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1. Introduction

In the framework proposed by Ramadge and Wonham
[1-3] a discrete-event system (DES) is modeled as a generator
(finite automaton) that executes asynchronous state transitions.
Normally, the control objective, in their framework, is to con-
fine the behavior of the system to within a prescribed legal
language. In some cases, however, one may want to specify
only the eventual behavior of the system. That is, arbitrary ini-
tial behavior of the system is allowed, but eventually the
behavior is required to converge to within a prescribed legal
behavior.

In the present paper we use the formalism of w-languages,
that is, formal languages consisting of infinite strings, similar
to [4], [5]. We say that the behavior of a DES P converges to
a given m-language E if after a finite number of state transi-
tions, P executes only infinite strings that belong to E. We
investigate the problem of synthesizing a supervisor under
which the closed-loop system converges to E .

The paper is organized as follows. In section 2 we intro-
duce some notations and properties of w-languages. The pro-
perty of convergence of an w-language to another ® language
is defined in section 3. Moreover, we discuss in this section
the problem of synthesizing a supervisor that ensures the con-
vergence of the closed-loop system behavior to a given -
language. In appendix A we present some properties of realiz-
able w-languages.

2. Preliminaries
2.1 Notation and terminology

Let £* denote the set of all finite strings, over a finite set
Z. We denote by Z° the set of all infinite strings over Z. Any
subset L X' is called a language over Z and any L <X® an
w-language over Z.

For s € X' and 1 € £"UZ®, stis the concatenation of the
strings s and ¢. For L X' UZ®, let pr(L) be the set of all pre-
fixes of strings in L, that is

prill)={teX*I(dseZ*UZs e L},
and let suf(L ) be the set all suffixes of strings in L, that is,
sufL)= (1€ Z*UZ®1 (FseX)stel ).

Definition 2.1 An w-language L < Z is called suffix closed if
suf(L)=L.

For a language L c X', the limit of L, denoted L, is defined
by
L={te X (ds; e L, u € I =s;u

for infinitely many i } .

Definition 2.2 An -language L is called realizable if

[pr(L)]*=L.

To model DES and to represent regular languages, we use fin-
ite automata of the form A =(Q,Z,3,0Q,), where Q is a finite
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set of states, Z finite set of symbols, &: IxQ —Q the transition
function and Q, a set of initial states. We denote by Lf (A) the
set of all finite strings which are accepted by A according to
the standard acceptance rule where all the states of A are final
states. Then we define the set of all infinite strings which are
accepted by A as L (A )=[Ls(4)]™.

2.2 Discrete event systems
We adopt the framework of Ramadge and Wonham [1-3].

Thus we assume that the discrete event system to be controlled
is represented by an automaton

P=(0.2,8,q,).

The finite behavior of P is given by Lf (P), and the infinite
behavior of the system, namely the set of all infinite sequences
of events that can be generated by P, is given by

LP)y=[L(P)]”.

Namely, it is possible for a given infinite sequence of events to
occur if and only if it is possible for every one of its initial
subsequences to occur. We assume that the set T consists of
two disjoint subsets, the set I, of controlled events that can be
disabled by a supervisor, and the set Z, of uncontrolled events
that can not be disabled.

Let S be a supervisor, i.e. a device that disables at each
instant a subset of the controlled events. Then S/P represents
the closed-loop system. A supervisor § for P has been called
nonblocking if

Lg(S/P)=pr(L(S/P)).
This property ensures that every finite sequence of events gen-
erated by S/P can be extended to an infinite one.

The following result has been proved in [4] and [5].
Proposition 2.1 For a nonempty sublanguage M cL(P),
there exists a nonblocking supervisor § for P such that
L(S/P)=M if and only if
(a) M is controllable with respect to (w.r.t.) L;(P), ie.

priM )z, MLy (P)cpr(M); and
(b) M is realizable, i.e.: [pr(M)]"=M.

3. Language convergence in controlled DES

In this section we define the convergence of an ®-
language to another w-language. Then we discuss the problem
of synthesizing a supervisor that ensures the convergence of
the closed-loop system behavior to a given w-language.

Let M ,L c Z° be given w-languages. We shall say that L
converges to M, denoted M ¢« L, if there exists i € N such
that for each r € L there exist s € Z* and u € Z° that satisfy
the following conditions.

() t =su, RQ ueM, 3) Isl <i,

where |s | denotes the length (number of symbols) of 5.



It is easily verified that the set of all w-languages that
converge to a given ®-language is closed under finite unions
but it is not closed under infinite unions or under intersections.

Now we define the following stabilization problem (SP).
Let P =(Q,X,8,9,) be a DES and let E cZ® be a realizable

w-language, that we interpret as a specification for the required
eventual behavior of P.

SP: Synthesize a nonblocking supervisor §
E < L(S/P).

Proposition 2.1, implies the following result.

Proposition 3.1 SP is solvable if and only if there exists a
realizable and controllable (w.r.t. Ls(P)) sublanguage
McLP)suchthatE M.

We introduce now algorithms for checking the solvability
of the SP in the case that E is w-regular. First we discuss the
special case in which E is realizable and suffix closed (i.e.:
suf(E }=E ) and then we extend the result for the case that E is
a general realizable w-regular language.

From proposition A.1 (see appendix A), for the realizable
w-regular language E, there exists a deterministic automaton
=(X,Z,E,x,)suchthat L(A)=E.

The following algorithm determines whether SP is solv-
able in the case that E is suffix closed. The algorithm
translates the SP to the problem of pre-stabilization of P as
defined in [6). Specifically, the algorithm identifies a set T of
states of P, such that the arrival of P at a state of T is

equivalent to the convergence of the behavior of P to E. Then
it uses the algorithm of [6] (see also [7]) to solve the new prob-
lem.

Algorithm 1

such that

input: A DES P =(Q,X,8,q,) and a deterministic automa-
ton A =(X,XZ,€,x,) such that L(A) = E, where E is
suffix closed.
output: A condition for solvability of the problem SP.
(1) Foreachq € Q,let P, =(Q,Z3,9) (namely, P, is the
system P initialized at q) and define
CRq ={FIF CL(P,)NE ,Fisrealizable
and controllable w.r.t. Lf (P )},
Use algorithm A.1 (see appendix A) with input P, and
A, to construct a deterministic automaton A, such that
L (A )= supCR
(2) compute the set T which is defined by
T={qeQ IL(Aq)==® ).
(Note that from proposition 2.1, for each g € T, a
supervisor can be synthesized that ensures that after P
reaches ¢, the system generates only infinite strings
belonging to E).
(3) By the algorithm of [6, proposition 3.5] check whether

q, € P(T), where P(T) is the maximal set of states of
P that are pre-stabilizable w.r.t. T. Namely the states
from which the arrival of P at a state of T can be
guaranteed by a supervisor.
stop.
Proposition 3.2 If E is suffix closed, then SP is solvable if
and only if g, € P(T).
The complexugr
some g € Q is O(n“m

of constructing an automaton A, for
2), where n = 1@l and m = IXI The
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automaton A, has at most nm states, thus the check whether
L(A )= 0 1s O(n 'm ) computation, since it is required to
determme whether there exists in A, a cycle which is accessi-
ble from ¢g. So the complexity of step (2) is 0(n>m?). The
algorithm of [6] (see step (3)) is O(n ) computatlon Thus the
overall complexity of algorithm 2 is 0(n3m?).

To illustrate algorithm 1, let us examine the following
example.
Example 3.1 Consider the system P and the recognizer A for
E, as described in Fig. 3.1. In the system P, .= { B,y}

and £, = {«,8}. Since L(A)=(@P)®+ (Bo)®+ Y(aB)® it is
clear that L (A ) is suffix closed. We apply now algorithm 1.

Fig. 3.1

step (1) Since in states g, and ¢, the uncontrolled transition &
is defined and 8 & pr(L (A)),

sup CR, =supCR, = D .
Moreover, supCR,,=L(A), and supCR,, = (@),
thus
step (2) T=1{q2.43)-
step (3) Note that the disablement of the event B at states g,
and ¢, and the event ¥ at ¢ ensures that the system,
initialized at ¢, or at g, reaches T. Thus

P(T)={4q,,91.92.93 }, and hence g, € P(T). So
SP is solvable.

O
Remark In the case that SP is solvable, the supervisor S that
ensures that E < L(S/P) consists of a supervisor

§1:(Q —T)-——>2):‘ that ensures that P reaches T within a finite
number of transitions and of supervisors S, for each ¢ € T
that realizes the language supCR,.

In case that E is not suffix closed, the problem SP is
much more complex. To verify that the problem SP not can be
translated to the problem of pre-stabilization of P, let us exam-
ine the following simple example.

Example 3.2
\\’/q

le)

P, 2=, ={aB,y}

A
Clearly E < L(P) but only the state g; satisfies that

L(P,)<E and P does not necessarily reach g,.

In example 3.2, P reaches g, which satisfies L(qu) cL(A,).
One might conjecture that this property holds whenever
E < L(P). Namely, maybe a necessary condition for the con-
vergence of L (P) to L(A) is that P reaches a state ¢ such that



L (Pq)CL(Ax) for some x € X. If this were true then it would
be sufficient to search all the pairs (g,x), where ¢ € Q and
x € X, and to check the above condition. The complexity of
such an algorithm would be polynomial in nm. The following
example contradicts such an conjecture.

Example 3.3

'3
A D
(s (9)

P, =%, ={aByd) A
To verify that LA)<=L®P), note that
LP)=3p@®+a’ %)= 8p(a® + a(ouor)* YOHOB (o) ¥

Since 3B(a®+ afa) Y)cL(A) and Bloo) Y cL(A), it is
clear that L(A) &= L (P).

Note that L (P, ) = &’ ¥* + o, whereas ay” ¢ L (A, ) and
e L(A,), thus L (P, )zL (A, for every x € X. Similarly, it
can be verified that only gj satisfies L (P )cL(A,). But
clearly, P does not necessarily reach q5.

The following algorithm checks the convergence of P to
L(A) by constructing a new model (automaton) for the
behavior of P, and by identifying in this model a set of states
such that the arrival of P at this set is equivalent to the conver-
gence to L (A). Then it follows the lines of algorithm 1.

Algorithm 2
input: The automata P =(Q,Z,8,q,)andA =(X,Z,€,x,).
output: A condition for solvability of the problem SP.

(1)  Construct a deterministic automaton B =(V ,X,a,v,)
where V =0x2%, v, =(g, ,x,) and :EXV -V is
defined as follows. Let y be an element of 2%, then

©(o.9).x) if 8(0.q) is defined
undefined otherwise ,

(o, (g.x) ={

where "= {x, Ju{x e X I1(d x"e YEOx)=x }.
Remark: Practically, it is sufficient to construct the
accessible part of B, namely, the states of B that are
accessible from v, .

(2) For any g€ @, let P,=(Q,Z,8,q) and for any
xe 2%, let A =X ,Z,8,x,) (that is, the subscript
denotes the initial states). Foreachv =(g ,x)e V, let
CR,=(FIF CL(PNL(A,), F is realizable and
controllable w.r.t. Lf (Pq) }.

Use algorithm A.1 (see appendix A) to construct a

deterministic automaton A, such that L(A,) = supCR, .

(3) Compute the set T which is defined by

T={veVILA,)*D ).
(4) By the algorithm of [6, proposition 3.5] check whether
v, € P(T) and stop.
Proposition 3.3 SP is solvable if and only if v, € P(T).
The complexity of step (1) of algorithm (2) is O(n-2™).
The number of states of the automaton B is bounded by n-2™.
For each state v € V, the construction of the automaton A, is
0((n-2™)?) computation, since it is required to construct a
deterministic automaton that accepts L (A,) and then to use
algorithm A.1. Such a deterministic automaton has at most 2™
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states. The complexity of determining whether L (A, y= D is
0((n-2™)%). Thus the constructing of T is 0(n32°") computa-
tion. The algorithm of [6] in step (4) is O((n2™ )2) computa-
tion. Thus the overall complexity of algorithm 2 is 0(n3-237).
This complexity is polynomial in the number of states of the
system, but exponential in the number of states of the specifi-
cation recognizer. Thus whenever the specification is
described by a small automaton, this algorithm, is tractable.

We apply now algorithm 2 to example 3.2.
step (1) The automaton B

Each state v =(q, { x,,xy, " - - ,x; }) of B has the fol-
lowing property. Let r € ' be a string such that
aft ,v,)=v, then for every i, 1 <i <k, there exist
1;,5;€ £ such that r=rs; and &(s;,x,)=x;. For
example, the strings corresponding to a path ending at
state 2 are 8Ba’. If i is even then the suffixes €, Bo’
and dBa’ satisfy that §(e,x,)=x,, &PBa’ ,x,)=x,
and §(3Ba’ ,x,) =x,, respectively. Whereas if i is
odd then &.x,)=x,, &Pa’',x,)=x, and
E(BBa’ ,x,) = x,, respectively.

Now if v =(q ,x) e T, then supCR,# < and hence a

supervisor can ensure that all the infinite strings that
P generate, after it reaches v, belong to L (A 5)- Thus
such a supervisor ensures that any infinite string ¢
generated by P, such that the infinite path generated
by ¢ entering v, belongs to L(A). Namely if P
reaches T then the convergence of L(P) to L(A) is
guaranteed.

steps (2),(3)
Since in this example all the events of P are uncon-
trolled, v = (¢ ,x) € T if and only if L(Pq)cL(A
Thus it is easy to verify that

Tr=1{1,2,3}.

step (4) Clearly P(T)= {0,1,2,3} and hence v, € P(T).
Thus SP is solvable.

"
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Appendix A:
languages

The first proposition characterizes the realizable «-regular
languages.

Realizable and controllable ®-regular

Proposition A.1 For any w-regular language M c X, the fol-
lowing conditions are equivalent.
(a) M isrealizable
(b) There exists a deterministic automaton A =(X ,Z,§,x,)
suchthat L(A)=M.
a

Now we introduce an algorithm for computing the
supremal realizable and controllable sublanguage of a given
realizable w-language. The importance of this sublanguage
follows from proposition 2.1.

LetP =(Q ,X,8,q9,)beaDES and letA = (X ,X,&,x,)
be a deterministic automaton such that L(A)=E. Define
CR(E) to be the set of all realizable and controllable sub-
languages of ENL (P), that is

CR(E)= (F \F cEnL(P),

F is realizable and controllable w.r.t. Ly (P) }.

The following algorithm computes supCR (E), this algo-
rithm has been used in [8] for solving a different problem.

Algorithm A.1
input: The automata P =(Q ,Z,8,9,) and A =(X ,X,§,x,)
(suchthat LA)=E).
output: A recognizer for supCR (E ).
(1)  Construct the product automaton
PxA =(QxX,Z,a,(,%)) »
where a:ZxQ xX -0 xX is defined by
oo, (gx)=
(8(0,9),E(c,x)) provided both 8(c,q) and (0,x) are defined
undefined otherwise
)

Define Y, = O XX,
iterate until¥; =Y,
Foreachy =(gx)e Y},
y € Y iff
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(i) (3 o € ) a(o,y) is defined and

a(oy) e Yj ; and
(i)
(VoeZ)dog)=¢ 2uc,(gx)=@x)e Y,
Let Y be the set of states defined in step (2) at termina-
tion of step (2).
Define B =(Y ,XZ,a,(q, ,X,), and stop.

Proposition A.2 L(B)=supCR (E).
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