616

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

Language Convergence in
Controlled Discrete-Event Systems

Yosef M. Willner and Michael Heymann

Abstract— Discrete-event systems modeled as state machines
in the framework of Ramadge and Wonham are considered. In
this paper, convergence of the language generated or marked
by the system to a specified legal language is investigated. The
convergence property is studied both with respect to open-loop
(uncontrolled) systems and with respect to controlled systems.
In the latter case, both questions of existence and synthesis of
supervisors that force convergence are examined. Algorithms
for verification of convergence and for synthesis of stabilizing
supervisors are provided. Finally, the concept of asymptotic
behavior of systems is defined, and questions related to this
concept are investigated.

I. INTRODUCTION

N the main paradigm of supervisory control of discrete-

event systems (DES) [1]-[3], the system is modeled as a
finite automaton that executes state transitions in response
to a stream of events that occur nondeterministically and
asynchronously. The supervisory control problem consists of
synthesizing a supervisor whose task is to disable events in an
orderly fashion, from a specified subset of controlled events,
so as to confine the behavior of the supervised system to within
a specified legal language. It is generally further required that
the synthesized supervisor be minimally restrictive in the sense
that, to achieve legal behavior, the smallest number of events
is disabled.

There are situations, however, when legal supervision is
either impossible or impractical. For example, when a system
failure occurs, it may be driven to a state at which it is im-
possible to prevent the occurrence of illegal event sequences.
Furthermore, even when the behavior of the system can be
confined to within legal bounds, such a constraint may lead
to the design of a supervisor that is overly restrictive. In such
situations the question of convergence of the system to the
legal behavior is of great interest. Intuitively, we say that the
system converges to the legal behavior, if, after a finite and
bounded number of transitions, it begins to behave legally. The
supervisory control task is then to force such convergence to
take place.

In [4] and [5] the problem of stabilization of discrete-
event systems has been introduced, and the stabilization,
or convergence, concept was presented in terms of legal

Manuscript received April 20, 1992; revised May 31, 1994. Recommended
by Past Associate Editor, P. J. Ramadge. This work was supported in part by
the Technion Fund for Promotion of Research.

Y. Willner is with the Department of Electrical Engineering, Tech-
nion—Israel Institute of Technology, Haifa 32000, Israel.

M. Heymann is with the Department of Computer Science, Tech-

nion—Israel Institute of Technology, Haifa 32000, Israel.
IEEE Log Number 9408278.

and illegal states of the system. In [4] legal behavior was
specified by a set T of legal states. A system was then
defined to be stable if, for any arbitrary initial state, it reaches
a state in T after a finite and bounded number of state
transitions and thereafter remains in 7" indefinitely. A system
was called stabilizable if there exists a supervisor under which
the supervised system is stable. Algorithms for synthesis of
stabilizing supervisors were also presented. Optimal stabilizing
supervisors were presented in [8].

It is quite clear that the legal behavior of a DES cannot
always be specified by a set of (legal) states, which constitutes
a static specification, but rather by a legal language which
constitutes a dynamic specification. In the latter case the
system is said to converge to legal behavior if, after a bounded
number of illegal state transitions, the system produces only
legal behavior, that is, strings of the specification language.

The concept of language convergence was first introduced
by Kumar et al. (who called it language-stability) in [9], more
recently in [16] and [18], and independently by Willner and
Heymann in [15]. A similar concept was also studied in a
somewhat different setting by Ozveren and Willsky in [19].
In [15] the convergence concept was formulated in terms of
w-languages (i.., languages that consist of infinite strings).
In the present paper we formulate the problem in terms of
languages over £* and extend the discussion far beyond that of
[15]. We provide algorithms for determining the convergence
of a regular language to another regular language and for
synthesizing supervisors that guarantee that convergence takes
place whenever such supervisors exist.

We show that for suffix-closed legal languages, i.c., lan-
guages in which every suffix of a string is also a string of
the language, the convergence problem can be resolved with
algorithms of polynomial complexity. In fact, for suffix-closed
languages the complexity is essentially of the same order as
the static stabilization problem of [4]. When the specification
language F is not suffix closed, the convergence problem is
resolved by an algorithm of complexity that is polynomial
in the size of the recognizer of the system language but
exponential in the size of the recognizer of the specification
language.

A further concept introduced in the present paper is the
asymptotic behavior of a DES. The asymptotic behavior is
the language that the system executes after performing an
arbitrarily large number of staie transitions. We discuss the
problem of synthesizing a supervisor that guarantees the
confinement of the asymptotic behavior of the supervised
system within a given legal language. In the case of a

0018-9286/95$04.00 © 1995 1EEE

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 617

suffix-closed specification, the inclusion of the asymptotic
behavior in the specification language is equivalent to the
convergence of the supervised system to the legal language. In
the general case, inclusion of the asymptotic behavior in the
specification language ensures the convergence of the behavior
of the supervised system to the legal language. The inverse
property, that language convergence implies confinement of
the asymptotic behavior, is not in general true.

The paper is organized as follows. In Section II, a brief
review of the basic elements of the framework of [1] is
given, and the concept of language convergence is introduced.
Algorithms for verifying language convergence for regular
languages are presented in Section III. In Section IV we
discuss the controlled convergence problem, i.e., the problem
of existence and synthesis of supervisors that guarantee con-
vergence. Problems associated with asymptotic behavior are
considered in Section V. At various points of the paper our
results are compared with the results obtained in [9] and [18].

II. PRELIMINARIES

We adopt the Ramadge—Wonham (RW) [1] discrete-event
control formalism, that is, the DES under consideration is
modeled as a deterministic automaton

P= (Q7 2767 qo, Qm)

where @ is a finite set of states, X is a finite set of event
symbols, partitioned into two disjoint subsets . of controlled
events and £, of uncontrolled events. The map 6 : ExQ — Q
is a partial function called the state transition function, ¢g is
the initial state, and Q,,(C Q) is a subset of final (or marked)
states.

Let ¥* denote the set of all finite strings over ¥ including
the empty string €. A subset L C ¥* is called a language
over X.

Letting 6 be extended in the standard way (see, e.g., [6])
to a function ¥* x @ — @, the language generated by P is
defined as

2.1

L(P) = {t € S*[8(t, q0)}

cipes

22)

where the notation means ‘‘is defined.” The language
marked by P is defined as

Ln(P):={t € L(P)|6(t,90) € Qum}- (2.3)

A sequence of states ¢qq,---,¢, € R C Q is called a path
of P contained in R (starting at ¢; and ending at ¢,,) if there
exists a sequence of event symbols oy,---,0,_1 such that
gi+1 = 6(0i,q;) foreach i = 1,--- n — 1. When ¢,, = q; we
call the path a cycle (in R). A subset R C Q is called acyclic
if P has no cycles in R. If P has no cycles in Q we also
say that P is acyclic. We shall say that a state ¢’ is accessible
from a state g if there is a path of P starting at ¢ and ending
at ¢'. We shall denote by A(P,q) the set of all states of P
that are accessible from g.

For a subset @ C @, we shall denote by PQ the automaton
obtained from P by replacing the initial state by the set Q,
that is

Py = (Q,%5,6,Q,Qm). 2.4)

The language generated by P is then defined as

L(Pg) = {t € £*[8(t, §)! for some § € Q}. (2.5)

The language marked by P is then given by (2.3) upon
replacing P by Ps. When Q is a singleton {q}, we shall
write Py instead of Py, and Py, = P.

If P, = (Q1,%,61,910,Q1m) and P = (Q2, ¥, 02, g2,
Q2mm) are two automata over the event set X, we say that P,
is a subautomaton of Pj, denoted P, C Py, if

(L) QZ C le Qm2 C th

b) 82(0,q) = 61(0,q) Vo € ,q € Q2 s.t. b2(0,q).

Thus, a subautomaton is obtained from a given automaton
by deleting from it transitions and/or states along with all the
transitions incident on the deleted states. For a subset QCQ
we define the restriction of P to Q—@, denoted P|Q, as the
subautomaton of P obtained by deleting from it all the states
of @ and the transitions incident on these states.

For given deterministic automata P = (Q, %, 6, go, @) and
A = (X,X%,¢, 29, Xm), the strict synchronous composition
P||A of P and A is defined as

PHA = (Q X sz’av(q()vxo)’ Qm X Xm)

910 = ¢20

where a : X x @ x X — @ x X is defined by
a(o, (g, 2)) = {(6(‘7» q9),&(0,x)) if 6(c,¢)! and {(o, z)!

undefined otherwise.

It is well known that £(P||4) = L(P) N L(A) and
Ly (P||A) = L(P) N Ln(A).

A supervisor for a DES P is a mapS : £L(P) — 2% such
that for each t € L(P),S(t)(C X.) is the set of controlled
events that must be disabled next. The concurrent operation of
the system P and the supervisor S, denoted by S/ P, is called
the closed-loop system. That is, a transition in S/P can take
place whenever it can take place in P and is not disabled by S.
The language £(S/P) generated by the closed-loop system is
thus given recursively by

e € L(S/P)
(Vs € L(S/P))so € L(S/P) & so € LIP)ANa & S(s).

The language marked by S/P will be defined by

Lm(S/P) = L(S/P)N Ln(P) (2.6)

and consists of all the strings marked by P that are not disabled
by S.

We shall assume that the system P under consideration
is trim, i.e., every state ¢ € @ is accessible from ¢y and
L(P) = L,,(P). A supervisor S is then called nonblocking
if £L(S/P) = L,(S/P).

For strings s, € £* we let s-¢ denote their concatenation.
A string s is a prefix of ¢, denoted s < ¢, if t = sw for some
w € X*. If w # ¢, s is said to be a proper prefix of ¢, denoted
s < t. The prefix closure I of a language L C ¥* is the set
of all prefixes of strings in I and L is prefix closed if L = L.
The length of a string ¢ is denoted |¢] and the prefix of ¢ of
length ¢ is denoted pr;(t) (pro(t) = €).

618

For a string ¢ € X* we denote by suf;(¢) the string obtained
by deleting from ¢ its first ¢ symbols (sufo(t) = ¢ and
sufj)(t) = ¢). For a language L C ¥, the suffix closure
of L is the subset of all suffixes of strings in L, that is

suf(L) = {suf;(t) | Vt € L, Vi < |t|}. 2.7

A language L is suffix closed if suf(L) = L. The following

properties of the suffix operator are readily verified:

« The suffix operator is monotone, i.e.,

Ly C Ly = suf (Ll) C suf (Lz) 2.8)

+ For a family of languages {L, C ¥*}
suf(|J La) = suf (La), 2.9)
(2.10)

suf(U Ly) C Usuf (La)

with equality in (2.10) if for each «, L, is suffix closed.

Let L C ¥* be a regular language and let P
(Q,%.6, 90, Qm) be a (trim) recognizer for L, i.e., Ln(P) =
L and L(P) = L,,(P). A recognizer for suf(L) is then given
by Pop = (Q,%,6,Q,Qn), that is, L,(Po) = suf (L)
(with L£,,(Pg) as defined following (2.5)). From (2.7),
L C suf(L), so that L is suffix closed if and only if
Ln(Pg) C Ln(P). This inclusion is equivalent to the
condition that £,,(Pg) N (X* — L,,(P)) = ¢, which can
be verified by an algorithm with complexity of O(|Q|?) (see
e.g., [10, Proposition 2.3]).

We conclude this section with the definition of language
convergence that will be needed in the sequel. Let L, M C £*
be two languages such that M # ¢.

Definition 2.1: The language L is said to converge asymp-
totically to M, denoted M « L, if for each ¢ € L there exists
an integer ¢ > 0 such that suf;(t) € M.

Remark 2.1: 1t is worth noting that the asymptotic conver-
gence M « L is equivalent to L C £* - M (where £*- M
denotes the language concatenation, i.e., s € £*-M if and only
if s = r-t where 7 € ¥* and ¢t € M). Thus, the asymptotic
convergence problem can be investigated as a special case
of the language confinement problem that was investigated in
detail by RW in [1].

Definition 2.2: The language L is said to converge finitely
(or, simply, to converge) to M, denoted M <« L, if there
exists a finite integer £ > 0 such that for each ¢ € L there
exists ¢, i < k, for which suf;(¢) € M. In that case the least
k for which the above holds is called the convergence time of
L to M and is denoted epr(L).

While finite convergence obviously implies asymptotic con-
vergence, the converse is not generally true as illustrated by
the simple example where L = o*(3 and M = {3}.

It is easily verified that the class of languages that converge
asymptotically to a given language is closed under arbitrary
intersections and arbitrary unions while the class of languages
that converge finitely to a given language is closed under
arbitrary intersections but only under finite unions. Finally,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

if Li,Ly, M C X* are languages such that L, C Ly and
M # ¢, then

(M(—L2)=>(M*—L1) (211)

and

(M < Ly) = (M < Ly). (2.12)

III. FINITE LANGUAGE CONVERGENCE

In the present section we shall develop necessary and suffi-
cient conditions for finite language convergence. Furthermore,
we develop algorithms for testing whether M <= L for regular
languages L, M C X*,M # ¢. For a variety of interesting
special cases, algorithms of polynomial time complexity are
constructed. In the most general case, however, our algorithm
is of polynomial complexity in the size of the recognizer for
L but exponential in the size of the recognizer for M.

Let L, M C ©*, M # ¢ be two regular languages, let P =
(Q,%,6,40,Qm) and A = (X, %, &, %0, Xon) be deterministic
trim recognizers for L and M, respectively, so that L, (P) =
L, Ln(A) =M, L, (P) = L(P)and L, (A) = L(A). Let T
be the subset of states in Q) given by

T, = {q € Q|Lm(P,) C suf (M)}

3.1

(where, as defined earlier, P, is the automaton P initialized
at q).

The following is a necessary condition for (finite-) conver-
gence of L to M.

Proposition 3.1: Let L, M C ¥* be the languages recog-
nized by the automata P and A, respectively. Then M < L
only if the set Q — T is acyclic (in P).

Proof: Suppose that P has a cycle C in @ — 7. Since
P is trim, every state of P is accessible from ¢o and there is
a sequence of strings {t;}, t; € L(P) = L, t; < tp < t3---
such that for each i, 6(¢;,qo) € C. Assume that M < L with
convergence time k(= ep(L)). Let ¢; be a string of the above
sequence such that n := [¢;| > k. Then ¢ = 6(t;,¢0) € C and
there exists s € L£,,(P,) such that s ¢ suf (M) (since the
states of C' do not belong to T5). But t; - s € L,(P) = L
and by the convergence of L to M, there exists [< &
such that sufi(t; - s) € M. Since n > [, it follows that
s = suf,(t; - s) = suf,_; sufy(t; - s) € suf(M). This is
a contradiction, and the proof is complete. 0

Next, we present a sufficient condition for convergence of L
to M. Let T be the set of all states in () defined by

T := {q € Q|L,(P,) C M} (3.2)

and assume that g ¢ T, for otherwise L C M and conver-
gence is trivial. Next, let R be defined as the set of all states
of Q — T that are accessible from g through a path that does
not intersect 1°, that is

R:={qeQFteL,étq)=q

and (Vi < [t)6(pri(t), q0) € Q — T} (3.3)

The set R can conveniently be computed as follows. Con-
sider the automaton P|T' (obtained from P by deleting from it
all the states of T" and the transitions incident on these states).

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 619

Then R is the set of all states accessible in P|T" from the
initial state ¢o, that is
(of course, if go € T then L C M and R = ¢).

Proposition 3.2: If R is acyclic and R N Q,, = ¢, then
M < L.

Proof: Assume first that 7' = ¢. Then (since P is trim)

R =@ sothat RNQy, = @m. f RN Q. = ¢, then
Qm = ¢ and hence L = L£,,(P) = ¢ and M <« L holds
trivially. Assume now that T # ¢. If RN Q. = ¢, then
for each t € L = L,,(P) there must exist 7,i < [¢|, such
that ¢ = 6(pri(t),q0) € T. Now the acyclicity of R implies
that this ¢ must satisfy the condition that ; < |R|. Hence we
conclude that for each ¢t € L there exists ¢ < |R| such that
q = 8(pri(t), qo) € T, implying that suf;(t) € L,(Py) C M.
It follows that M < L and epr(L) < |R|. O

Proposition 3.2 suggests the following algorithm for deter-
mining the convergence of L to M.

Algorithm 3.1:

1) Compute the set T of states defined by (3.2). If ¢o € T’
then L C M. Convergence holds trivially. Halt.

2) Compute the set R as defined by (3.4).

3) Check (e.g., by the algorithm of [7, p. 64]) whether P
has cycles in R. If the answer is yes, the algorithm is
inconclusive. Halt.

4 If RNQm = ¢, then M < L. Halt.

The computation of R (which is a standard accessibility
computation) and the algorithm for testing acyclicity of R as
given in [7] are both of complexity! O(|Q|). As regards the
computation of T we proceed as follows.

A state ¢ € Q is in T if and only if £,,(Py) C Ln(A)
where A = (X, X, 20, X,,) is a deterministic recognizer
for M(L,(A) = M). Equivalently, ¢ € T if and only
if Lio(Py) N (X" — Ln(A)) = ¢. A deterministic recog-
nizer for £* — £,,(A4) is given by the automaton A =
(X, %,€, xg, Xm), where X = XU {d}, d being an additional
“dump” state, X,, = {d} U (X — X,,),and £ : T x X — X
is given by

Eo.5) = {g(a, £)ifd#d

and &(o,)!
otherwise.

The construction of the automaton A is of complexity
O(IX).

For a state ¢ € @, a recognizer for L, (FPy)N(E* — L, (A))
is given by the automaton P,||A (see Section II) and we have
that £,,(P,;) C L,(A), or equivalently ¢ € 7T, if and only
if Lm(P,||A) = ¢. Thus, to compute T, we construct the
automaton

PollA = (Q x X,%,,{q,%0)|g € Q}, Qm x X)

where a(o,(¢,2)) = (6(o, q),é(a, Z)) is defined if and only
if 6(o,¢q)! and £(o, £)!. Next, we let C(Q., X X,,) be the set

'In the present paper we shall assume |S| = O(1) and we give the
complexity bounds only in terms of the number of states.

of all states (¢,%) € @ x X from which the set Qm X X,
is accessible in Pg||A, that is

C(Qm x Xp) =
{(g,%) € Q x X|3t € %, a(t, (¢, %)) € Qm x X}

A state ¢ is thus in 7" if and only if (g,z¢) € C(Qm X Xm),
whence T is given by

T=Q-{qc€ Ql(g,0) € C(Qm X Xm)}

The computation of C(Q,, x X,,,) is of complexity O(|Q|| X])
and hence the overall complexity of Algorithm 3.1 is
0(QIIX)).

An interesting case of the convergence problem is when
the language M includes the empty string e. This implies
that all deadlocking behavior of L is regarded as convergent.
Specifically, since for each string ¢t € L, sufjy(t) = ¢ € M,
it follows that if all strings of L are of bounded length, then
L converges to any language M satisfying ¢ € M. A further
observation is the following. When € € M, then the acyclicity
of R (as defined in (3.3) or (3.4)) implies convergence of L to
M. Indeed, for t € L such that |t| < |R|, sufiy(t) = ¢ € M,
and for ¢ € L such that [t| > |R]|, the acyclicity of R implies
that there exists ¢ < |R| such that suf;(¢) € M. Thus we have
the following.

Proposition 3.3: Let L,M C X* be regular languages
recognized by automata P and A, respectively, and let R be
the set defined by (3.4). If ¢ € M and R is acyclic, then
M < L.

A special case of languages M that include the empty
string are suffix-closed languages. Such language specifica-
tions correspond to cases when one is interested in the eventual
correctness of the logical behavior of the process P but does
not insist on specific initialization. Thus, one is satisfied with
the fact that the behavior of P “merges” with that of a given
specification language rather than performing complete strings
of the specification and one wishes to find conditions for
suf(M) < L,(P) = L.

Let M be suffix closed. Then € € M, and it can be further
noted that the sets T, as defined in (3.1) and T as defined
in (3.2) coincide. Proposition 3.1 then states that if M < L
then @ — T is acyclic, and since R C Q — T, so is also R.
Combining this fact with Proposition 3.3 gives the following
interesting theorem.

Theorem 3.1: Let L, M C £* be (regular) languages rec-
ognized by automata P and A, respectively. Assume that M
is suffix closed. Then M < L if and only if @ — T is acyclic.

Theorem 3.1 provides the theoretical foundation for the
following algorithm that determines the convergence of L to
M in case L and M are regular languages and M is suffix
closed.

Algorithm 3.2:

1) Compute the set T of states defined by (3.2). If g € T
then L C M. Convergence holds trivially. Halt.

2) Check (e.g., by the algorithm of [7, p. 64]) whether P
has cycles in Q@ — 7.

3) L converges to M if and only if the answer to 2) is
negative. Halt.

620

Fig. 1.

Fig. 2.

The complexity of Algorithm 3.2 is O(|Q||X|) (see the
analysis of complexity of Algorithm 3.1 for details).

We turn next to the problem of language convergence in
the case when M is a general (not necessarily suffix-closed)
regular language. The conditions of Proposition 3.2, and in
the case when ¢ € M of Proposition 3.3, are sufficient for
convergence and, in view of their relative efficiency, should
be tested first. When the corresponding algorithms (Algorithms
3.1 and 3.2, respectively) are inconclusive, one must resort
to a more elaborate examination. As we shall see later, the
algorithms in the general case are no longer of polynomial
complexity.

Let us first examine two examples that will prove helpful
in obtaining some intuitive insight. The first example shows
that while the acyclicity of R is sufficient for convergence of
L to M in case ¢ € M (Proposition 3.3), it is not necessary
when M is not suffix closed.

Example 3.1: Consider the automata P and A as given in
Fig. 1, where all the states of both P and A are final states.

Thus, £,,(P) = L(P) andL,,(A) = L(A) and, obviously,
L(A) < L(P). (Here and in subsequent figures the entrance
arrows indicate the initial states.) Observe that T = {q¢:}, i.e.,
q1 is the only state ¢ € Q such that £(P,) C £(A) and the
set R = {qo. g2} is not acyclic. O

Example 3.2: Here P and A are given by the automata of
Fig. 2 and again all states (of P and A) are final states.

To verify that £(A) < L(P) note that

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

ROw;) os)

P A

Fig. 3.

and that both B(ca)*vy* and §Bafaa)*y* are sublanguages
of L(A).
Next note that

L(Py,) = o™y = (ac)™y" + a(aa)™y"

and that (aa)*y* C L(Ay,) and a(aa)*y* C L(Ag,)-
Thus

L(Py) C L{Az)) U L(As,) = L(Afz, 22})-

Note further that if 6(t,gq) = g2 for t € X*, then &(t,zo) €
{IE 1,T 2}. O

In Example 3.2 the language L = L(P) (that converges to
M = L(A)) satisfies the condition that the system P, starting
at qg, reaches a state g such that

L(P,) C L(A) 3.5)

for some subset Y C X. We shall see below that this is actually
a necessary condition for convergence of L to M. Condition
(3.5) is of course not sufficient for convergence as can be
seen from the example in Fig. 3.

Here L(P) does not converge toL£(A) although L(Py,) C
L(Ag,)-

Next we present an algorithm that tests the convergence of L
to M for general regular languages L and M. The algorithm is
based on the construction of a new recognizer for the language
L, in which the necessary condition that the automaton reaches
a state that satisfies condition (3.5) is also sufficient. The
complexity of the proposed algorithm is exponential in | X|,
the dimension of the state set of A, but it is polynomial in |Q),
the dimension of the state set of P.

Theorem 3.2: Let P = (Q,%,6,90,Qm) and A = (X,
%, €, 79, X,n) be given automata. The following algorithm
verifies the convergence L, (A) < L (P).

Algorithm 3.3:

1) Construct a deterministic automaton B = (V, %, «a,

Vo, Vi), where V = Q x 2%, v = (q0,{z0}), Vim =
Qm x X, and where @ : ¥ x V. — V is defined as
follows. Let x € 2% be any element. Then see (3.6)
at the bottom of the page. We assume that B is trim.
Otherwise construct the maximal trim subautomaton of
B.

2) Test whether there exists in B a state v = (¢,x) € V
such that ¢ € @, and x N X,,, = ¢. If such a state
exists, L£,,(A4) & L,,,(P). Hait.

3) Compute the set T C V defined by

L(P) = 8Ba*y* = 63(ac)*y* + §Ba(aa)** T={v=_(q,x) € VILu(Py) C Lu(AY)}. BT
_ [(8(c,9),x") where X' = {zo} U {a’ € X|(Tz € x)¢(0,z) =2’} if 6(0,q)!
a(o,(g,x)) = {undeﬁned ° otherwise (36)

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 621

4) Test whether V — T is acyclic (in B) (use, e.g., the
algorithm of (7]).

5) If the answer to 4) is affirmative, then L£,,(4) <
Ly (P). Otherwise not. Halt.

Proof: First observe from the definition of B that a string
t € ¥* is in £L(B) if and only if a(t, (g0, {z0})) = (¢,%),
where

q=6(t,qo) (3.8)

and

x={z € X|@ < i) z = é(sufi(),w0)}. (39)

Indeed, (3.8) holds since for each state (g,x') € V the
transition a (o, (g, x"))! if and only if 6(c, g)!. To see that also
(3.9) holds, we proceed by induction on the length of strings.
For t = ¢, (3.9) clearly holds with x = {zo}. Suppose (3.9)
holds for an arbitrary string £, so that

xt = {z € X|(i < [t]) z = &(suf;(t),z0)}

and consider the string to for an arbitrary o € ¥. Employing

(3.6) and substituting the above expression for x, yields

Xx=Xte ={z0o} U{2'€eX | (Fz € x1)¢(0,z)=1"}
={zo}U{z’€X | (Fi<|t])é(o, &(sufi(t), z0)) =2"}
= {zo} U {2'eX | (Fi<|to|)é(suf;(to),z0) = '}
= {z'eX | (Fi<(to|)é(sufi(to), xo) = z'}.

An immediate consequence of (3.8) and (3.9) is that

L(B) = L(P) (3.10)

and since V,,, = Q,, X X
L (B) = L,,(P). (3.11)
Suppose now that there exists a state v = (q,z) € V

such that ¢ € @, and x N X,, = ¢. Let t € X* be
any string satisfying «(t,vg) = v. By (3.8) it follows that
q=6(t,q) € Qum, ie., t € L;,(P). By (3.9) it follows that
there is no ¢ < |¢| such that {(suf;(¢),z9) € X,,. Thus, ¢ has
no suffix that belongs to £,,(A). It follows that £,,(P) does
not converge to L,,,(A). This proves the correctness of step 2).
Suppose next that every state v = (¢,x) € V for which
q € Qm satisfies xNX,, # ¢. Then, in view of (3.8) and (3.9),
every string ¢ € £,,(P) has a suffix that belongs to £,,,(A).
Clearly, if |t| < |V — T, then the above implies that there
exists 4 < |V — T'| such that suf;(t) € £,,(A). We shall show
next that when |V —T| is acyclic, there exists i < |V —T'| such
that suf;(t) € Lm(A) also if |t| > |V = T|. If T = ¢ this is
obvious because then V is acyclic and [¢| < |V| = [V —T| for
all t € L(B). When T' # ¢, the acyclicity of |V — T)| implies
that if [t| > [V — T then there exists i < |V — T'| such that
a(pri(t),ve) = v =(q,x) € T. Then, in view of (3.7)

suf;(t) € Lin(Py) C Ln(Ay)
or, alternately

suf;(t) € Lon(A,) (3.12)

for some = € x. By (3.9) it then follows that there exists
7 < ¢ such that

x = &(suf; (pri{t)), wo).
Upon combining (3.12) and (3.13), we obtain that
E(suf;(¢),z) =
&(suf;(t), &(suf; (pri(t)), xo) =
E(Sllfj(ph(t)) . Sllfi(t),.’l?o) =
&(suf;(2), zo)

which implies that

(3.13)

suf;(t) € L, (A). (3.19)

Thus, the convergence time of £,,,(P) toL,,(A) is bounded
by |V — T| and hence L, (4) < L (P).

To see that the acyclicity of (V — T') is necessary for
convergence of L,,(P) to L£,(A), suppose that there exists
a cycle C in (V — T). Since B is trim, every state of B
is accessible from vg. Thus there exists a sequence {¢;} of
strings, 1 < tp < t3--- such that for each %, a(t;,v9) = v; =
(gi,x:) € C. Suppose now that £L,,(A) < L,,(P) and let
k be the convergence time. Choose a string ¢; of the above
sequence such that n := |¢;| > k. Since no state of C belongs
to T, there exists s € L (Pg,) such that s ¢ L, (A,) for
every z € x;. Now, t;s € L,,(P) and by the convergence
assumption of £,,(P) to £,,(A), there exists j < k such that

sufj(tis) = suf;(t1) - s € Lin(A).

Letting = := &(suf;(1;), zo), it follows that s € £,,(A;). But
by (3.9) z € xi, a contradiction. Od

The complexity of steps 1), 2), and 4) of Algorithm 3.3
is O(|Q|2!X"). The test whether £,,(P,) C L,,(A,) can be
performed by constructing a deterministic recognizer AX for
L (Ay) (an algorithm of complexity O(2X1)) and checking
whether £L,,(Py) C L,,(AX) which can be done by a compu-
tation of complexity O(|Q|2!¥1). Thus, the complexity of step
3) as well as that of the complete algorithm is O((|Q[2N)?).

Remark 3.1: An alternate approach to verifying the con-
vergence of L,,(P) to £,,(A) is based on the reversal of the
automata P and A so as to obtain the reflections £,,(P)%
and £,,,(A)F of the languages £,,(P) and L,,(A). Then
Lm(A) < L,(P) if and only if there exists a bounded
language L (i.e., a language all of whose strings are of bounded
length) such that £,,(P)® € £,,(A)% L. Here £,,(A)"-L
denotes the concatenation of the languages Lm(A)R and L.)
The reversed automata P® and AT are nondeterministic in
general, and the algorithm for testing the convergence involves
computing deterministic equivalents to P¥ and AF. Such an
algorithm, whose complexity is O((21X1*191)2), has recently
been described in [9] and [18]. Algorithm 3.3 above, whose
complexity is O((JQ| - 21%1)?), is superior to the algorithm in
[9] and [18] since it is only of polynomial complexity in the
size of @ (although it is also of second-degree exponential
complexity in the size of X). Thus, Algorithm 3.3 can be
regarded as relatively efficient or at least tractable when
the specification can be described by a small automaton as
opposed to the algorithm of [9] and [18], which is generally
impractical.

622

Fig. 4.

Next we illustrate Algorithm 3.3 by employing it to verify
the convergence problem of Example 3.2.

Example 3.3 (Verification of Convergence Problem of Exam-
ple 3.2 —Algorithm 3.3):

Step 1: The automaton B is given in Fig. 4.

To illustrate property (3.9) let us examine state 2). Every
string ¢ € ¥* that satisfies a(t,v0) = (g2, {zo,1,25}) is of
the form 6(3a’ for some i > 0. If i is even, then the suffixes
e,Ba’, 6Ba’ satisfy the property £(e, zq) = zo,E(Bat, zg) =
z1, and £(6B8a%,19) = zo. If 4 is odd, then these suffixes
satisfy £(€, z0) = 2o, £(Ba’, z0) = 22, and £(68a, x) = 1.

Step 2: Since in the automaton A of Fig. 2 X,, = X, we
have {z} N X, = {z} N X = {x} for each state z € X.
Hence x N X, # ¢ for each (¢,x) € V.

Step 3: It is easy to verify that

T ={1,2,3} # ¢.

Step 4. There does not exist a cycle (of B) in V — T = {0}.
Step 5: Lm(A) < Ln(P). O

IV. LANGUAGE CONVERGENCE IN CONTROLLED DES

In the previous section we examined the problem of veri-
fication whether a language L (finitely) converges to a given
language M. In the present section we shall deal with the
problem of convergence of the language generated by a DES
P = (Q,X,6,90,Qm) to a given specification of logical
behavior given by a language E C X*. Specifically, we shall
examine the problem of existence of a nonblocking supervisor
S such that £ < L,,(S/P). Thus we formally define the
following.

Controlled Convergence Problem (CCP):

Synthesize a
nonblocking supervisor S for P such that
E < L,(S/P). 4.1)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

We recall from [1] that a language M, ¢ # M C £,,,(P) can
be realized by a nonblocking supervisor S, i.e., £,,(S/P) =
M, if and only if M satisfies the following two conditions:

¢ M is L,,(P)-closed, ie.,

M =MnL,(P). 4.2)
* M is controllable with respect to L(P), i.e.,
MY, 0 L(P) C M. 4.3)

We further recall that, for a language N, the class
CL(L,(P) N N) of controllable and £,,(P)-closed sub-
languages of £,,(P)N N has a unique supremal element N,,.
This implies that a nonblocking supervisor S exists such that
L (S/P) C N if and only if Np # ¢. In view of the above
observations we have the following immediate result.

Proposition 4.1: CCP is solvable if and only if there exists
a controllable and L,,(P)-closed sublanguage ¢ # N C
L,,(P) such that E < N.

A special case of interest occurs when the process P
(Q,Z,6,90,Qm) satisfies Q,, = Q, in which case L, (P)
L(P) and L,,,(S/P) = L(S/P). Condition (4.2) then be-
comes that M is prefix closed and, since the class of closed
and controllable sublanguages of £(P) is closed under arbi-
trary intersections (see e.g., [1]), it contains a unique infimal
element. Thus, in view of (2.12) when @,,, = Q, the solvability
test of CCP simplifies to the following.

Let P* be the automaton obtained from P upon deleting
from it all controlled transitions, i.e., P* = (Q, , 8%, go, Q).
where

§%(c, q) = {6(0, q) if o€ Xy Ab(o,u)!

undefined otherwise. 4.4

Clearly L(P") is controllable and closed and for any super-
visor S

L(PY) ¢ L(S/P).

Proposition 4.1 can now be replaced (for the case Q,,, = Q)
by the following proposition.

Proposition 4.2: Let P = (Q, %, 6,q0, Qm) with Q,, = Q
and let E C £* be given. Then CCP is solvable if and only
if £ < L(P").

The above proposition yields a simple procedure for solving
CCP in the special case when (),,, = Q. First, one constructs
P* and checks whether E < L(P*). This verification can be
done with Algorithm 3.2 (which is of polynomial complexity)
when F is suffix closed, and with Algorithm 3.3 otherwise.
When E < L(P"), then the most restrictive supervisor, i.e.,
the supervisor that disables all controlled events, is a solution
of CCP because this supervisor satisfies

E < L(S/P) = L(PY).

The above solution is, of course, not a very efficient one and
in general better solutions might be sought. We shall return to
this issue later.

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 623

Remark 4.1: In [9] and [18], a problem similar to CCP was
discussed. A language L was called [-stabilizable w.r.t. F
if there exists a sublanguage H C L, controllable w.r.t. L,
such that £ <= H. The authors argued there that for a system
P = (Q,%,6,90,Qm), L (P) is l-stabilizable w.r.t. a given
language F if and only if E < L,,(P*). The justification
for this conclusion was the claim that £,,(P*) is the infimal
controllable sublanguage of L£,,,(P). When @Q,, = Q, this
claim is indeed true. It is false, however, in the general case
when Q,,, # @, since in that case £,,(P") is not necessarily
a controllable language. To solve the [-stabilizability problem
as well as CCP in the general case, a different approach must
be taken as discussed in detail below.

We turn next to the problem of solving CCP in the general
case when (),,, # @ and E is a general regular language. To
this end we shall make use of two known algorithms that are
briefly discussed below.

The first algorithm computes the supremal controllable and
L, (P)-closed sublanguages of a given language. Specifically,
let P = (Q,%,6,90,Qm) be a DES and M C L,,(P) be
a given regular language. Let A = (X,X,£, 29, X,,,) be a
deterministic recognizer for M (L,,(A) = M). The construc-
tion of a deterministic recognizer for the supremal controllable
(with respect to L(P)) and L,,,(P)-closed sublanguage of M
is accomplished by an algorithm of complexity of O(|Q||X])
as follows. First construct the synchronous composition C' =
Pl|lA = (Q x X,%, 0,(q0,%0),@m X X,,) as described in
Section II. Then £,,,(C) = L, (P)NLn(A) = L (P)NM =
M. The supremal L,,(P)-closed sublanguage of M is then
given by L,,(C") (see [14, Appendix B]), where C” is given
by the restriction

O = C|Qum X (X = Xum).

The complexity of constructing C’ is O(|Q[|X|). By [2,
Proposition, 6.1], the supremal controllable sublanguage of
L (C") equals the supremal controllable and L,,(P)-closed
sublanguage of M. A deterministic recognizer for the supremal
controllable sublanguage of £,,(C’) can be constructed by
the algorithm of [11] (see also [12]), whose complexity is
O(|Q|? - | X|?). An algorithm of complexity O(|Q||X|) has
recently been given in {13]. Thus, the construction of the
supremal controllable and L,,(P)-closed sublanguage of M
can be accomplished with overall complexity O(|Q||X).

The second algorithm that we shall employ below appeared
in [4] (see also [5], [9], [18]) and is briefly described next.
Let P = (Q,%,, ,Qm) be a DES with unspecified initial
state. Fix a subset C @) (which we shall regard as the set
of legal states). The set () is called a strong attractor for a
state ¢ € @ if, when initialized at ¢, the system P always
reaches a state in Q after a bounded number of transitions.
Formally,) is a strong attractor for ¢ € Q if A(P[Q,q) is
acyclic and no state of A(P|Q,q) is a deadlock state of P
(i.e., a state at which no transition is defined). A set Q is
called a weak attractor for ¢ € Q if there exists a supervisor
S such that @ is a strong attractor for ¢ in (S/P). Such a
supervisor, when it exists, can be chosen to be static, i.e., for
s,t € L(P),S(t) = S(s) whenever 6(s,q0) = (¢, q0)(= q).
Note also that a static supervisor can be written as a map

S : X — 2%. The set of all states ¢ € @ for which Q is
a weak attractor is called the region of weak attraction and
is denoted by Qp(Q). If Q@ = &, then Qp(Q) := ¢. In [4]
and [5] algorithms are given for computation of Qp(Q)) with
complexity O(|Q|?). An algorithm of complexity O(]Q|) has
recently been presented in [9] and [18].

We return to our main discussion. To test the solvability of
CCP, we first construct the automaton B = (V, X, a, vo, Vin)
as defined in Step 1) of Algorithm 3.3. In view of the fact that
L(B) = L(P) and L,,(B) = L.(P), [(3.10), 3.11)], it is
clear that B can be regarded as a new model of our process.
Thus, CCP is solvable with respect to P if and only if it is
solvable with respect to B.

The automaton B offers an obvious advantage over P for
testing the solvability of CCP in that its structure provides
a simple way of identifying all strings of £,,(B) that do not
have a suffix in F. Indeed, lett € £,,(B) and v = (g,x) € Vm
satisfy a(t, (qo, {Zo})) = v. Then, since V,, = Qu, x 2%, it
follows that ¢ € Q,,, and, see (3.9), t has a suffix in E if and
only if x N X,, # ¢. Let F be the set defined by

F={(g.x) €Vnlg € Qmand x N X, # ¢}. (4.5)

Define B’ as the automaton
B' = (V,%, a,v, F)

which is obtained from B by restricting its set of final states
to F. Suppose now that S is a solution to CCP with respect
to B, ie., E < L,(S/B), and let t € L(B) — L (B’).
Since ¢ has no suffix in F, it follows that ¢t € £,,(S/B) and
it follows further that £L,,(S/B) C £L,,,(B’). Since £,,,(S/B)
is controllable with respect to £(B) and is L,,(B)-closed,
we conclude that £,,(S/B) C supCL(L,,(B’)), where
sup CL(L,,(B")) is the supremal controllable (w.r.t. £L(B))
and £,,(B)-closed sublanguage of L,,(B’). Define now the
automaton

B =(V,%,&,, V) 4.6)
as a recognizer for sup CL(L,,(B’)). Such an automaton can
be constructed by an algorithm of complexity O(|Q|- 2!X1) as
was described earlier. From the algorithm it is also clear that
B is a subautomaton of B. Now, the inclusion L., (S/B) C
Lm(B) C Ln(B) implies that £,,(S/B) = Ln(S/B).
Hence, CCP is solvable with respect to B only if it is solvable
with respect to B. To see the reverse implication, i.e., that solv-
ability of CCP with respect to B implies the solvability of CCP
with respect to B, observe that Em(B) is a controllable (w.r.t.
L(B)) and L,,,(B)-closed sublanguage of L,,,(B). Thus, there
exists a supervisor S such that £,,(S/B) = L (B). If
there exists a supervisor S such that E < L£,,(S/B), then
E < Ln(S/(8/B)) = Ln(S x §/B), where S x § is the
supervisor that consists of the conjunction of S and S (see
e.g., [2]). We have just proved the following.

Lemma 4.1: For a DES P and a regular language F, let B
be the automaton defined by (4.6). Then CCP is solvable with
respect to P if and only if CCP is solvable with respect to B.

The following corollary is immediate.

624

Corollary 4.1: If L,(B) = ¢ then CCP is unsolvable.

In Theorem 3.2 (see Algorithm 3.3) we have shown that the
convergence L,,(A) < L,,(P) is equivalent to the acyclicity
of V — T where T [see (3.7)] consists of all states v = (g, x)
such that £,,(Fy) C Li(Ay). Similarly, we construct now
a subset T of states of B such that for each v = (e,x)eT
there exists a supervisor S with the property that £,,(S/P,) C
Lm(Ay). We will then show that the solvability of CCP is
equivalent to the possibility of preventing the system B from
executing cycles in V — T.

For a state v = (q,x) of B it follows from (4.2) and
(4.3) that there exists a nonblocking supervisor S such that

L (S/Py) C Ln(Ay) if and only if the class of controllable
(with respect to L(Py)) and L., (FPy)-closed sublanguages of

Lm(Py)NLm(Ay) does not consist of the empty language. To
check this condition we proceed as follows. First note that A,
is not a deterministic automaton since it has in general more
than one initial state. Hence we begin by constructing a de-
terministic recognizer AX = (W, Z, 3, wo, Wp,) for £,,(4,),
ie., Lm(AX) = Ln(Ay). Next, by the algorithm described
earlier we construct a deterministic automaton D" such that

m(DV) = sup CL(Ln(Py) N Lo (AX)). @7

The required supervisor S such that £,,(S/P;) C Lm(Ay)
exists if and only if £,,(D") # ¢. The construction of D?
requires O(|Q| - 21X!) computations since the number of states
of AX is bounded by 2| and the number of states of P,is |Q)|.

Now, let T be the set of states defined by

T = {ve VICa(D") # ¢},

Since the number of states of B is bounded by |Q] - 21
(the number of states of B) the construction of 7T requires
o((1Q| - 2™1?2) computations.

The final step in our computation is the employment of
the algorithm of [9] and [18] to compute the set 2 B(T)~ The
complexity of this algorithm is O(|Q] - 2X1).

We now have the following necessary and sufficient condi-
tion for the solvability of CCP.

Theorem 4.1: Let P be a DES, and let E C ©* be a regular
language. Let B and 7" be the automaton and the set of states as
defined in (4.6) and (4.8), respectively. Then CCP is solvable
if and only if vy € Q4(T).

Proof: Only If. By Lemma 4.1 CCP is solvable with
respect to P if and only if it is solvable with respect to B.
Suppose that CCP is solvable so that there exists a nonblocking
supervisor S such that E' < L£,,(S/ B). We shall show that
the assumption that vy & Q 5(7') leads to a contradiction. First
we shall show that, under S, there are no deadlock states in
V—T.Indeed, let & = (g,x) € V—T and t € £L(S/B) be such
that &(t, %) = 9. Suppose that ¥ is a deadlock state, i.e., ts €

(4.8)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

L(S/B) = s =c.If ¢ € Q— Q. then (¢, X) & Vi, implying
that ¢ € L,,(S/B). Thus £(S/B) # L(S/B), contradicting
the nonblocking property of S. If ¢ € Q,, then € € L,,(P,).
By definition of B, x N X,, # ¢ so that € € L,(A,),
implying that e € £,,(P;) N £L;»(Ay). Since the language
{e} is trivially £,,(P,)-closed and controllable with respect
to L(Py), it follows that {e} € CL(Lm(Py) N Lin(Ay)), s0
that Cm(D”) # ¢. This implies that © € T, a contradiction.

Since (S/B) has no deadlock states in V — T', the assump-
tion that 4y & QB(T) implies that (S/B) has a cycle in V —T.
With the employment of the same arguments as in the proof of
Theorem 3.2, it is not difficult to show that the existence of a
cycle in V=T contradicts the assumption that £ < L,,,(S/B).

If. The proof of the *‘if”’ part of the theorem consists of
the following algorithm for construction of the supervisor S
that satisfies the condition that £ < L,,(S/B) whenever
1}0 e N B(T)

Algorithm 4.1 :

Step 1) Define the supervisor S : V — 2%¢ as a static
supervisor such that T is a strong attractor for
QB(T) with respect to Sy /B. The existence of this
supervisor follows from the definition of 2 B(T)'
For each i € V, let D? be the automaton defined
earlier (see (4.7)).

The required supervisor is given by S : L(B) —
2% as found in (4.9) at the bottom of the page.

The supervisor S is obviously well defined because for
each t € L(B) it defines a unique set of controlled events
to be disabled. Next, note that under the supervision of S, the
system B reaches a state & € 7" within a number of transmons
bounded by |V — 7| because for states in £ p(T [y —
acts as S;. When a state © = (¢,x) € T is reached, then
it is guaranteed by S that all marked strings generated by B
(starting at ¥) belong to

Step 2)

Ln(D?) = sup CL(Lm(Py) N Ly(AX)) C Lo (Ay).
It thus follows that for ¢ € L,(S/B),|t| > |V — T, there
exists i < |V — T such that al(pri(t),0) = 9 = (¢,x) € T
and suf;(t) € L,,(Ay). By (3.12)~(3.14) it follows that there
exists j < i such that suf;(t) € E. If |t| < |V — T, the
existence of i (< |V — T|) such that suf;(t) € E follows
from the definition of B. This concludes the proof. g
The complexities of computing the automaton B and the
set T are O(|Q| - 2¥1) and O((|Q] - 21X1)2), respectively. The
computation of 25 (T) requires O(|Q| - 2I%1) computations.
Thus, the complexity of verifying the solvability of CCP (i.e.,
checking the condition 79 € Q4(T)) is O((|Q] - 27¥1)2). In
case CCP is solvable, the supervisor defined by (4.9) is a
solution of CCP.

S1(0) where 9 =

&(t, 0o)

{o € Z| suf;, (t)o & L(D?)},
where ig is the least integer 7

if {Vi}a(pri(t),0) € T

if there exists 4 guch that
&(p?‘l(t)7 ’IA}()) eT

4.9)

that satisfies &(pr;(t), 9o) € T

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 625

When F is suffix closed, the solvability of CCP can be
verified by an algorithm of linear complexity (i.e., of com-
plexity O(]Q|| X)) as described below. The correctness of the
following algorithm follows from Theorems 3.1 and 4.1.

Theorem 4.2: Let P = (Q, %, 6,90, Q) be a given DES,
and let E be a suffix-closed regular language. Let A =
(X, Z,€, z9,Xm) be a deterministic automaton such that
Ln(A) = E. Then the following algorithm verifies the
solvability of CCP.

Algorithm 4.2:

Step 1) For each ¢ € Q) construct a deterministic automaton
D7 such that £,,(D?) is the supremal controllable
(wrt L(P,)) and L,,(Py)-closed sublanguage of
L (Py) N Ly (A).

Step 2) Compute the set Y of states defined by

Y i={q € QILm(D") # ¢}.

Step 3) By the algorithm of [9], [18] compute the set
Qp(Y).

Step 4) CCP is solvable if and only if go € 2p(Y). O

The set Y can be constructed with the algorithm of [13]
using the same method as was described in Section III for the
computation of the set T'. The complexity of constructing the
set Y as well as the overall complexity of Algorithm 4.2 is
o(lQlIX]).

Algorithms 4.1 and 4.2, which constitute tests for solvability
of CCP, also provide a construction of nonblocking supervisors
that guarantee convergence of the closed-loop language to the
specification £ whenever CCP is solvable. The synthesis is,
however, neither optimal nor unique since, in general, there
does not exist a least restrictive supervisor that guarantees
convergence. Specifically, there does not, in general, exist
a supervisor S such that E «< L,,(S/P) and such that
if S is any supervisor satisfying £ <« L,,(S/P), then
Lm(S/P) C Ln(8/P). To see this, consider the following
simple example. Let £,,,(P) = o*(and let E = 3. Assume
further that 3. = {a} and £,, = {}. The solvability of CCP
is obvious, and for any k > 0 there is a supervisor S such
that £,,,(Sx/P) = o*f (which clearly satisfies 3 < o).
But for k1 < ko, o*13 C o*23 and k can be arbitrarily large!

The issue of optimal supervisors (in contexts other than
“minimally restrictive”) is discussed in [17].

V. ASYMPTOTIC BEHAVIOR OF DES

In nonterminating systems, i.e., systems that operate in-
definitely, one can distinguish between their transient and
permanent (or asymptotic) behaviors. Intuitively, the asymp-
totic behavior of a system consists of all strings that the system
can execute after having already performed an arbitrarily large
number of transitions.

For a language L C ¥* we define its asymptotic suffix,
denoted L, as

Loo = {s € T*|Vi>0,3t; € %, |t:| > i Atis € L}. (5.1)

Clearly, L. is an empty language whenever L is a bounded
language (see Remark 3.1). It is also easy to see that L, is
suffix closed for every language L C X*.

Let P = (Q,%,6,90,Q@) be a DES. The asymptotic
behavior of P is defined as L,,(P)o. A recognizer for
Lm(P)oo can be constructed as follows. Let cy(P) be the
set of all states of P that are accessible from gp and belong
to a cycle of P, that is

cy(P):={q€Q|(3s,t € X")q=5(t,q0), s #c A b(s,q) =q}-
5.2)
Let Qoo := A(P,cy(P)) and let Qoo := @m N Qoo. Define

Poo = (Qoan767 QoQOoc)-

The following proposition states that P, is a recognizer
for Lm(P)oo-
Proposition 5.1: Ly(P)oo = Lm(Pso).

Proof: Lm(P)oo C Lin(Px). Let t € Ly(P)oc be any
string. By (5.1) there exists a string w,|w| > |Q|, such
that wt € L,,(P). Let go,q1, -,q, | = |w|, be the path
associated with w. Since [> |@|, there exists a state ¢ € @
that occurs along this path at least twice, i.e., there exist
i1,42,0 < 43 < i3 < [such that ¢ = ¢;;, = ¢;,. Thus,
q € cy(P) and ¢ := 6(w, qo) € A(P,cy(P)) = Qoo. Since
wt € L,(P) and P is deterministic, it follows that

te Acm(Qooaza(sz quQmoo) C
Lm(Qoo72767 QoonmOO) = [’m(POO)'

Ln(P)oo D Lin(Poo). Let w € Ly(Poo). Then w € Ly,
(Qoos 2,8, ¢, Qmoo) for some ¢ € Q. Thus see the equation
at the bottom of the page.

By (5.1) this implies that w € L£,,(P)s concluding the
proof. a

The construction of the set cy(P) can be accomplished by
the well-known algorithm for computing strongly connected
components of P (see [7, p. 64]) whose complexity (under
our assumption that |X| = O(1)) is O(|Q|). The construction
of A(P, cy(P)) requires O(|Q|) computations. Thus, the com-
plexity of the construction of P, is linear in the number of
states of P.

Our next- goal will be to show that for a given systemP,
the convergence of £,,(P) to a given language E can be
determined by testing the asymptotic behavior of P. The
following proposition gives a necessary condition for the
convergence E < L,,(P) in terms of the asymptotic behavior
of P.

Proposition 5.2: Let P be a given DES, and let £ C ¥* be
a given language. If £ <= £,,(P), then £,,(P)s C suf(E).

(5.3)

3 weX*3¢ €cy(P),b(u,q)=gq

= 3 (t,seX*)d =6t q) s#c¢
= ts*uw € L (P).

(definition of Q)

and ¢ = 6(s,q’) (follows by (5.2))

626

Proof: Assume that E < L,,(P), let the convergence
time be k and let s € £,,(P)s be any string. By (5.1),
for each « > 0 there exists t; € ¥* |¢t;] > ¢, such that
tis € Ly (P). Choose t; > k. Since there exists 5 < k such
that suf;(t;s) € E, it follows that

s = sufy;,|(tis) = sufjy,|_; (sufj(t;s)) € suf(E)

concluding the proof. 0
The following lemma states that every regular language
L C ¥* converges to L.
Lemma 5.1: For a DES P = (Q,%,6, g0, @m)s Lm(P)eo
& Lo(P).

Proof: Since the language L,,(P)s is suffix
closed it follows that ¢ € L,,(P)o. Thus for each
t € Ln(P), sufiy(t) = € € L,(P)e implying that if
[t| < |Q] there exists 7 < |@Q| such that suf;(t) € L. (P)oo.

Lett € L,,(P), |t| > |Q|. Since the number of states of P is
|@Q|. there exists i,% < |Q|, such that 8(pr;(t),q0) = g where
q € cy(P) C Qoo Since by Proposition 5.1 L£,,(P)o =
Lm(Px), it then follows that suf;(t) € L£,,(Poo) = Lin(P)oo-
Hence the convergence time of L, (P) to £,,(P)o is bounded
by |Q|, concluding the proof. a

It should be noted that if L is not a regular language, then
the convergence L, < L does not necessarily hold. Consider,
for example, the language {a*@%v*|Vk > 0}.

Proposition 5.2 and Lemma 5.1 yield the following.

Corollary 5.1: Let P be a DES. Then £,,(P) is the
infimal (in the sense of language inclusion) suffix-closed
language that £,,,(P) converges to, i.e.,

Lm(P)oo =N{M C Z*| suf(M) =M and M < L,,,(P)}.

A sufficient condition for the convergence E < L,,(P) is
given be the following proposition.

Proposition 5.3: For a DES P and a language E C
2*, if Lin(P)eo C E, then E < L,,(P).

Proof: By Lemma 5.1, £L,,(P)oo < L,,(P). Thus, if
Lm(P)ss C E, it follows directly by (2.12) that also E <«
Lo (P). a

By combining Propositions 5.2 and 5.3 for the special case
of suffix-closed languages we obtain the following necessary
and sufficient condition for £ < £,,(P).

Theorem 5.1: Let P be a DES and let £ C ¥* be a
suffix-closed language. Then E L,,(P) if and only if

Ln(P)e CE. (5.4)

Next we turn to the problem of supervisory control. In
the previous section we considered the problem of language
convergence, that is, the problem of synthesizing a supervisor
that guarantees convergence of the supervised language to a
specified legal language. We shall now be interested in the
less restrictive control problem wherein only the asymptotic
behavior of the supervised process is required to lie in a
specified legal language. Thus, we shall consider the following.

Asymptotic Control Problem (ACP): Let P be a given DES
and let £ C X* be a given language. Synthesize a nonblocking
supervisor S such that

L(S/P)os C E. (5.5)

1EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

In the case when E is a suffix-closed language there is an
obvious equivalence between ACP and CCP. This equivalence
is stated in the following reinterpretation of Theorem 5.1.

Proposition 54: Let E be suffix closed. Then ACP is
solvable if and only if CCP is solvable.

Let us now examine the solvability of ACP in the case
whenF is not suffix closed. Since L is suffix closed for any
language L, ACP is solvable (i.e., there exists a nonblocking
supervisor that satisfies (5.5)) if and only if there exists
a suffix-closed sublanguage M C FE and a nonblocking
supervisor S such that

L (S/P)os C M. (5.6)

By Theorem 5.1, a supervisor S satisfies (5.6) if and only if

M < L,(S/P). 5.7)

Thus, to determine the solvability of ACP, it is sufficient to
check whether CCP is solvable with respect to the supremal
suffix-closed sublanguage of E. The existence of the supremal
suffix-closed sublanguage of E follows from the closeness of
the set of suffix-closed languages under arbitrary unions.

Proposition 5.5: For a language E, ACP is solvable if and
only if CCP is solvable with respect to the supremal suffix-
closed sublanguage of F.

We conclude this section with an algorithm for computing
the supremal suffix-closed sublanguage of a given regular
language F.

Algorithm 5.1:

Input) A deterministic automaton
A= (Xw Z,£7$0,Xm)

such that (without loss of generality) £(o,z) # x¢
forall o € ¥, z € X.
Output) A deterministic recognizer for the supremal suffix-
closed sublanguage of £,,(A).
Construct a deterministic automaton

C= (Uazwﬁa Ug, Um)

where U = 2%, uy = {20}, U, = {u € Ul(u —
{zo}) C Xmmand B: 2 x U — U is defined by

Blo,u) =
{zo} U{&(0,2) |z € u} if &(o,x)! for all z€ u
undefined otherwise.

(5.8)

Proposition 5.6: L,(C) is the supremal suffix-closed sub-
language of £,,(A).

Proof: First observe that for any two states u,w € U
such that © C w (as elements of 2%), 3(c, w)! only if B(o, u)!,
and if 3(o, w)! then B(o,u) C B(o, w). Moreover, if B(a, u)!
and x € wu, then £(o,z)!

Let s = o010, € L,(C) be any string, and
let ug,---,u, be the associated path in C, ie., u; =
B(oisui—1),i = 1,---,n and u, € U,,. Then since

ug = {zo}, it follows from the above observation that there
exists a path zg,---,x, in A such that z; = £(0;,2,_1) and

WILLNER AND HEYMANN: LANGUAGE CONVERGENCE IN CONTROLLED DISCRETE-EVENT SYSTEMS 627

x; € u; — {zo} for all ¢ = 1,---,n. From the definition of
Um, Tn € tn ~ {0} C Xy, so that s € L,,(A), implying
that £,,(C) C Ln(A).

To see that £,,(C) is suffix closed, consider suf;(s) =
0j41- -0y for some 0 < j < n. We must show that suf;(s) €
L (C). Note that ug C u;, whence since u;+1 = 3(0j41,u;)
is defined, so is-@; := (041, uo) and 4y C u;41. Proceeding
inductively, we obtain a sequence of states ug, U1, - -, Un—j
with 47 = ﬁ(0j+1,u0),ﬂi+1 = ﬂ(a’i+]‘+1,ﬁi) and 4; C Uitj-
Since tp—; C un, € Uy, we conclude that i,_; € Up,
whence suf;(s) € £,,(C) as claimed.

Finally, to see that £,,(C) is the supremal suffix-closed
sublanguage of £,,(A), we must show thatif s =01---0, €
Lm(A) is a string such that suf;(s) € £,(A) for all j =
0,---,n, then s € L,,(C). Suppose that s ¢ L,,(C). Let
[,1 € I < n, be the smallest integer such that u; =
B(oj,uj—1) is defined for all j = 1,---,1 — 1 but 8(o7, ui-1)
is undefined. This implies [see (5.8)] that there exists k,0 <
k < I —1, and a sequence of states zg,Z1, -, Zi—f—1
such that z; = &(ok4j,zj-1) forall j = 1,--- 1 -k -1
and £(0y, T1—k—1) is undefined. But then sufy(s) € L(A), a
contradiction.

O

REFERENCES

[1} P.J. Ramadge and W. M. Wonham, ‘‘Supervisory control of a class of
discrete-event processes,”” SIAM J. Control Optim., vol. 25, no. 1, pp.
206-230, Jan. 1987.

[2] —, ““Modular supervisory control of discrete-event systems,” Math.
Contr. Signals Syst., vol. 1, pp. 13-30, 1988.

[3} , “‘On the supremal controllable sublanguage of a given lan-
guage,”” SIAM J. Contr. Optim., vol. 25, no. 3, pp. 637-659, May
1987.

[4] Y. Brave and M. Heymann, ““On stabilization of discrete-event pro-
cesses,” Int. J. Contr., vol. 51, no. 5, pp. 1101-1117, 1990.

[51 C. M. Ozveren, A. S. Willsky, and P. J. Antaklis, ‘‘Stability and
stabilizability of discrete-event dynamic systems,”” J. ACM, vol. 38,
no. 3, pp. 730-752, 1991.

[6] J. E. Hopcroft and J. D. Ulman, Introduction to Automata Theory,
Languages and Computations. Reading, MA: Addison-Wesley, 1979.

[7] S.Even, Graph Algorithms. Maryland: Computer Science Press, 1979.

[8] Y. Brave and M. Heymann, ‘‘On optimal attraction in discrete-event
processes,”” Inform. Sci.,vol. 67, pp. 245-267, 1993.

[91 R. Kumar, V. Garg, and S. I. Marcus, ‘‘Stability of DES behavior,”’

in Proc. 1991 IFAC Intl. Symp. Distributed Intelligence Syst., Arlington,

VA., 1991, pp. 13-18.

S. Eilenberg, Automata, Languages, and Machines, vol. A. New York:

Academic, 1974.

S. Lafortune and E. Chen, ‘“The infimal closed controllable superlan-

guage and its application in supervisory control,”” IEEE Trans. Automat.

Contr., vol. 35, pp. 398-405, 1990. .

[12] F. Lin and W. M. Wonham, ‘‘On the computation of supremal control-

lable sublanguages,’” in Proc. 23rd Annual Allerton Conf. Communica-
tion, Contr., Computing, Urbana, IL, 1985, pp. 942-950.

(10]

{11]

[13] M. Heymann, ‘‘Some algorithmic questions in discrete-event control,”
to appear.
[14] H. Cho and S. 1. Marcus, ‘‘On supremal languages of class of sublan-

guages that arise in synthesis problem with partial observations,” Math.
Contr. Sig. Syst., vol. 2, pp. 47-69, 1989,

Y. Willner and M. Heymann, “‘On language convergence in discrete-
event systems,”’ in Proc. 17th Conv. IEEE Israel, Mar. 1991.

R. Kumar, V. Garg, and S. L. Marcus, ‘‘On language stability of DEDS,”’
in Proc. Int. Conf. Mathematical Theory Contr., L1.T. Bombay, Bombay,
India, 1990.

Y. Willner and M. Heymann, ‘‘Optimal language convergence in
discrete-event control,”’ to appear.

R. Kumar, V. Garg, and S. I. Marcus, ‘‘Language stability and stabi-
lizability of discrete-event dynamical systems,”” SIAM J. Contr. Optim.,
vol. 31, no. 5, pp. 1294-1320, 1993.

C. M. Ozveren and A. S. Willsky, ““Tracking and restrictability in
discrete-event dynamical systems,”” SIAM J. Contr. Optim., vol. 30, no.
6, pp. 1423-1446, 1992.

(15]

[16]

(17]

[18]

[19]

Yosef M. Willner received the B.Sc., the M.Sc.,
and the D.Sc. degrees in electrical engineering from
Technion—Israel Institute of Technology, Haifa,
Israel, in 1984, 1987, and 1992, respectively.

Since 1992, Dr. Willner has been a Research
Associate in the Department of Education in Tech-
nology and Science, Technion. From 1993-1994, he
was on leave at NASA—Ames Research Center,
Moffet Field, CA, as an NRC Research Associate.
His research interests include multivariable systems,
adaptive control, discrete-event systems, hybrid sys-
tems, and graph algorithms.

Michael Heymann received the B.Sc. and the
M.Sc. degrees from Technion—Israel Institute
of Technology, Haifa, Israel, in 1960 and 1962,
respectively, and the Ph.D. degree from the
University of Oklahoma, Norman, in 1965, all
in chemical engineering.

From 1965-1966, he was on the faculty of
the University of Oklahoma. From 1966-1968,
he was with Mobil Research and Development
Corp., researching control and systems theory. From
1968-1970, he was with the Ben-Gurion University
of the Negrev, Beer-Sheva, where he established and headed the Department
of Chemical Engineering department. Since 1970, he has been with the
Technion, where he is currently a Professor in the Department of Computer
Science, holding the Carl Fecheimer Chair. He has previously been with the
Department of Electrical Engineering and Chairman of the Department of
Applied Mathematics. He held visiting positions at the University of Toronto,
the University of Florida, the University of Eindhoven, Concordia University.
CSIR, Yale University, the University of Bremen, and the University of
Newcastle. From 1983-1984, 1988-1989, and during several summers he was
an NRC-Senior Research Associate with NASA—Ames Research Center. His
current research interests include discrete-event systems, hybrid systems, and
the theory of concurrent processes.

Dr. Heymann is on the editorial board of SIAM Journal of Control and
Optimization

