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Control of Discrete Event Systems Modeled
as Hierarchical State Machines

Y. Brave and M. Heymann

Abstract—Discrete event systems (DESs) are systems in which
state changes take place in response to events that occur dis-
cretely, asynchronously and often nondeterministically. In this
paper we consider a class of DESs modeled as hierarchical state
machines (HSMs), a special case of the statecharts formalism
introduced recently. We provide an efficient algorithm for solv-
ing reachability problems in the HSM framework that utilizes
the hierarchical structure of HSMs. This efficient solution is
used extensively in control applications, where controllers
achieving a desired behavior are synthesized on-line.

L. INTRODUCTION

N most modeling frameworks for discrete event sys-

tems, state-transitions and their associated events con-
stitute the basic structural fragments of the model. (Finite)
state-machines and state transition diagrams are the sim-
plest formal mechanism for collecting such fragments into
a whole. These models are conceptually appealing be-
cause of their inherent simplicity and the fact that they
can be formally described by finite automata and their
behavior can be described by formal languages.

In the pioneering work on the control of discrete event
systems by Ramadage and Wonham [1]-[3] and in much
of the work that followed, discrete event systems were
indeed modeled in the state-machine framework. A rich
control theory has been developed and recently increasing
attention has been focused on computational aspects (e.g.,
(4], [SD.

In many practical control problems, the discrete event
system consists of a large number of components that
operate concurrently. Thus, the number of states in the
state-machine representation of the composite system
grows exponentially with the number of parallel compo-
nents. This exponential explosion in the number of states
constitutes a severe shortcoming of the state-machine
modeling framework in view of the fact that most compu-
tational algorithms for such systems are of complexity that
grows at least linearly in the number of states.

To alleviate the modeling complexity of the state-mac-
hine formalism, while preserving many of its appealing

Manuscript received June 12, 1992; revised December 30, 1992. Paper
recommended by Past Associate Editor, C. G. Cassandras. This work was
supported in part by the Fonds National Suisse de la Recherche Scien-
tifique and in part by the Technion fund for the promotion of this
research.

Y. Brave is with the Institut d’Automatique, Ecole Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Suisse.

M. Heymann is with the Department of Computer Science, Technion
—Israel Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 9213189.

features, Harel [6] introduced the statechart modeling
framework which extends ordinary (sequential) state-mac-
hines by endowing them with natural constructs of orthog-
onality (parallelism), hierarchy (depth), broadcast syn-
chronization and many other sophisticated features that
strengthen their modeling power. Hierarchical State Ma-
chines (HSMs) are a simplified version of statecharts that
extend state machines by adding only the hierarchy and
orthogonality features. Specifically,

1) States are organized in a hierarchy of superstates
and substates thereby achieving depth.

2) States are composed orthogonally (in parallel),
thereby achieving concurrency.

3) Transitions are allowed to take place at all levels of
the hierarchical structure, thereby achieving descriptive
economy.

HSMs are well suited for modeling and specification of
complex processes such as manufacturing systems, com-
munication networks, resource distribution systems, air
traffic control systems, etc.

In [7] Drusinsky showed that statecharts exhibit sub-
stantial descriptive economy when compared with the
equivalent state-machine description of the process. In
particular, he showed that the descriptive complexity is
exponentially lower than that of the equivalent state-mac-
hine model. The present paper deals with computational
aspects of a class of HSMs, called asynchronous HSMs
(AHSMs). AHSMs are characterized by sparse interaction
between parallel components. That is, there is no synchro-
nization of orthogonal components by means of shared
events; all interaction is assumed to be modeled either by
high-level transitions or in the control constraints (a pre-
cise definition of AHSMs is given in Section II). It is
shown that such pivotal issues as computation of reacha-
bility can be executed in the AHSM framework with
exponential reduction of complexity as compared with the
equivalent ordinary state machine representation of the
process. In fact, this paper identifies and investigates a
class of statecharts for which reachability computations
and several control problems (which are known to be hard
problems (see, e.g., [7]) are decidable and solvable in
polynomial time.

We developed an efficient algorithm for testing reacha-
bility, that makes fundamental use of the hierarchical
structure of the process, thereby demonstrating the inher-
ent advantage of the AHSM representation. This reacha-
bility algorithm is then used for solving the forbidden
configuration control problem, and an efficient algorithm
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for on-line control execution is developed. Several other
applications of the reachability algorithm are also dis-
cussed. In the remainder of this section we shall give an
informal description of HSMs, and shall define the notion
of canonical HSMs. The formal structure of HSMs is
presented in Section II, whereas Section III provides an
efficient algorithm for testing reachability in the HSM
framework. Several applications of this algorithm are pre-
sented in Section IV and V, and their complexity is
considered in Section VI. A summary of some parts of the
present paper appeared in [8] and [9].

A. Informal Description of HSMs

States are represented by Boxes. Hierarchy is repre-
sented by the insideness of boxes, as illustrated in Fig.
1(a) where states a and e are immediate substates of the
state f, and the states b, ¢, and d are immediate substates
of a.

States b, ¢, and d are also regarded as substates of f.
Fig. 1(b) represents the equivalent state machine of the
HSM in Fig. 1(a). The symbols a — 7 stand for events
associated with the various transition-paths (or edges). The
state a is called an OR-state which means that being in a
is equivalent to being in either b or ¢ or 4 (but not in
more than one state at a time). The edge y, which leaves
the contour of a, applies to b, ¢, and d [just as in Fig.
1(b)]. Default-arrows indicate default states. In Fig. 1(b),
state e is selected as the initial state, and not a (a fact
represented in Fig. 1(a) by the default arrow attached to
). The arrow attached to state ¢ is the default among b,
¢, and d if we are already in a, and alleviates the need for
continuing the B-arrow beyond a’s boundary.

Orthogonality, or concurrency, is the dual of the OR-
decomposition of states. In Fig. 2(a), state A consists of
two orthogonal components, f and g, related by AND; to
be in £ is equivalent to being in both f and g, and hence
the two default arrows.

The state 4 is called an AND-state. States that have no
substates, such as a, b, d, and e, are called basic. The
tuples {a, g), as well as (b, e) and (i}, are configurations
of the HSM of Fig. 2(a) representing sets of orthogonal
states which the HSM can occupy simultaneously. The
configuration (b, e) is said to be basic since it consists
only of basic states. The set of all basic configurations of
the HSM of Fig. 2(a) is the set of all states in its equiva-
lent “flat’ version of Fig. 2(b).

The transition-path labeled A is represented by the
triple ({7, A,{a, d)), where {j) and {a, d) are the source
and destination configuration of this transition-path. Each
transition-path ¢ is associated with a unique state of the
HSM. This state is the smallest (in terms of its size)
OR-state containing ¢’s source and destination configura-
tions, as well as its entire arc. Thus, for instance, the
transition-path labeled o belongs to the state f, whereas
the transition-path 6 belongs to state k. Edges belonging
to state f, such as the transition labeled «, do not affect
the g component. Thus, if a occurs at (g, d), it affects
only the f-component, resulting in {b,d). The event A at
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Fig. 1. (a) An HSM H consisting of OR-states. (b) The equivalent state
machine of H.

Jj causes entrance to the configuration {a,d), and u at
(b,e) causes transfer to i. The event 8 at d means that
the AND-state h(=f X g) is left and j is entered, de-
pending only on the fact that the g-component of the
configuration is at d. The n-arrow, on the other hand,
leaves & unconditionally. By default arrows, event A at i
means entering (b, e), whereas p means entering (b, d).
We end this example by remarking that Fig. 3 is a ‘zoom-
out’ of Fig. 2(a) (which suppresses the detailed behavior
inside #), whereas Fig. 4 is a graphical representation of
the hierarchical structure of the HSM in Fig. 2(a).

Example 1: A hierarchical processing of jobs. Consider
the HSM H of Fig. 5. The transition-paths of H repre-
sent the following actions.

n,—take a job for processing.

a,—partition job for further (hierarchical) processing.
c,—start hierarchical processing.

b,—perform ‘direct’ (nonhierarchical) processing.
d,—store job.

e,—continue processing.

fi—test product.
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Fig. 2. (a) An HSM H consisting of AND- and OR-states. (b) The
equivalent state machine of H.

k,—combine products of higher level of processing.
h,—test combined product.

81 11, my, m ,—processing failures.

ky—processing ended successfully.

Now we may ‘zoom-in’ into state A23 (see Fig. 6).
Similarly we may proceed zooming-in into states A45 and
A67, and so on. We shall discuss the system in Fig. 7.

Some of the events are uncontrolled (in the sense that
they cannot be prevented from occurring by external
control) because either i) they model an unpreventable
failure—such as the events labeled by g;, or ii) they
correspond to executions or tasks with hard time con-
straints, and hence should never be disabled (e.g., k). In
Fig. 7, bars are attached to controlled events. A supervisor
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Fig. 3. Zoom-out of Fig. 2(a).
/ N
a b d e

Fig. 4. The hierarchical structure of the HSM in Fig. 2(a).

g

1

A23

Fig. 5. The HSM of Example 1.

(or a controller) S for an HSM H is a device that specifies
at each instant a set of controlled events that must be
disabled, and thereby restricts the ‘behavior’ of H. The
concurrent run of S and H is denoted S/H.

In this example our objective may be to synthesize a
supervisor § for H such that S/H never performs the
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Fig. 7. The full HSM of Example 1.

operations Partition and Combine at the same time. In
other words, it may be required that states PART; and
COMBj are never occupied simultaneously. Because of
the OR/AND decomposition of states, not all combina-
tions of PART: and COMB;/ are relevant. For example,
H can never be simultaneously in states PART3 and
A67, and hence, neither in PART3 and PART?7. Conse-
quently, it would be enough to consider the following
forbidden basic configurations: (PART2, COMB3),
(PART2,COMB7), (COMB2,PART3) and (COMB2,
PART?7).

A synthesis problem of the type described above will be
called the forbidden configuration problem (FCP), namely
the problem of synthesizing a supervisor § for an HSM H
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such that forbidden configurations are never reached in
S/H. In fact, we shall be interested in a supervisor that
solves FCP by minimally restricting H’s ‘behavior.” One
possible approach to solving FCP is to construct M(H),
the equivalent (flat) state machine of H, and then to
synthesize the required supervisor using the algorithm in
[3] for computing supremal controllable languages. The
complexity of this approach is O(IQ), where Q is the state
set of M(H). Since Q grows exponentially as the number
of AND-components increases, this approach for solving
FCP can be computationally prohibitive for nontrivial
examples. In Sections III and IV we propose an alternate
approach for solving FCP in the HSMs framework, based
on efficient reachability computations and on-line synthe-
sis of minimally-restrictive supervisors. Other works re-
lated to the FCP problem are [4] in which a mutual
exclusion problem in product systems is considered, and
[10], where control policies for discrete event systems
modeled as marked graphs are proposed.

A. Canonical Structure

In the sequel, it will be convenient to transform HSMs
into a canonical structure in which states and transition-
paths have a specific standard form, as defined below.

Definition 1: An HSM is said to have an alternating
structure if the immediate substates of OR-states are
either AND-states or basic states, whereas the immediate
substates of AND-states are OR-states.

Transformation of an HSM into one with alternating
structure can be carried out by applying the conversions
in Fig. 8. In fact, the third conversion in Fig. 8 also shows
how to transform a high-level transition (i.e., a transition
whose source configuration includes superstates) into one
whose source configuration is basic. In the HSM of Fig.
2(a), which possesses the alternating structure, the source
configuration of every transition-path, except for 7, is
basic.

For explicitly defining the basic destination configura-
tion of a transition-path, we first introduce the notion of
default configurations. Recall that each OR-state a has a
(unique) default arrow which points to a’s default immedi-
ate-substate, denoted p(a). We then have the following.

Definition 2: The default configuration of a state a,
denoted p(a), is defined as the basic configuration ob-
tained inductively as follows:

1) For an AND-state a with immediate substates

ay, e, ag,

pla) = pla), -, pla, ).

2) For an OR-state a with immediate substates

Ay, ety Ay,

pla) = pla,) iff a, = p(a).

3) For a basic state a, p(a) = {a).
In Fig. 2(a), p(k) = p(h) = { p(f), p(g)> = (b, e).
Consider now the transition-path ¢ = ({i}, p,{d)) that
belongs to state k (see Fig. 2(a)). If the event p occurs at
(i), the HSM enters the AND-state 4, and this, in turn,
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Fig. 8. Conversions required for the AND /OR alternating structure.

means entering states f and g. Since, however, no state in
f is specified by the destination configuration of the
transition-path ¢, the default immediate-substate of f is
selected. Thus, the explicit destination configuration of ¢
is in fact {b,d). This procedure for constructing the
explicit form is generalized in the following definition.

Definition 3: Let t = (u, o, v) be a transition-path that
belongs to state a.

i) By backtracking from the elements of v along the
hierarchy tree, mark every state that is a strict superstate
of an element in v until the level of state a is reached.

ii) Add to v the default configuration of every un-
marked immediate substate of a marked AND-state.

iii) The resultant tuple is said to be the explicit
destination configuration of the transition-path t.

Intuitively, in step i), every state which is occupied by
the HSM under configuration u is marked. In fact, if an
AND-state ¢ is marked, it means that the destination
configuration v specifies a (possibly partial) configuration
of c. In step ii), it is then verified whether the destination
configuration v specifies for each immediate substate c;
of ¢ a configuration of ¢;. If not, the default configuration
of every unmarked substate ¢, is added to v. Thus, if this
procedure is applied to the destination configuration of
the transition ¢ = ({i}, p, {d)) in Fig. 2(a), states h and k
are marked in step i), and {b)—the default configuration
of state f—is added to {(d) in step ii). Notice that default
configurations, and therefore also explicit destination con-
figurations, are always basic.

Based on the foregoing notation, we introduce the
notion of canonical HSMs, as defined below.

Definition 4: An HSM H is said to be in canonical form
if

1) H has the alternating structure; and

2) For each transition-path ¢ = (4, o,v) of H, the
configurations u and v are basic and the destination
configuration v is given in its explicit form.
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For clarity we shall assume that HSMs are given in
their canonical form; thus, henceforth, unless stated oth-
erwise, all configurations are assumed to be basic.

1II. FORMAL STRUCTURE OF HSMS

An HSM is a structure H = (A4, +,3,T, p) where: 4
is a set of states,  is the hierarchy relation on 4,3 is a
set of event symbols, T is a set of transition-paths (or
edges) and p is a default function. Next we give a detailed
description of these elements, as well as some related
notions (part of the terminology is adopted from [7] and
[11]). First, we shall need the following notations. Let x, y
and z be three tuples. We shall write x Cy iff every
element of x is an element of y, e.g., {a, b) & {a,c, b, d).
We shall write z = x — y iff z consists of all elements of x
that do not appear in y, e.g, {a,c,b,d) —{a,b,e) =
{c,d).

A. States

A is the (finite) set of states of H, consisting of A™, the
subset of OR-states, A+, the subset of AND-states and
APesic the subset of basic states. The hierarchical struc-
ture of H'’s states is represented by the binary relation +
on A, called the hierarchy relation and satisfies the follow-
ing conditions:

1) There exists a unique state, called the root state of
H and denoted r = (r(H)), such that for no state a € A4,
atr.

2) For every state a € A4, a # r, there exists a unique
state b € A such that b  a. The state b is called the
immediate superstate of a, whereas a is an immediate
substate of b.

3) A state a € A has no immediate substates if and
only if a is basic.

4) (Alternating Structure). If b + a then either b €
A*AhagAT,orbe A hae A",

It is clear that the pair (A4, ) defines a tree, called the
hierarchy tree of H. Let ! be the depth of the hierarchy
tree, and let A; denote the set of all states at level j,
0 <j <, where the root state is the (unique) state at
level 0. The transitive closure of + is denoted ' , and
the reflexive and transitive closure of — is denoted ~*.
Thus @ - *b means that b is a (not necessarily immedi-
ate) substate of a4, whereas a - b means that b is a
substate of @ and that b # a. For a state a with immedi-
ate substates a,,"**, 4, we shall sometimes identify a with
its set of immediate substates by writing a = a; X - X a;
whenever a is an AND-state and a = U%_,a; whenever a
is an OR-state.

B. Configurations

Let g be a tuple of (disjoint) basic states. (The exam-
ples throughout this subsection relate to Fig. 2(a).

« The restriction of q to a state a, denoted gl is
obtained from g by deleting all elements that are not
substates of a. For example, (b, e>|; = {(b).
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e A state a is a superstate of q if every element of g is
a substate of a. For example, £ and k are superstates
of (b, e).

The lowest superstate of q denoted LS(q), is the

superstate a of ¢ that satisfies the condition that for

each superstate b of g, b *a. For example,

LSKb,e)) = h.

Two states g, and g, are orthogonal, denoted q, L q,,

if either g, =g, or, alternatively, if neither is a

superstate of the other and LS({q,,q,)) €A4*. A

tuple of states g is orthogonal if every pair of states

in g is orthogonal. For example, (b, ¢) is orthogonal,
whereas (b,a) and (b,i) are not orthogonal. An
orthogonal tuple is also called a configuration. Intu-
itively, a configuration is a tuple of states all of whose
elements can be occupied simultaneously when run-

ning H.

* Let g be a configuration and let 4 be a superstate of
q. Then q is a full configuration of a if it cannot be
extended through augmentation with further orthogo-
nal substates of a, i.e., if g satisfies the condition that

Vb eA,

a +~*b = {q, b) is not orthogonal. (1)

If g is a configuration that does not satisfy (1) then it is a
partial configuration of a. For example, {b) and (b, e)
are, respectively, a partial and a full configuration of 4.
The set of all full configurations of a is denoted Q, (see
Lemma A1 for its computation).

« For a basic configuration g of a state a, the a-span of
q, denoted .%(q) is defined as the set of all basic full
configurations p of a such that ¢ = p. For example,
F (b)) = {{b,e),{b,d)}. For a subset P of basic
configurations of a, (P) = U, p%(p). Lemma
A3 summarizes several properties of the span opera-
tion.

C. Transition-Paths

Associated with each OR-state a is a set T° of transi-
tion-paths. A transition-path of a is formally represented
by a triple ¢ = (¥, o,v),, where u and v are configura-
tions of a, called, respectively, the source and destination
configurations of ¢, and o € 3 is an event symbol that
labels ¢. (The graphical meaning of the association of a
transition path with a specific state has been explained in
Section I-A). The set of transition-paths T of the entire
HSM is defined as T = U, 4-T“ For each OR-state a,
we denote by S,(D,) the set of all source (respectively,
destination) configurations of transition-paths of a.

D. Transition Functions

In the remainder of the paper we shall consider only
asynchronous HSMs (AHSMs), that is, HSMs in which no
two distinct states have transition-paths labeled by identi-
cal event symbols. That is, for every pair of distinct states
a,beAt

w,o,0) €T A(u,0',0)ET  >0+0'.
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We interpret the transition-paths of an AHSM H as
follows. Suppose H is at configuration ¢ € Q(= Q,). Then
a transition labeled o € X is defined at q iff there exists a
transition-path ¢ = (4, o,v), such that u C g. Further-
more, the ‘next’ configuration of H will be p, where p is
the configuration obtained from g by replacing (in g) the
restriction of ¢ to a with the destination configuration v.
Thus, in Fig. 2(a), the transition-path ¢ = ({(d), 8,{j)) €
T* is defined at configuration {b, d), as well as at {a, d),
but it is undefined at {b,e). Also, if the AHSM H
executes § at g = (b,d) it enters configuration p = (g
—qli, j? = {j) (since gl; = q).

The asynchrony assumption of AHSMs excludes the
possibility of modeling interaction between orthogonal
components through a synchronization formalism in which
transition-paths whose labels are identical must occur
simultaneously. This type of synchronization, however,
can be modeled in AHSMs by high-level transition-paths,
as illustrated in Fig. 9. Clearly, the latter approach is only
suitable for HSMs with sparse synchronization, for other-
wise, the number of high-level transition-paths might in-
crease exponentially as the number of orthogonal compo-
nents grows.

Formally, we associate with each state a € A4 the transi-
tion function 8,: Q, X 3 — 2% satisfying the condition
that for all ¢, p € Q, and o € 3, p € §,(q, o) iff there
exists a transition-path (u, o, v) of a substate b of a such
that

utq A p={q—qlsv).
The transition function of H is defined as 8§ = §,, where r
is the root state. The following observation is an immedi-
ate consequence of the definition of §,, a € A.

Lemma 1: The transition functions 8,, a €A can be

computed inductively (up the hierarchy) as follows:
1) For a basic state a, §,((a>, ¢) = &, Vo € 3.
2) For an OR-state a = U*_,a,, and for all ¢,p €
Q. 0€s
pEdlq,0) iff Ji<kstpedlqg,o)V

Iu,o,v) eTst.u
CgAv=p. )
3) For an AND-state a = a; X - X a; and for all
qpEQ, 0c€’
pEdg, o) iff Fi<kst pl,€8,(qly,0) A

Vj#i,ple,=4qls,. 3)
We interpret an AHSM H = (A, +,3,T, p) as a de-
vice that starts at configuration g, = p(r) (= the default
configuration of the root state) and executes configuration
transitions according to its transition function §. That is,
H can be represented by its equivalent (ordinary) state
machine M(H) = (Q, 3, 8, q,) whose states consist of all
full configurations of H and whose transition function is
the transition function § of (the root of) H.

II1. REACHABILITY

In this section, we discuss the problem of testing reach-
ability of a set of (full or partial) configurations from a
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Fig. 9. Conversion of (a) shared-event synchronization into (b) high-
level transition-path synchronization,

Y

given full configuration. Let a € A. A path in a is a finite
sequence s = g,, 0y, qy,"*"; Oy, 4,, Where the g; are full
configurations of @ and the g; are symbols in X, such that
q, € 6.(q;,_,0) for all i =1,2,--,n. In this case we say
that g, is a-reachable from gq,. For a subset P of full
configurations of a, define R,(H, P) to be the set of all
full configurations of @ that are a-reachable from P.
Similarly, define R;'(H,P) to be the set of all full
configurations of @ from which P can be a-reached.

Given a full configuration g of H and a subset P of
configurations of H, our objective is to verify whether
there exists a full configuration w of H such that for some
p €P, pCw,and w is rreachable from g, i.e., to verify
whether

q € R;1(H,Z(P)), 4)
where .#(P) is the r-span of P. One way to test (4) is by
performing the computation on M(H), the equivalent
state machine of H. Such a test has the disadvantage that
the number of states of M(H) grows exponentially with
the number of orthogonal components of H. We shall
next present an alternate algorithm for testing (4), that
does not require the construction of M(H) and has a
fundamental computational advantage as discussed in de-
tail in Section VL.

Consider the AHSM H depicted in Fig. 10. Let g =
{a,, b;> and p = (a,, b;», and suppose we wish to verify
whether p is c-reachable from g. That is, we wish to find
out whether there exists a path s that starts at g and ends
at p, such that s consists only of transition-paths that
belong to substates of ¢, i.e., transition-paths labeled by
¥, &, 0 and p. By the asynchrony assumption, this ques-
tion can be resolved by independent reachability tests in
states a and b. Thus, we check whether {a;) is a-reacha-
ble from (a,), and whether {b,) is b-reachable from
{b,>. Since the answer to both questions is negative, we
conclude that (a,,b,) is not c-reachable from (a,,b,).
This test for checking reachability within AND-states is
formally stated in the following lemma.

Lemma 2: Let a = a; X - X a, be an AND-state, and
let ¢, p € Q, be two full configurations. Then p is a-re-
achable from g iff for all 1 <i <k, pl,, is a;reachable
from gl,,.

The above lemma can be proved by a repeated applica-
tion of step 3) in Lemma 1. Now we consider again Fig. 10
and examine the effect of the transition-paths labeled by
a, B, v and & of state f on the reachability of a
configuration p from a configuration g. Specifically, we

Fig. 10. The AHSM discussed in Section III.

wish to check whether p = (as, b;) is f-reachable from
g = {a,, b). Since p is not c-reachable from g, we search
for a configuration s € S, (i.e., a source of a transition-
path of f) that is c-reachable from g. Since the source
{b,) of & is not c-reachable from g = <a;, b,), we pro-
ceed with B whose source {a,) is c-reachable from g.
Our final destination is p = (a5, b;) (which is a configu-
ration of ¢), and thus we continue with «, thereby enter-
ing configuration {a,,b,). Now we check whether p =
{a,, by is c-reachable from {a,, b,). Since this is not the
case, we continue with 8, the only transition-path of f
whose source {b,) is c-reachable from (a4, b,>, and
return to state ¢ through y. This search terminates suc-
cessfully since p = {a;, b;) is c-reachable from the desti-
nation (@, b,> of y. In summary, p = {a;, by is f-
reachable from q = {a;,b,) via the following path:
<a1’ b1>7 ‘/” <a2? b1>’ B’ <d>9 a, <a4’ b4>’ P <a4’ b3>7 8’
(e),y,(a3,b2),p,(a3,b3%

The following lemma is the analog of Lemma 2 for
testing reachability within OR-states, and it formalizes the
idea of the foregoing discussion.

Lemma 3: Let @ = UX_,a, be an OR-state, let g be a
full configuration of state a and let p be a configuration
of a. Then there exists a full configuration w € Q,,
with p C w, that is a-reachable from g iff there exists
a sequence a;,a;,,a; of states, a sequence
(uy, oy, v (1, 0, v,) of transition-paths of a (where
for j = 1,+,n, u; is a configuration of a; and v; is a
full configuration of a; ), and a sequence w,,w,---,w, of
full configurations of a such that the following conditions
hold:

1) w, is a; -reachable from g, and p E w,.
2) For j =1,2,+,n, u; Cw;_, and w; is a,-l—reacha—
ble from v,

Let us illustrate Lemma 3 w.r.t. the example considered

prior to the above lemma. We have shown there that
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p ={a;,by) is f-reachable from g = {a,,b,). In this
case, we have indeed (see Lemma 3) a sequence
a4, =c,d,c,e,c of states, a sequence (u;, oy,
v Uy, 0y, v) = Kay), B, (d)), (d), alay,
by 0)(Kbs), 8, {e)), {e), v, {a,, b,)) of transition-paths
of f, and a sequence w,,"--,w, = {a,, b;), (d), {a,, b;)
of configurations of f that satisfy conditions 1
and 2 in Lemma 3. Notice that the sequence {4, , a; ", 4, }
need not consist of distinct elements, as is shown above.

Now that we have established the inductive arguments
of Lemmas 2 and 3, we turn to our main goal of testing
(4). But first consider again Fig. 10. Recall that during the
search performed in the paragraph preceding Lemma 3
for deciding whether the configuration p = (a,, b;) is
freachable from g = {a,, b,), we checked whether p is
c-reachable from g, from (a,,b,) and from {as,b,),
where the latter are configurations of ¢ that are in Df,
the set of all destinations of transition-paths of f (see
Subsection II-C). In fact, a reachability test from g,
{ay, by) and {as, b, has been carried out also w.r.t. {a, )
and (b;) that are configurations of ¢ and belong to S5,
the set of all sources of transition-paths of f. Thus we
conclude that the only information regarding reachability
within state ¢, that may be required for reachability
computations within state f, is the c-reachability of con-
figurations in S; U {p} from configurations in D, U {q}.
This observation, as well as Lemmas 2 and 3, are the key
points in the development of the algorithm below for
reachability computations associated with (4).

Fix a full configuration g of H, and a set P of configu-
rations of H. For each state a € 4 we define a set X (g)
(called the input set of a) of full configurations of @, and
a set Y,(P) (called the output set of a) of configurations
of a, as follows. A configuration x of a is an element in
X (q) iff either x = gl,, or x = d|, where d is a destina-
tion configuration in D, for some strict superstate b of a.
That is,

X q) = {ql.} V{dldd € D, A b+ a). (5)

Thus, in Fig. 10, X,({ay, b)) = {{a,, b))} U
{€a,, b,», {as, b;)}. Analogously, a configuration y of state
a is an clement in Y,(P) iff either y = pl, for some
P € P,or y =sl|, where s is a source configuration in S,
for some strict superstate b of g. That is

Y(P)=Pl, U (slIseS, Ab+* a}. (6)
Thus, in Fig. 10, Y.({a3, b)) = {{a;, b30} U {{a,), {(b;)}.

It should be clear from the examples above that for
each state @ € A4 at a given level in the hierarchy, all the
information about reachability that may be required for
higher level computations concerns only g-reachability
tests between input configurations in X,(g) and output
configurations in Y,(P). For the computation of the sets
X,(q) and Y,(P) we need the following lemma.

Lemma 4: Let w be a configuration. The following
algorithm computes wl, for every state a € A4 satisfying
wl, # ). It has complexity O(I-|w]), where ! is the
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depth of the hierarchy tree and |w] is the number of
elements in w.
Algorithm 1:
1) Let wl, = a) for every basic state a such that
{a) Twandforj=0,1,,1let

B, = {al(a) CwAa eAj} @)

where A i is the set of all states at level j. Also, define
C, =B,
Forj=1-1,1 - 2,---,0 do steps 2)-4).
2) Let

®

3) For an OR-state @ = U¥_,a; such that ¢ € C; let
wl, = wl,,, where a; is the (unique) substate of a in Cir

4) For an AND-state a =a; X -+ X @, such that
a € C; let wl, = {wy,"-,w,) where

C,=BU {ala + b for some b € Cj+1}.

ifa, € C,

wl“. j+1

Vli<ic<k, w;, = .
{ ) otherwise.

It is worth noting that wl, = { ) for every a € 4; - C,
and j=0,1,-,/. Now, Algorithm 1 can be used for
computing the input sets X,(g) as explained below.
Lemma 5: Given a configuration g, the following algo-
rithm computes the input sets X,(g) for all a € A4.
Algorithm 2:
1 Let X,(g) = O for every a € A.
2) Execute Algorithm 1 with w = g, and then set

Vi=0,1,LYaeC, X(q) <X/ Uiwl)

where the sets C; are computed by Algorithm 1 [see (8)].

3) For every level i,0 < i <, every OR-state b € A4,
and every configuration d € D,, execute Algorithm 1,
with w = d, and then set

Vi=11~1,i+1,YaeC,

X,(q) < X,(q) U {wl,}. ©

Given a set P of configuration of H, the output set Y,(P)
can be computed by Algorithm 2 with P replacing g and
S, replacing D,. The complexity of Algorithm 2, as well
as that of all subsequent algorithms, is discussed in Sec-
tion VL

As was explained above, we test a-reachability between
configurations in X, (q) and configurations in Y,(¢). These
a-reachability tests are carried out by the inductive Lem-
mas 2 and 3, depending on whether g is an AND- or an
OR-state. The results of these tests are represented by a
subset W (q, P) c X,(q) X Y,(P), where for a pair (x, y)
€ X (q) X Y,(P), (x,y) € W(q, P) means that y is a-
reachable from x. The computation proceeds inductively
(up the hierarchy), and since for the root state r, X,(q) =
{g}, and Y,(P) = P, the verification of (4) can be accom-
plished by testing whether W,(q, P) = . Formally, we
have the following algorithm for testing reachability.



BRAVE AND HEYMANN: HIERARCHICAL STATE MACHINES

Algorithm 3: Given q and P as above, compute
W.(q, P) € X,{q) X Y,(P) inductively (up the hierarchy)
as follows:

1) For a basic state a, W,(q, P) = &.

2) For an OR-state a = U¥%_,a,, and for all (x,y) €
X (q) X Y(P), (x,y) € W(q, P) iff y is reachable from
x in the digraph G,(g, P), whose node set is

Vi(q,P) =X, (¢ UY(P)UD,US,, (10)
and whose edge set is
k
E(q,P)= [ U W,,‘(q,P)}
i=1
U{(u, )30, s.t. (u,o,v)eT?.
(11)

3) For an AND-state a = a, X - X a, and for all
(x,3) = (e X6 30 9 € X, (@) X Y(P),
where x; = x|, and y;, = yla,,
(x,y) € W(q,P) iff V1<ic<k,
(xpy)eW, (g, P) vy =() (12)

Proposition 1: Upon termination of Algorithm 3 (at the
root state r), condition (4) holds iff the relation W,(q, P)
is nonempty, that is,

qeR\(H,%(P) iff Wl(q,P)+@. (13)

We end this section with an example illustrating Algo-
rithm 3.

Example 2: Consider the AHSM H of Fig. 10, and
suppose we wish to test whether p = {as, b;) is reachable
from q = {a,,b,). For applying Algorithm 3, we first
compute the input and output sets: X(q) = {g}, Y;(p) =
{P}, Xc(q) = {q, <a4, b4>, <ag, b2>}, Yc(p) =
{p, {ay), b)Y, X(q) = Kap),ay), ap), Yp) =
{{ay),<ap), X, (q) = {{b)),<by), (b} and Y, (p)=
({b,)). The digraphs G,(g, p) and G,{q, p) (see step 2) in
Algorithm 3) consist of the transition-paths of states a
and b, respectively. Thus,

W,(q,p) = {Ka;),{a,)),(as),{a), Kas),{a))},

and

W,(q, p) = {({b,>,{b)),({b,>, (b}

The digraph G(q, P) is given in Fig. 11, where the set
W.(q, p) is the set of all dashed arrows. Since p is reach-
able from g in G(g, p), and therefore, W,(q, p) # &, we
conclude that p is reachable from g in H.

IV. CoNTROLLED AHSMS

In this section, we consider controlled AHSMs, thereby
illustrating an important application of the reachability
algorithm proposed in the previous section. In a controlled
AHSM, the set of events 3, is partitioned into two disjoint
subsets 3. and 3, of controlled and uncontrolled event
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Fig. 11. The diagraph G¢(q, p) of state f in Fig. 10.

sets, respectively. Clearly, this partition induces a similar
partition of the transition-path set T to 7, and T,.

A configuration feedback supervisor (or in short supervi-
sor) for an AHSM H is a map S: Q — 2¥ that specifies
at each full configuration of H a set of controlled events
that must be disabled. The equivalent state machine of
the supervised AHSM, denoted S/H, is given by

M(S/H) = (0,2, &,q,)

where the controlled transition function &: Q X 3 — 2¢
is defined as follows: For all g,p € Q and 0 €%

peé(g, o) iff pedlg,a)Ao&Sg).

That is, a transition (labeled o) from a configuration g to
a configuration p may occur in S/H iff this transition is
possible in H and is allowed by the supervisor S.

Given an AHSM H = (A4, + ,3,T,p) with T =3, U
3. and T=T,U T, we define H, to be the AHSM
obtained by removing from H all controlled transition-
paths. That is, H, = (A, +,3,,T,, p). Furthermore, de-
fine Sy to be the supervisor that disables all controlled
events, ie., for each g € O, S;(q) = 3. Clearly,
M(Sy/H) = M(H).

We now pose the following control synthesis problem.

Problem 1: Forbidden Configuration Problem (FCP):
Let F be a set of configurations of H. Synthesize a
supervisor S such that

R(S/H,q,) € Q —(F), 4

where A(F) is the set of all (forbidden) full configura-
tions of H spanned by F (see Subsection II-B).

Thus, the problem FCP consists of synthesizing (if pos-
sible) a supervisor S such that $/H, initialized at the
default configuration g,, never reaches a forbidden con-
figuration p € 574f), with f € F. It is clear that if H is at
some configuration g and a forbidden full configuration
f € A(F) is reachable from g via an uncontrolled path
(i.e., a path consisting only of uncontrolled events) then
no supervisor can prevent H from reaching f. Thus, in
fact, the set F of forbidden configurations induces a
larger set of forbidden configurations, denoted ®@(F) and
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called the extended forbidden set, consisting of all full
configurations of H from which a full configuration in
SAF) can be reached via an uncontrolled path. That is,

O(F) = R"Y(H,, #(F)). (15)

Now the existence of a supervisor § satisfying (14) and
thereby solving FCP can be stated as follows.
Observation 1: FCP is solvable iff

q, & O(F). (16)

An efficient test of (16) is obtained by modifying Algo-
rithm 3 as follows. In analogy to S, and D,, define S, and
D, to be the set of all source, respectively destination,
configurations of uncontrolled transition-paths of a. We
then have the following definition.

Definition 5: Let W(q, P) be defined as the result of
Algorithm 3 modified as follows:

1) The sets D, and S, replace the sets D, and S,,
respectively in (5), (6), and (10).

2) The set T (the subset of uncontrolled transition-
paths of state a) replaces T° in (11).

The consequence of modifications 1 and 2 in Definition
5 is that W(q, P) represents (uncontrolled) reachability
with respect to H, just as W(q, P) represents reachability
with respect to H. Thus, following Proposition 1 and
Observation 1, we conclude that FCP is solvable iff
W(q,,F)=@.

It follows from Observation 1, that whenever FCP is
solvable, it can be solved by S;. However, Sy may be too
restrictive in the sense that it eliminates controlled transi-
tions whose deletion is not necessary for satisfying (14).
Thus, we shall say that a supervisor S is a minimally
restrictive solution of FCP if for every supervisor §' solving
FCP

R(S'/H,q,) CR(S/H,q,).

To see that whenever FCP is solvable, it indeed has a
minimally restrictive solution, consider the set ®(F) of all
full configurations in Q — @(F), from which a configura-
tion in ®(F) can be reached in one transition. It is clear
from (15) that every such transition [that takes H into
O(F)]is controlled, and must be disabled by every super-
visor solving FCP. Moreover, if no other transitions (ex-
cept the transitions that take H from O(F) into O(F))
are prevented by a supervisor S, then S is a minimally
restrictive solution of FCP. Thus we have the following
proposition.

Proposition 2: Assuming FCP is solvable, the following
algorithm computes a minimally restrictive supervisor. It
has complexity O(|Q]) (we neglect the dependence of the
complexity bound on X).

Algorithm 4:

1) Compute B(F) [see (15)].
2) For every g € Q, let

{oce3.18(q,0) N OF) + &}

if g€ Q- O(F)
1] otherwise.

S(g) = an
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The complexity of the ‘inverse’ reachability computa-
tion of step 1) in Algorithm 4, as well as that of the
control synthesis in step 2) is O(/QD. Thus, the overall
complexity of Algorithm 4 is O(|Q]). It is worth noting
that whenever solvable, FCP need not have a unique
minimally restrictive solution. Indeed, in the region Q —
O(F), every minimally restrictive solution of FCP, as well
as any other solution of FCP must prevent controlled
transitions at least as S [the supervisor specified by (17)]
does. Yet, a supervisor may disable more controlled tran-
sitions than specified by (17) and still be a minimally
restrictive solution of FCP. This is due to the fact that a
state may, in general, be reached along multiple paths,
and the fact that controllers often have “don’t care”
controls.

Since the Q grows exponentially with the number of
orthogonal components in H, the a priori (‘off-line’) syn-
thesis of a minimally restrictive supervisor, as proposed by
Algorithm 4, may be intractable. Thus we proceed accord-
ing to the following on-line approach. Instead of con-
structing the extended forbidden set ®(F) explicitly, and
then specifying (a priori) a control strategy for each con-
figuration in Q — ®(F), we synthesize an appropriate
control during execution as follows. Whenever H per-
forms a configuration transition, and thereby enters a new
configuration ¢, all controlled events are immediately
disabled. Then only controlled events that do not take H
to configurations from which a forbidden configuration is
reachable via an uncontrolled path, are enabled. These
reachability tests are carried out using the modified ver-
sion of Algorithm 3.

It should be emphasized that in the supervisory control
framework (where processes are modeled as ordinary state
machines) there is no substantial benefit in preferring one
of these approaches (the ‘on-line’ and the ‘off-line’) to the
other, since their complexities are both polynomial in the
size of the state set. In the AHSM framework, however,
the on-line approach may exhibit an exponential reduc-
tion in complexity when compared with the (traditional)
off-line approach. That is, a single off-line computation of
exponential complexity is replaced with on-line calcula-
tions, one after each event, where each individual calcula-
tion is polynomial.

Formally, the on-line synthesis procedure re-executes
Algorithm 5 (below) whenever the supervised AHSM en-
ters a new configuration ¢ € Q.

Algorithm 5:

1) Set S(g) = =, (i.e., disable all controlled transi-
tions).

2) Using Algorithm 1, compute 4|, for every state
a € A satisfying gl, # { ), and let 4(q) be the set of all
OR-states a for which g, # { ). For every OR-state
a € A(q) and every controlled event o € 3¢ (where 3° is
the set of all event-symbols that label transition-paths of
a) perform the following two steps:

3) Compute the set 8(q, o) consisting of all ‘next’
configurations p = (g — ql,,v), where v is a destination
of a transition-path (4, o, v) € T° satisfying u C q.
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_ D If for every p € 8(q, o), Vf/'(p,F) = (J (where
W(p, F) is computed by the modified version of Algo-
rithm 3) then set S(g) « S(g) — {o} (i.e., enable o at g).

Upon termination of Algorithm 5, the control S(q) is
minimally restrictive in the sense that enabling any event

o € S(q) may cause H to reach a forbidden configuration
f € SAF). The correctness of this algorithm follows from
Proposition 1 and the definition of the transition function
& (see Subsection I1-D). We remark that:

1) In steps 3) and 4) of Algorithm 5 we consider only
OR-states a for which g|, # { ); for if gl, = { ) then for
no transition-path (u, o,v) € T*, the condition u C g is
satisfied, and therefore 8(g, o) = & for every o € 3°.

2) The decision as to whether a given event should
be disabled or enabled does not depend on the decision
regarding other events. Thus, the sequential steps 3) and
4) in Algorithm 5 can be carried out simultaneously with
regard to all controlled events, thereby reducing the dis-
abling period of events satisfying the condition in step 4)
of Algorithm S.

3) Since step 4) is repeated for every possible ‘next’
configuration p of H, an additional reduction in the
computational effort required for the on-line synthesis
can be obtained by pre-computing W ), F)foral a e
A, and then constructing W,(p, F) as follows. For every
state a such that pl, = ( ), let W (p,F) =W/ ), F)
(since X,(p) = X, }); see (5). If, however, pl, # { )
then perform steps 2) and 3) in (the modified) Algorithm
3 only for pairs (x, y) € {pl,} X Y,(F).

V. ACCESSIBILITY AND DETERMINISM

In this section we define a notion of accessibility that
can help in reducing the state set of a given AHSM
without changing its reachable set of configurations. We
also discuss the conventional notion of accessibility and
provide an efficient condition for testing it. We conclude
this section with a characterization of deterministic
AHSMs.

We begin with a weak type of accessibility that we call
partial accessibility. Roughly speaking, an AHSM H is
partially accessible iff there exists no basic state that is
never occupied by H. Formally,

Definition 6: An AHSM H is partially accessible iff

Ya € 4*%* Ip € R(H,q,) st {a) Tp. (18)

Clearly, testing partial accessibility by an exhaustive
search of R(H,gq,) is unacceptable, since the size of
R(H,q,) is O(QD. Thus, (18) can be verified as follows.

Proposition 3: An AHSM H is partially accessible iff

Va € A%, (q,,{a)) € W(q,, P).

where P = {(a)la € 4>+,

Clearly, if a basic state a is never occupied by H (i.e., H
is not partially accessible), the state a4, as well as any
transition (u, o-,v) € T incident to a (ie., a transition
(u, o,v) satisfying (@) Cu or {a) C v), can be elimi-
nated from H. Nevertheless, one may not infer from the
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latter that every configuration of H is reachable from the
initial configuration whenever H is partially accessible. A
simple counterexample is given in Fig. 12. Here, the
configuration {c, d) is not reachable from the initial con-
figuration g, = {a), although H is partially accessible.
This observation can be easily verified if the equivalent
state machine of H is considered (see Fig. 13).

Thus, partial accessibility is a necessary (but not a
sufficient) condition for conventional accessibility.

Definition 7: An AHSM is accessible if every full con-
figuration of H is reachable from q,, i.., if R(H,q,) = Q.

For testing accessibility, a notion of connectivity is
defined in terms of the sets X,(q,) [see (5)] and the
digraphs G,(g,,{ ), a € A (see step 2) in Algorithm 3).

Definition 8: An OR-state a = UF_a; is connected if
for every configuration x € X,(g,) and for every substate
a; there exists a configuration y € X,(q,) such that y is
reachable from x in the digraph G,(g,,< »).

Consider again the AHSM of Fig. 12. Here, state r is
connected whereas the state f is not. For showing the
latter, notice first that g, = (a), X(q,) = {Kb),{c},
X,(q,) = b))} and X.J(g,) ={{c)). Let x=<(b) €
X(g,). Then no configuration y € X (q,) is reachable
from x in digraph G/(g,,{ >). Thus, f is not connected.

Now we have the following proposition.

Proposition 4: An AHSM H is accessible if every OR-
state of H is connected.

Next, we turn to the notion of deterministic AHSMs.
Roughly speaking, an AHSM H is said to be deterministic
if the ‘next’ configuration of H can be predicted from the
‘current’ configuration and the event executed by H.
Formally, an AHSM H is deterministic iff |8(q, o)l < 1
for every ¢ € Q and o € 3; otherwise it is called nonde-
terministic. The following proposition characterizes the
determinism property in terms of the transition-paths of
H.

Proposition 5: An AHSM H is nondeterministic iff there
exists an OR-state a €A% and two transition-paths
(u;, 0,0, i=12, such that v, # v, and the tuple
{uy,uy — uy is orthogonal.

Following Proposition 5, it can be verified that the
AHSM of Fig. 10 is deterministic, whereas that of Fig. 12
is nondeterministic. The latter conclusion, for instance,
follows from the fact that transition-paths ({b), p,{c?),
and ({e), p, (a)), satisfy the condition for nondetermin-
ism given in Proposition 5, namely, the condition that
{¢) # {a) and that the tuple {({b) — {e),{e}) = (b,e)
is orthogonal. Alternatively, one can verify nondetermin-
ism merely by definition, i.e., by examining the transition
function of the equivalent state machine (Fig. 13). This
approach, however, may be intractable for nontrivial ex-
amples, as compared with the former approach (the one
suggested in Proposition 5), whose complexity is polyno-
mial in the size of the transition-path set.

V1. COMPLEXITY CONSIDERATIONS

In the present section we shall examine aspects of the
computational effort required for reachability computa-
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Fig. 13. The equivalent state machine of the AHSM in Fig, 12,

tions (using Algorithm 3) in an AHSM H, as well as for
on-line control synthesis (Section IV). Specifically, we
wish to compare this computational effort with the effort
that would be required if the system were modeled as the
equivalent state machine, whose state set coincides with
the configuration set Q. To this end, we define the follow-
ing class of standard AHSMs. A standard AHSM has a
hierarchy tree of depth | = 2m, with AND-states at levels
2/,0<j<m—1, OR-states at levels 2j + 1,0 <j <m
— 1, and basic states at level [. Thus, an AHSM is
standard if A4 i the set of all states at level j, satisfies the
condition that A, = {r}, A, = A**** and for0 <j <m —
1, A); CA* whereas A,;,; CA*. We assume further
that each AND /OR-state has k immediate substates, and
that the number of transition-paths in each OR-state is
linear in the number of its immediate substates, (i.e.,
IT%l = O(k), a € A7). Some properties of standard
AHSMs are given in the following lemma.
Lemma 6: Let H be a standard AHSM with parame-

ters m and k.

i) The number n of basic states is given by n ==
IAbasicl = k2m'

ii) The number of AND-states is |4+ | = Lk =
0( k2m—1)_

iii) The number of OR-states is |A*| = AN SR
= O(k*™),

iv) A lower bound on the size of Q is k*" = kv,

v) The length (i.e., the number of elements) of any
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configuration of a state at level 2m — 2j or 2m — 2j — 1,
where 0 <j < m, is k/.

Next we consider the complexity of testing reachability
by Algorithm 3.1, i.e., the complexity of testing (4) by (13).

Proposition 6: Given a full configuration ¢ and a set P
of configurations:

i) For every state a € A, |X(g)l = O(mk) and
[Y(P)| = O(mk + |P|), where X,(q) and Y,(P) are given
by (5) and (6).

ii) The complexity of computing X,(¢) and Y,(P) for
all a € 4 is O(mkn + mVn |P|).

iii) The complexity of computing W,(q, P) for all
a € A is O(m?k>n + mk®n|P)).

Notice that the complexity of computing W(q, P), the
set corresponding to the root state, is O(m®k’n +
mk*n|P], since it requires the computation of X,(g),
Y,(P) and W(q, P) for every a € 4. Thus we have the
following proposition.

Proposition 7: Assuming H is a standard AHSM, the
complexity of testing (4) is O(m?k>n + mkZ2n|P)).

It is worth noting that this polynomial complexity must
be compared with the (exponential) size of Q (since a
‘direct’ computation of (4) may require |Q| computations).
We turn now to the problem FCP considered in Section
IV. Notice first that Observation 1 and Proposition 6
imply that (using Algorithm 3) the question whether FCP
is solvable can be resolved in complexity O(m?kn +
micn|FD, where F is the set of forbidden configurations.
As regards the ‘on-line’ synthesis of a minimally restric-
tive control as suggested by Algorithm 5, we assume that
the sets W,({ ), F), a € 4, are pre-computed in accor-
dance with remark 3 below Algorithm 5. Under this
assumption we have the following proposition.

Proposition 8: Given a standard AHSM H and a full
configuration g of H (where g represents the current
configuration occupied by H), a minimally restrictive con-
trol S(g) can be computed in complexity O(m’*k’n +
m?k2n|F).

VII. ConcLUSION

In this paper we examined a class of discrete event
systems (DESs) modeled as asynchronous hierarchical
state machines (AHSMs). For this class of DESs, we have
provided an efficient method (Algorithm 3) for testing
reachability which is an essential step in many control
synthesis procedures. This method utilizes the asyn-
chronous nature and hierarchical structure of AHSMs
thereby illustrating the advantage of the AHSM represen-
tation as compared with its equivalent (flat) state machine
representation (see Lemma 6-iv) and Proposition 7). An
application of the method has been presented in Section
IV where we proposed an ‘on-line’ minimally restrictive
solution for the problem of maintaining a controlled
AHSM within prescribed legal bounds. The ‘on-line’ na-
ture of this solution is similar in spirit to the feedback
control logic suggested in [10].

This work opens several directions for further research.
The first one is extensions to synchronized HSMs, namely
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HSMs that allow an explicit modeling of interaction be-
tween transition-paths of orthogonal components (e.g.,
broadcast synchronization [6] or prioritized synchroniza-
tion [12]). It is noteworthy that for such HSMs, the control
strategy proposed by Algorithm 5 solves the forbidden
configuration problem (FCP) (Section IV), though it may
be too restrictive. Stabilization (in the sense of [13], {14])
of HSMs is another research topic and it is currently
under investigation.

APPENDIX (PROOFS)

A. Preliminaries
Lemma 7: The set Q,, a € A, of all (basic) full config-
urations of a can be computed inductively (up the hierar-
chy) as follows:
1) For a basic state a, Q, = {{a}}.
2) For an OR-state a = U* 14, 0, = U%_,0,.
3) For an AND-state a =a, X - X a,, Q, = a,,
X e X Qak'
Proof of Lemma 7: Follows from the definition of full
configurations [see (1)]. [ ]
Lemma 8: Let g be a configuration of some state
acA.
i) If a = U% a; then there exists i <k such that
= g(€ Q,), whereas for j # i, gl,, = { ).
ii) If a =a, X - Xa,then forall i <k, ql, € Q,.
Proof of Lemma 8: Follows from Lemma 7 and the
definitions of restriction and orthogonality. ]
The following lemma summarizes some properties of
the span operator.
Lemma 9: Let g be a configuration of a state a. Then
D (g cQ,.
i) 7(q) = Q, iff g = ().
i) #(q) = {q}iff g € Q,.
iv) If @ = U¥_,a; then there exists i < k such that
Fqla) = F(q) =F(q), and for j # i, #,(qls) = Q.
WIf a=a X - Xa, then %(q) =5”,,l(q|/a,)
X o X (qla)
Proof of Lemma 9: Straightforward.

qla,

B. Proofs Related to Section III
Proof of Lemma 3:

(IF) First, for j = 1,2,--, n, the existence of the transi-
tion-path (u;, oj,v;) and the fact that u; Cw,_; imply
u; € 8,(w;_y, 0;). That is, v; is a-reachable from w;_,.
Furthermore, conditions 1) and 2) in this lemma and the
fact that (see Lemma 1) reachability within a state implies
reachability within its immediate superstate, imply that
there exists a path of a that traverses the full configura-
tions q,w,,v;, w,, ', U, w,, concluding the ‘if’ part of this
proof.

(ONLY IF) Assuming there exists w, with p C w, such
that w is a-reachable from ¢, there exists a path s of a
that starts at g and ends at w. Then the scenario de-
scribed in this lemma can be constructed from s by
deleting (in s) every event o (and the configuration
preceding o) that labels transition-paths of strict sub-
states of a.
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Proof of Lemma 4: The complexity of each step in
Algorithm 1 is O(|w. Thus the overall complexity of this
algorithm is O - [w)).

i) If a is a basic state then by the definition of the
restriction operation

{<a>
)

ii) If a is a state whose immediate substates are
a,, -+, a, then for every element v in w

if(a)cw
otherwise.

19

la

wycwl,eat*y
3l <j<k,a %

oA <j<k,(v)Cwl,. 20)

Thus,

wla = {wla, o, wla,, @n

where some of the restrictions wl, , [ <j < k, may be the
empty tuple. Notice that (7), (8), (19) and (20) imply that
for all j =0,1,-,1 and for every state a € 4; we have
that wl, # ( ) iff a € C,. If a is an AND-state, the
lemma follows immediately from (21), whereas if a is an
OR-state then the orthogonality of w implies that there
exists a unique substate a, of a such that wl|, = w, and
for every other substate a,, of a, wl,, = { ), concluding
the proof. u
Proof of Lemma 5: Step 2) in Algorithm 2 computes
gl, [and adds it to X,(g)] for every state a such that gl, #
{ ) (by Lemma 4). In step 3) of Algorithm 2, for every
level i, every state b € A, and every configuration d € D,,
the restriction d|, is added to X,(gq) for every strict
substate a of b (since the index j in (9) is decremented
only if j > i). Thus, upon termination, for every state
a € A the configurations in X,(gq) are contributions of
(destination) configurations of strict superstates of a [cf.
) ]
For showing the correctness of Proposition 1 we shall
need the following lemmas. The first lemma relates the
input and output sets of a given state to the corresponding
sets of its substates.
Lemma 10: Suppose b + a for a,b € A. Then for b €
A+

X,(¢) =1{X,(¢) UD,, and

YH(P) = [Yb(P) U Sb]|a
whereas for b € 4+
X,(q) =[X (]

Proof of Lemma 10: (22) is an immediate conse-
quence of (5) and (6), whereas (23) follows from the fact
that D, = S, = & for every AND-state b. u

Next we wish to justify the claim that the digraph
G,(q, P), as defined in step 2) of Algorithm 3, is well
defined in the sense that its edge set E (g, P) is indeed a
binary relation on V(g, P), the state set of G,(q,P).
Formally,

(22)

and Y.(P) = [Y,(P)]l,. (23)
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Lemma 11: For each OR-state a € A,
E(q,P) cV(q,P) xV,(q,P).

Proof of Lemma 11: First (see step 2) of Algorithm 3),
(u,v) € E (g, P) implies

Iu,o,0) €T or Fi<kst (u,v)e W, (q,P).

By the definition of §, and D, (see Subsection II-C) and
10),

(u,0,0) €T = (u,v) €S, XD,
cV,(q,P) X V(q,P).

Also,for1 <i <k

W.la,P) cX,(q) X Y, (P) (by definition)
ciX, (@ uUD]Ix[Y(P)US,] [by(22)]
cV,(q,P) xV,(q,P) [by(10)] 24)

The second inclusion in (24) uses the fact that for every
configuration x of OR-state a, either Xla,=( )or Xla, =
|4, where a + a;. n
We proceed with the following inductive lemma.
Lemma 12: Let A be a state whose substates are a;,
1 <i <k, and assume that for all 1 <i < k and for all
() € X,(q) X Y,(P)

(x,y) € W,(q,P) iff x,€R;'(H,%(y)). (25
Then for all (x, y) € X, (¢) X Y,(P)
(x,y) e W,(q,P) iff xeR,;'(H,Z(y)). (26)

Proof of Lemma 12:
Case 1) The state a is an AND-state. Let (x,y) €
X, (q) X Y, (P), and define for 1 <i <k

X, =xlgy, ¥ =yla.

Since x € X,(q) is a full configuration of a [see (5)], x,, its
restriction to g;, is nonempty for all 1 < i < k. Moreover,
x; € X,(q) [see (23)]. The configuration y, however, may
be a partial configuration of a and, thus, either y; € Y,(P)
or, alternatively, y, = ( ). In the latter case, y, is trivially
a-reachable from x,, ie.,

x € R (H, (M), @n
where #,({ )) = Q, . Thus, we have
(x,y) € W,(q,P)
< [by 12)]
Vi<is<k, (x,y)€W/(q,P) Vv y=()

= [by (25) and (27)]
Vi<i<k x €R;'(H,%())
< [by Lemma 2 and Lemma 9-v)]

x € R;V(H, 7(y)).
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Case 2) Suppose a is an OR-state, and let (x,y) €
X, (q) X Y(P). By Lemma 3,

x € R;UH, Z(y) (28)

iff There exist a sequence 4, ,4,,"-,a; of substates of g,
a sequence s = (u,, oy, v)),(uy, 05, 0,),,(u,, g,,0,) of
transition-paths of a, where for j = 1,---, n, the tuple u ;18
a configuration of a;_, and v; is a full configuration of a;,
such that

x €RNH, %, w)) A v, €R;H,S, () (29
and

Vi<js<n, oeR'(H.%u.)). G0
Notice that a is an OR-state and, hence, .%, (y) =.5(y)
[see Lemma 9-iv)]. It follows from the induction hypothe-

sis (25) that (29) and (30) hold iff
(r,u) €W, (q,P) A (v,y) € W, (q,P) (3D

and

Vi<j<n, (v,u;,) €W, (q,P). (32)

J
Furthermore, (11), (31), (32) and the existence of the
sequence s of transition-paths imply that the sequence
X, U, Ut Uy, Uy, y IS @ path in the digraph G (g, P),
defined in step 2) of Algorithm 3. Thus, we conclude that
(28) holds iff y is reachable from x in digraph G,(q, P) iff
(see step 2) in Algorithm 3) (x, y) € W,(g, P). [ |

Proof of Proposition 1: We use induction on the level
Jj of states and claim that (26) holds for every a € 4 and
(x,y) € X,(q) X Y,(P). For a (basic) state of level j =,
the reachability is trivial, whereas for every (OR-) state a
of level j =1 — 1, the digraph G,(q, P) is an equivalent
representation of state a and its associated transition-
paths. Since Lemma 12 implies the induction step, the
claim follows. That is, for every a € 4 and (x,y) €
X, (@) X Y,(P)

(x,y) € Wq,P) iff xeR;W(H,%(y). (33)

In particular, (33) holds with respect to the root state.
Finally, since X,(g) = {q} and Y,(P) = P, Proposition 1
follows. ]

C. Proofs Related to Section V
Proof of Proposition 3: H is partially accessible iff [see
18)]

Va € A% g e R™'(H,#({a)))
iff [see (33)]
Va € AP (gq,,{a)) € W(q,, F).

Thus, the proposition follows. ]
Proof of Proposition 4: First we shall show that for
every state a € A

Vx € X,(q,), R,(H,x)=0Q,.
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Then the accessibility of H will follow from the fact that
for the root state r, X,(q,) = {¢,} and Q, = Q.

Clearly, for a basic state a we trivially have that
R(H,{(a)) = {{a)} = Q,. Let a be a state whose imme-
diate substates are ay,:*, @, and suppose for the induc-
tion step that

Vl<i<k,VyeX/q,) RH =0, 39

Now let x € X,(g,). For showing that indeed R, (H, x) =
Q,, choose an arbitrarily full configuration w € Q,, and
consider the following two cases.

Case 1) Suppose a is an AND-state. Then, by (23) and
Lemma 8-ii}

Vli<ix<k, xla, € Xﬂ‘(qo) and wi, € Q,. (33)

It follows from (35) and the induction hypothesis (34) that
for all i=1,--,k, wl, is a;reachable from xla. By
Lemma 2, w is a-reachable from x, implying that
R(H,x) = Q,.

Case 2) Suppose a is an OR-state, and let a; be the
(unique) substate of a satisfying wl, =w(€ Q,) [see
Lemma 8-i)]. Since a is connected there exists a configu-
ration y € X,(g,) such that y is reachable from x in
digraph G (qo,< ). By an argument similar to the proof
of Lemma 12 [Case 2], it follows that y is a-reachable
from x. Also, (35) implies that w(e Q,) is a;reachable
from y € X,(q,). Since a-reachability 1mplles a-reacha-
bility, we oonclude that configuration w is a-reachable

from configuration x, implying that R (H,x) = Q,. ]
Proof of Proposition 5:
(IF) Let (u;, o,v;), i = 1,2, two transition-paths of a,

such that v, # v, and u = {u,,u, — u;) is orthogonal.
Clearly, u is a configuration of H (since u is an orthogo-
nal tuple), and let ¢ € @ be a configuration satisfying
u T q. Since for i = 1,2, u; CuCgq it follows by the
definition of the transition function & that

pi=4q—4ql,v)€dlg, o), i=12

Furthermore, v, # v, implies p, # p,. Thus, |8(q, o) >
1.

(ONLY IF) Suppose H is nondeterministic, i.e., there
exists g€ Q, a €A, 0 €3 and p,, p, € Q such that
p, # p, and p; € 8(q, ¢), i = 1,2. Then, by the definition
of & there exist transition-paths (u;, o,v,) € T% i = 1,2,
such that for i = 1,2

Cg and p; ={(q - qls, v

Clearly, p, # p, implies v, # v,. Also, u; C g implies
that u = {u,,u, — u;) C q. That is, u is a partial config-
uration of H, and therefore, orthogonal. [ ]

D. Proofs Related to Section VI
Proof of Lemma 6:
i) At each level j, 0 <j < 2m, there are k’ states, i.e.,
|A | =k/. Thus, n = |A4,,| = k2.
11) and iii) follow from the organization of AND/OR-
states in the hierarchy tree.
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iv) First we claim that forall 0 < j <m

kX ki—1
| if ais an AND-state of level 2m —2j)
[XEL
if a is an OR-state of level 2m —2j—1).

(36)

The proof of (36) is as follows (we shall denote the upper
and lower part of 36 by (36-up) and (36-low), respectively).
For each (basic) state a at level 2m, 1Q,l =1, and for
each OR-state a of level 2m — 1, IQal =k (since each
OR-state has k immediate substates). Thus, (36) holds for
j = 0. Assume that (36-up) and (36-low) hold for states at
levels @m — 2j + 1) and @m — 2j), respectively.

1) Consider an AND-state a = a, X - X a, of level
2m — 2(j + 1) = 2m — 2j — 2. In this case (see Lemma
D, 0, =Q, X XQ,, and thus |Q,| = [T5_,IQ,,|
Since each substate a, is an OR-state of level 2m — 2j —
1, it follows from the induction hypothesis (36-low) that
forall h =1,k

Q.1 = koK

Consequently,
1Q,) = [KZi_ok
= (36-up), with (j + 1) replacing j.

i]k — J iz
37

2) Consider an OR-state a = U¥_,a, of level 2m —
2(}+1)—1 2m — 2j — 3. In this case Q,
Uk 1Q,,- Also, each substate a,, is an AND-state of level
2m — 2j — 2, and thus (37) implies

10, Z |Qa,,| - kk):'l:&"’-l _ kZ{:gk"

h=1

i

(36-low), with (j + 1) replacing j.

This completes the proof of (36). Finally, for the root state
at level 0 li.e., j = m in (36-up)], we have

ol =
v) A similar proof can be carried out. [ ]

Proof of Proposition 6:

i) It was assumed in Section VI that each OR-state
has O(k) transition-paths, and thus (see Subsection II-C)
|D,l =18,l = OCk) for every a € A. Furthermore, each
state has at most m OR-superstates (since the hierarchy
tree is of depth 2m). Consequently, i) follows immediately
from (5) and (6).

i) First we consider the computation of the sets
X(q), a €A, using Lemma 5 and Algorithm 2. Since
| Al = O(n) (see i), ii) and iii) in Lemma 6), and thus the
complexity of step 1) in Algorithm 2 is O(n). In step 2) of
Algorithm 2 the restrictions g¢l,, a € 4, are computed
using Algorithm 1. Since g is a full configuration of the
root state (which is at level 0), its length is |g| = k™ [see
Lemma 6-v)], and thus (see Lemma 4) the complexity of
step 2) in Algorithm 2 is O(mk™) = O(myn). Regarding

10,1 = kZFok =1 > kK™ = fot,
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step 3) of Algorithm 2, if d is the destination configura-
tion of a transition-path of an OR-state of level 2m — 2
— 1, then the complexity of executing Algorithm 1 (with d
as an input) and performing (9) is O(mk/) [see Lemmas 4
and 6-v)]. Since there are k’™~2/-! OR-states at level
(2m — 2j — 1), each having O(k) transition-paths, the
overall computation at level (2m — 2j — 1) is
O(mkikk®™~2=1) = O(mk®" /). Finally, the fact that
there are m levels of OR-states and £72'k>™ ™/ < k2m+!
imply that the overall complexity of step 3) in Algorithm
2, as well as that of computing X (q) for all a € 4, is
O(mk*™*1y = O(mkn).

The sets Y,(P), a € A are computed in a similar fashion.
The computation of P|, for all a € 4 is of complexity
O(mk™|P|), whereas the rest of the computation in (6) is
of complexity O(mk*™*') (see the previous paragraph).
Thus ii) follows.

iii) For a state @ €4 and a pair (x,y) € X,(¢q) X
Y(P) the complexity of deciding whether (x,y) e
W,(q, P) is O(k); for if a is an AND-state, O(k) opera-
tions are required for testing (12) (notice that the various
restrictions corresponding to x and y have already been
computed during the construction of the sets X,(¢g) and
Y,(P),a € A), and if a is an OR-state then (see step 2) in
algorithm 3), one may test the reachability of y from x in
digraph G,(g, P) within the region of states Z = {x} U
{(y}uD,US,, where |Z|=O(k) [since |D,|=IS,|=
O(k)]. Thus, for a given state a, W,(q, P) is computed in
complexity O(k|X (g) Y (P)) = O(m*k® + mk?|P)).
Since there are at most k*™ AND /OR-states (and exactly
k*™ basic states), the complexity of computing W,(g, P)
for all @ € 4 is O(mM*k’k*™ + mk*k*"|P]) = O(m*k>n
+ mk*n|P)). ]

Proof of Proposition 8: The proof of this proposition is
based on the following observations (proved below).

i) The complexity of step 2) in Algorithm 5 is O(mk™)
and |A(g)l = O(mk™).

ii) The overall complexity of verifying for every OR-
state a € A(g) and every transition-path (u, o,v) € T*
whether u C g is O(mk™* 1),

. iii) The overall number of configurations p for which
W(p, F) is computed in step 4) of Algorithm 5 is O(mk™
+ 1.

iv) Assuming W((A >, F) is pre-computed, the com-
plexity of computing W(p, F) for a given configuration p
is O(m*k™*2 + mk™* | F)).

Now, observations i) and ii) imply that the complexity of
steps 2) and 3) in Algorithm 5 is O(mk™*') whereas
observations iii) and iv) imply that the complexity of step
4) is O(mk™ [m*k™ % + mk™ Y F]) = O(m*k’n +
m’k*n|FD, and the complexity bound in Proposition 8
follows. The proof of observations i)-iv) is as follows:

i) The bound O(mk™) follows from the fact that g4
consists of k™ elements (basic states) and from the com-
plexity of Algorithm 1. The set A(q) is, in fact, the set of
all OR-states that are superstates of an element of g.
Since each basic state has at most m OR-superstates,
|A(g)l = O(mk™).
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ii) Let a € A(g) be an OR-state of level 2m — 2j —
1,0 <j <m, and let (4, o, v) be a transition-path of a.
By Lemma 6-v), the length of u is bounded by k/ (since u
is a configuration of @), and thus the complexity of verify-
ing whether u C g is O(k/). The number of OR-states
a € A(g) at level 2m — 2j — 1 is k™7 (i.e., this is the
number of OR-states at level 2m — 2j — 1 that are super-
states of an element in ¢), and thus the assumption
IT¥| = O(k) implies that the overall computation at level
2m —2j — 1is OCkk’k™ /) = O(k™*"). Since there are
m levels consisting of OR-states, the overall complexity is
O(mk™* 1),

iii) Follows from the fact that | A(g)l = O(mk™) [see
observation i)] and the assumption |7 = O(k) for every
a € A.

iv) Following remark 3 below Algorithm 3 and the
assumption that W({ ),F), a € A, are pre-computed,
given a state ¢ and a configuration p satisfying pl, # { ),
the computational complexity of W,(p, F) is O(k|Y,(F)|
[see also the proof of proposition 6-iii)]. Notice that if
Pla =, Wp,F) =W, ), F) and no computation is
required. Since | p| < k™, where p is a configuration spec-
ified in step 3) of Algorithm 5, and since the number of
states a for which pl, # ( ) is O(k™), the complexity of
computing W,(p, F) for every a € A is O(mk™k|Y,(F)|),
where [Y,(F)| = O(km + |F)), [see Proposition 6-1)]. [ ]
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