageK � R, and
sinceK is suffix completable,

(9t 2 ��
l)st 2 �K \M) (9t 2 ��

l)st 2 �R \M:

Therefore,(8s 2 R)(9t 2 ��
l)st 2 �R \M and, hence,R is suffix

completable.
By Theorem 2, we conclude that the supremal element ofCL(E)

exists. We denote it byE". By Theorem 1, we know that a controller
can always be synthesized such thatL(
=G) = E". Therefore, the
problem of synthesizing the minimally restrictive controller that guar-
antees safety and liveness is reduced to the problem of findingE".

Before showing how to calculateE" in the next section, let us first
remark about two related issues.

First, if we take�l = � andM = Lm(G), then liveness is equiva-
lent to the nonblocking requirement in traditional supervisory control,
which is characterized by the condition that

Lm(
=G) = L(
=G):

To see that this is indeed the case, note that sinceLm(
=G) =
L(
=G) \ Lm(G)

Lm(
=G) = L(
=G)

,L(
=G) \ Lm(G) = L(
=G)

,L(
=G) \ Lm(G) � L(
=G):

The last step is due to the fact thatL(
=G) \ Lm(G) � L(
=G) \
Lm(G) = L(
=G) is always true.

On the other hand, liveness is equivalent to the property

(8s 2 L(
=G))(9t 2 ��)st 2 L(
=G) \ Lm(G)

, L(
=G) � L(
=G) \ Lm(G)

which is the same as nonblocking.
The second issue is about partial observation. If a controller can only

observe events in some observable event set�o, then a partial obser-
vation controller is defined as a map

 : PL(G)! 2�

whereP : �� ! ��
o is the natural projection. It is known from [8],

[9], that the condition for existence of a supervisor under partial obser-
vation is controllability and observability of the supervised language.
Observability is defined as follows.

Definition 3: A languageK � L(G) is said to beobservablewith
respect to�o andL(G) if

(8s; s0 2 �K)Ps = Ps0) (8� 2 �)

s� 2 �K ^ s0� 2 L(G)) s0� 2 �K:

As in the case of full observation, the supervisor synthesis problem is
reduced to finding a largest closed, controllable, observable, and suffix
completable sublanguage ofE. In other words, we are interested in the
following set:

COL(E) = fK � E : K is closed,

controllable, observable and suffix completableg:

Unfortunately, this set is not generally closed under union, since the
union of two observable languages may not be observable [8], [9].
Hence, the supremal element ofCOL(E) may not exist and we may
only be able to find some maximal element ofCOL(E). A controller
can then be synthesized based on this maximal element. An algorithm
for finding a maximal element ofCOL(E) is much more complicated
and will not be discussed in this note.

V. CONTROLLER SYNTHESIS

In this section, we study the key to controller synthesis: How to find
E". We consider two cases: (1) where the specification is static, and
(2) the specification is dynamic.

As stated earlier, by a static specification, we mean that the safety
and liveness requirements are given by two sets of statesQb andQm.
HereQb � Q is the set of illegal states that the system must not visit.
The corresponding legal language is then given by

E = fs 2 L(G) : (8t � s)�(qo; t) 62 Qbg

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002 317

wheret � s meanst is a prefix of s. Similarly, Qm � Q is the
set of marked states representing the completion of tasks. Hence, the
corresponding marked language is given by

M = fs 2 L(G) : �(qo; s) 2 Qmg:

To find E" in the static case, the algorithm proceeds along the fol-
lowing lines. At each step, there is a set of bad states (BS) (which ini-
tially is, of course, equal toQb). We “shrink”E, to render it control-
lable, by adding to the set BS the set of “uncontrollable states”, from
which there exists an uncontrollable path to BS. That is, we augment
BS with

Quc(BS) = fq 2 Q-BS : (9s 2 (�� �s)
�)�(q; s) 2 BSg:

The states in this set are “uncontrollable” in the sense that when in any
of these states, the system can execute a sequence of events that cannot
be disabled or disallowed by the controller, that causes the system to
enter a state in BS. Obviously, any string leading toQuc(BS) cannot
be inE", and hence the states inQuc(BS) must be added to BS.

Next we shrinkE further, to make it suffix completable, by adding
the following “noncompletable” states to BS:

Qnc(BS) = fq 2 Q-BS : :(9s 2 ��
l)(�(q; s)

2 Qm ^ (8t � s)�(q; t) 62 BS)g:

These are states from which the system cannot reach a marked state
through event sequences that consist only of events in�l without in-
tercepting illegal states in BS.

Clearly, the addition of the setQnc(BS) to BS can generate new
uncontrollable states from which a string in(� � �s)

� will lead to a
state in BS. Therefore the above procedure of enlarging BS must be
repeated until it converges (when no new states are added). The precise
algorithm is omitted here, but can be found in the full version of the
note at www.ece.eng.wayne.edu/~flin.

The above algorithm shows how to calculateE" when the specifi-
cation is static. In the general case, the specification may be dynamic
and given by a legal languageE and a marked languageM . Our ap-
proach in this case is to translate the dynamic specification into a static
specification by possibly enlarging the state set ofG. The details can
be found in the full version of the note.

VI. M ULTI-USERSYSTEMS

In this section, we consider systems withn users. For each user, two
sets of events are specified

�d
i is the set of events that useri can disable;

�t
i is the set of events that useri can trigger,i = 1; 2; . . . ; n.

We do not put any constraints on the sets�d
i and�t

i . Hence, we
permit the possibility that an event can be triggered and/or disabled by
more than one user.

If we consider the user and environment in the previous sections as
user 1 and user 2, respectively, then in terms of�d

i and�t
i; i = 1; 2,

we have

�t
1 = �usr �t

2 = �env �d
1 = �c

env �d
2 = �c

usr:

Hence

�u
env = �t

2 � �d
1 �u

usr = �t
1 � �d

2:

What makes the multiuser problem different and interesting is the
various modes of possible cooperation among users. For example, can
a user rely on some other users for disablement of certain events that
the user him/herself cannot disable? Or can a user rely on some other

Fig. 2. Transition diagram of manufacturing system.

users to trigger certain events on his/her behalf that the user him/herself
cannot trigger? The answers to such questions depend on the objective
of the user and the degree of cooperation of the other users. Therefore,
let us distinguish, from the viewpoint of useri, two sets of users

FA—the set of cooperative users;
EA—the set of noncooperative users.

As before, the objectives of the controller for useri; i = 1; 2; . . . ; n is
to achieve safety and liveness. For safety events�s of useri, at least
two cases can be discussed.

1) Useri relies for his/her safety only on events that he/she can
disable or disallow. That is,�s = �d

i [(�t
i � [j 6=i�

t
j).

2) Or, more optimistically, useri relies for safety also on
other (cooperative) users to disable or disallow events.
�s = ([i2FA�

d
i) [([i2FA�

t
i � [j 62FA�

t
j).

On the other hand, the liveness events�l can be specified differ-
ently, depending on the application at hand, as follows.

Case 1) At one extreme, useri wants to be absolutely sure and
guarantee task completion without compromise. Therefore,
he/she will rely only on the events that he/she can trigger
but no other agents can disable:�l = �t

i � ([j 6=i�
d
j).

Case 2) In the second case, useri will rely on the events that he/she
can trigger but no uncooperative agents can disable:�l =
�t
i � ([j2EA�

d
j).

Case 3) In the third case, useriwill rely on the events that the coop-
erative agents can trigger but no uncooperative agents can
disable:�l = ([i2FA�

t
i)� ([j2EA�

d
j).

Case 4) Finally, at the other extreme, useri may rely on everyone’s
mercy to achieve liveness:�l = �. (This last case is as-
sumed in traditional supervisory control).

After determining�s and�l , we will then design a controller for
agent useri that ensures safety and liveness in the same way as dis-
cussed in the previous sections.

Example 2: (revisited) We return now to the example presented in
Section II and will show how controllers can be synthesized under var-
ious assumptions regarding the attitude of (or degree of cooperation
between) its two users (operators).

The state transition diagram of the uncontrolled system is obtained
by the synchronous composition of its three components as shown in
Fig. 2, where the state labelsXY Z mean: machine 1 is in stateX
(X = Idle orX = Run), buffer is in stateY (Y = Empty; Y = Full
or Y = Jammed) and machine 2 is in stateZ. The dashed states
(where the buffer is jammed) are illegal, and the legal subsystem (and
language) can be obtained upon deletion from the system of these states
and their associated transitions.

318 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

The sets of events that operators 1 and 2 can trigger are, respec-
tively, �t

1 = f�1; �1;
1g and�t
2 = f�2; �2;
2g. Similarly, the

sets of events operators 1 and 2 can disable are, respectively,�d
1 =

f�1; �1;
1g and�d
2 = f�2; �2;
2;
1g.

If user 1 wants to insure safety (i.e., prevent the system from reaching
any of the illegal states) and user 2 is not cooperative, then�s = �d

1 .
The legal language in this case is not controllable and the supremal
controllable sublanguage is empty. However, if user 2 is cooperative,
then�s = �, and the legal language is controllable. In contrast, If
user 2 wants to insure safety, then�s = �d

2 in case user 1 is uncoop-
erative, and�s = � in case user 1 is cooperative. In both cases the
legal language is controllable.

Let us now assume that the initial state IEI is the only marked state
of the system, and that in addition to safety, the controller must satisfy
the liveness condition specified by the marked language that consists
of all the event strings that lead the system to this marked state.

Let us now consider the two-user control problem with the require-
ment that both safety and liveness must be satisfied. In case user 1 wants
to achieve safety and liveness, only the situation where user 2 is coop-
erative with respect to safety is relevant. Let us further assume that user
2 is cooperative also with respect to liveness, in which case,EA = ;
andFA = f1; 2g.

In case 1 (where�l = �t
i�([j 6=i�

d
j)), we obtain�l = f�1; �1g.

By our synthesis algorithm, the resulting safe and live system consists
of states IEI and REI.

In case 2 (where�l = �t
i � ([j2EA�

d
j)), we obtain�l =

f�1; �1;
1g. By our synthesis algorithm, the resulting safe and live
system consists of states IEI and REI.

In case 3 (where�l = ([i2FA�
t
i) � ([j2EA�

d
j)), we obtain

�l = �. By our synthesis algorithm, the resulting safe and live system
consists of all the legal states.

In case 4 (where�l = �), we obtain�l = �. By our synthesis
algorithm, the resulting safe and live system consists of all the legal
states.

In a similar fashion, we can discuss how user 2 can achieve safety
and liveness.

VII. CONCLUSION

We have introduced an extended framework for discrete-event con-
trol where, in addition to the events that can be triggered by the en-
vironment, the user has at his/her disposal a set of events that he/she
can trigger. Both the user and the environment can each disable cer-
tain events of the other. We examined the control problem where both
safety and liveness requirements can be specified in a somewhat more
general setting than in the traditional discrete-event control framework.
A particularly interesting generalization is obtained when the environ-
ment consists of (or includes) one or more additional users. This leads
to a variety of interesting scenarios where the users have each their own
control objectives (specifications) and capabilities.

REFERENCES

[1] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and normal
sublanguages,”Syst. Control Lett., vol. 15, pp. 111–117, 1990.

[2] S. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete-event systems,”IEEE Trans. Automat.
Contr., vol. 37, pp. 1921–1935, Dec. 1992.

[3] M. Heymann, “Concurrency and discrete-event control,”IEEE Control
Syst. Mag., vol. 10, no. 4, pp. 103–112, 1990.

[4] M. Heymann and G. Meyer, “An Algebra of Discrete Event Processes,”,
NASA Technical Memorandum 102 848, 1991.

[5] M. Heymann and F. Lin, “On-line control of partially observed discrete
event systems,”Discrete Event Dyna. Syst.: Theory Appl., vol. 4, no. 3,
pp. 221–236, 1994.

[6] , “Discrete event control of nondeterministic systems,”IEEE Trans.
Automat. Contr., vol. 43, pp. 3–17, Jan. 1998.

[7] , “Nonblocking Supervisory Control of Nondeterministic Sys-
tems,”, Technion, Israel, CIS Report 9620, 1996.

[8] F. Lin, “On Controllability and Observability of Discrete Event Sys-
tems,” Ph. D. dissertation, Department of Electrical Engineering, Univ.
of Toronto, Toronto, ON, Canada, 1987.

[9] F. Lin and W. M. Wonham, “On observability of discrete event systems,”
Inform. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[10] , “Decentralized supervisory control of discrete-event systems,”In-
form. Sci., vol. 44, no. 3, pp. 199–224, 1988.

[11] , “Decentralized control and coordination of discrete event sys-
tems with partial observation,”IEEE Trans. Automat. Contr., vol. 35,
pp. 1330–1337, Dec. 1990.

[12] , “Supervisory control of timed discrete event systems under partial
observation,”IEEE Trans. Automat. Contr., vol. 40, pp. 558–562, Mar.
1994.

[13] R. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, 1987.

[14] P. J. Ramadge and W. M. Wonham, “The control of discrete event sys-
tems,”Proc. IEEE, vol. 77, pp. 81–98, Jan. 1989.

Extremum Seeking Control for Discrete-Time Systems

Joon-Young Choi, Miroslav Krstic´, Kartik B. Ariyur, and Jin S. Lee

Abstract—We present an extremum seeking control algorithm for dis-
crete-time systems applied to a class of plants that are represented as a
series combination of a linear input dynamics, a static nonlinearity with
an extremum, and a linear output dynamics. By using the two-time scale
averaging theory, we derive a mild sufficient condition under which the
plant output exponentially converges to an () neighborhood of the
extremum value, where is the magnitude of modulation signal. The suf-
ficient condition is related to positive realness of linear parts of the plant
but only at the modulation frequency. The algorithm is illustrated with a
brief simulation study.

Index Terms—Averaging, discrete-time systems, extremum seeking.

I. INTRODUCTION

Extremum seeking, a nonmodel based method of adaptive control,
deals with systems where the reference-to-output map is uncertain but
is known to have an extremum. The objective of extremum seeking is
to find the set point that achieves the extremum.

Krstić and Wang [1] presented the first stability analysis for an ex-
tremum seeking system applied to a general nonlinear dynamical plant.
Their analysis used averaging and singular perturbations. Krstic´ [2]

Manuscript received February 19, 2001; revised July 23, 2001. Recom-
mended by Associate Editor L. Y. Wang. This work was supported by Grants
from Air Force Office of Scientific Research, the Office of Naval Research, the
National Science Foundation, and the Ministry of Education, Korea through
the BK21 program of the ECE division at POSTECH.

J.-Y. Choi and J. S. Lee are with the Department of Electronic and Electrical
Engineering, Pohang University of Science and Technology, Pohang 790-784,
Korea (e-mail: cjy@postech.ac.kr).

M. Krstić and K. B. Ariyur are with the Department of Mechanical and
Aerospace Engineering, University of California at San Diego, La Jolla, CA
92093-0411 USA (e-mail: krstic@ucsd.edu).

Publisher Item Identifier S 0018-9286(02)02073-1.

0018–9286/02$17.00 © 2002 IEEE

