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Abstract

In this paper, we will incrementally build a complete pursuit algorithm to deal with a 2-players PEG in presence of a
single unknown convex obstacle. We will first provide a sufficient condition to achieve capture without disappearance. Then,
we will solve thecircular obstacle problem, a particular problem highlighting a necessary trade-off between surveillance and
capture. Next, thepole problem, as a generalization, of the convex obstacle problem will be tackled. The solution and the
corresponding strategies will be detailed. A quasi-optimal pursuit strategy as regards the time to capture will be provided for
the pole problem, and then transposed for the more generalconvex obstacle problem. For the cases leading to the evader victory
in the pole problem, a last strategy allowing a maximal deviation of the line of disappearance will be added to complete to our
pursuit algorithm. Finally, our complete pursuit algorithm will be adapted to use a heuristic minimization method instead of
the strategy suggested by the resolution of the pole problem for the cases leading to the pursuer victory. Different heuristics,
one being an approximation of the solution of the pole problem, will be compared with respect to the size of the capture basin
and will highlight thez interest of our pursuit algorithm.

I. I NTRODUCTION

Continuous differential games have been widely studied since the pioneering work of Issacs [Isaacs, 1965]. In particular,
pursuit-evasion games (PEGs) have received a great deal of attention, particularly in free spaces for problems such as
the missile guidance [Isaacs, 1965], [Hájek, 1975], [Basar and Olsder., 1982], [Espiau et al., 1992], [Song and Um;, 1996],
[Hutchinson et al., 1996]. Interesting recent works include the notion offorward reachable sets(related to maneuverability
of the pursuer) for a team of pursuers against a fast moving evader [Chung et al., 2006], [Chung and Furukawa, 2006]. In
contrast, PEGs in cluttered unknown environments, where obstacles imply specific movement constraints of the pursuer
for maintaining visibility and the possibility for the evader to hide, represent a more recent problem, for which a
definitive solution has not yet been found. The problem has been split into several classes. A first class of problems
is addressed when the evader is not yet visible. Two major issues can be discussed: the first consists in developing
algorithms in order to find one or several static or dynamic evaders, in an environment either known or unknown, with
either a single pursuer or a team of pursuers [Suzuki and Yamashita, 1992], [LaValle et al., 1997b], [Park et al., 2001],
[Sachs et al., 2004], [Chen et al., 2005], [Gerkey et al., 2006]. These approaches suggest that before tracking an evader,
efficient solutions to find it should be proposed. The second question, often referred as the Art Gallery Problem, consistin
the efficient control of a team of robots so that every part of the environment could be visible by at least one pursuer, thus
avoiding the intrusion of a robber in the art gallery [Chvatal, 1975], [O’Rourke, 1983], [O’Rourke, 1987], [Shermer, 1992],
[O’Rourke, 1998], [Gonzalez-Banos and Latombe, 2001]. Similar works focus on the problem of the positioning a minimum
number of captors (movement captors or simply cameras) in the art gallery in order to remove invisible part of the
environment. This first class of problems addressed the seeking the evader: what should be done when the evader is not yet
visible.

Another major category of problems, that particularly interests us, arises as soon as the target(s) is/are visible. Approaches
depend on the relative capabilities of the players, their relative knowledge, their objectives, and the number of pursuers and
evaders the mission scenarios consider. A first historical question was raised by David Gal known as the Lion and Man
Problem: a man (evader) and a lion (pursuer) are moving with the same speed within the non negative quadrant of the plane.
In [Sgall, 2001], a solution that the author claims to be nearly optimal is proposed, consisting for the lion (whom coordinates
are initially greater than the man’s coordinates) in aligning himself between the man’s position and a particular reference
point (the center of the smallest circle, touching its initial position and both axis of the Euclidian space). More generally,
interesting solutions for 2-players PEGs have been proposed when the map of the environment is known by the pursuer.
The evader may be predictable [LaValle et al., 1997a] or moreinterestingly unpredictable [Murrieta-Cid et al., 2002],
[Murrieta-Cid et al., 2003], [Murrieta-Cid et al., 2004], [Isler et al., 2004]. Thanks to the knowledge of the environment,
scenarios mostly focus on maintaining the visibility of thetarget. Recent solutions rely on the use of a graph of mutual
visibility: the environment is first subdivided into regions, and a graph that describes the visibility of each region bythe
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others [Murrieta-Cid et al., 2008]. A NP-hard method based on this mutual visibility graph is proposed to provide a sufficient
condition for maintaining the visibility. Another interesting study highlights that situations in which the target can never be
captured [Cheung, 2005] may exist, even when the evader speed is smaller than the pursuer speed. Scenarios in which the
pursuer has to stay at a fixed distance from the evader has alsobeen tackled [Muppirala et al., 2005].

In this paper, we consider a minimalist 2-players PEG in presence of obstacles, by assuming that: a) the map of the
environment is also unknown; b) the exact positions of the pursuer and the evader are unknown. The mapping of the
obstacles is not aimed since: 1) mapping is a classical and well documented problem, 2) PEGs in known environments is
also well documented (but not definitively solved), 3) we assume that none of the opponents had time to do the mapping
before the conflict, 4) we assume that the game ends upon the capture or the disappearance of the evader, 5) we obviously
agree that the use of the map can be helpful for further pursuits in the same environment, 6) we hope in the future to deal
with dynamic obstacles (moving obstacles, obstacles shapechanges due to a non planar ground ...).

The problem of PEGs in unknown cluttered environment has notbeen extensively studied: provided solutions mostly aim
at maintaining visibility in a classical indoor environment. In [Gonzalez-Banos et al., 2002], [Lee et al., 2002], the method
is based on the minimization of a heuristic called escape risk. A more recent work proposed a better heuristic based on
an approximated computation of what is called the vantage time [Bandyopadhyay et al., 2006]. Interestingly, the authors
point out that trying to maximize the instantaneous visibility, as done in [Gonzalez-Banos et al., 2002], [Lee et al., 2002],
actually increases the latter probability of the evader disappearance, as opposed to a better balancing between closing the
distance to the obstacle and maintaining visibility, whichseems to offer a better global behavior of the algorithm.

Note that the capture as a termination mode in these previousstudies was not considered; the sole objective was to maintain
the visibility of the target as long as possible. Moreover, theses studies did not consider the evader as smart, resulting in a
problem description without antagonist goals for the pursuer and the evader.

Hence, an interesting facet of this paper is to consider 2-player PEGs in presence of obstacles as an antagonist game, in
which the evader is at least as smart as the pursuer and both ofthem have antagonist objectives. As Isaacs early said:”...
Difficulty of the problems when - and such is the essence of game theory - there are two opponents with conflicting aims and
each is to make the best possible decisions understanding and taking into account that his antagonist is doing the same...
If we seek conflicting objectives - and only such cases are of interest - the situation assumes something on the nature of the
game.”

A last approach that should be cited before entering the heart of the paper is the use of genetic algorithm, inspired
by evolutionist neuro-ethological data about the development of pursuit and evasion capabilities among the animal species
[Miller and Cliff, 1994], [Cliff and Miller, 1996], in orderto incrementally generate populations of pursuers and evaders
that progress in parallel (ie: that co-evaluate) [Nitschke, 2003], [Eaton et al., 2002], [Choi et al., 2004].

In the following, we will incrementally build a complete pursuit algorithm to deal with a 2-players PEG in presence of a
single unknown convex obstacle. We will first provide a sufficient condition to achieve capture without disappearance, based
on the properties of the famous parallel pursuit. Then, we will solve thecircular obstacle problem, a particular problem in
which the evader, initially located on a circular obstacle,tries to hide behind it. The pursuer, initially located on the tangent
to the obstacle crossing the evader position, has to capturethe evader in minimum time or at least has to maximally delay its
disappearance. Next, thepole problem, as a generalization of the convex obstacle problem, will betackled. In this problem,
the pursuer tries to capture the evader and the evader tries to rotate the line of sight in order to create a contact with a pole
(corresponding to a point). The solution and the corresponding strategies will be detailed. A quasi-optimal pursuit strategy as
regards the time to capture will be provided for the pole problem, and then transposed for the more generalconvex obstacle
problem. For the cases leading to the evader victory in the pole problem, a last strategy allowing to maximally rotating the
line of disappearance will be added to complete to our pursuit algorithm. Finally, our complete pursuit algorithm will be
adapted to use a heuristic minimization method instead of the strategy suggested by the resolution of the pole problem for
the cases leading to the pursuer victory. Different heuristics (inspired from the literature, or proposed here, one being an
approximation of the solution of the pole problem) will be compared with respect to the size of the capture basin (initial
conditions of the pursuer leading to capture without disappearance), highlighting the performance enhancement allowed by
our solutions.

II. I NTEREST OF THE CONVEX OBSTACLE PROBLEM

In this paper, a particular subset of the possible games, theconvex obstacle problem, will be investigated. The rules are
the following:

Rule 1: The map of the environment is initially unknown.
Rule 2: The pursuer is faster than the evader.
Rule 3: Each player knows the maximal speed of the other player.
Rule 4: The environment contains a single convex obstacle
Rule 5: The pursuer wins if it captures the evader in finite time while avoiding its disappearance
Rule 6: The evader wins if it succeeds in hiding or if it infinitely delays the capture.



The rule1 has already been justified previously. The rule2 is classical in PEGs since if the evader is faster or as fast as
the pursuer, as a general rule, it can evade easily1. The rule3 is also used since it largely extends the methods that can be
developed. Moreover, the speed of an antagonist can be continuously estimated.

However, at first sight, one can wonder why the disappearanceas a termination mode in an environment containing a
single convex obstacle is interesting (rules4, 5, 6). Indeed, in such an environment, even if the evader disappears for a
while, the pursuer will eventually see it again and capture it by simply executing the following procedure: first it reaches the
disappearance point and then it turns around the obstacle along its boundary. If the evader also moves along the boundary
of the obstacle, the pursuer will obviously capture it. Otherwise, the pursuer can move along the obstacle boundary until
being on a line orthogonal to the boundary of the obstacle crossing the position of the evader. In such a situation, capture
is guaranteed without future disappearance by many pursuitstrategies since the capture region is likely to not be altered by
the obstacle.

Even if the obstacle is not convex but is simply such that eachpoint of its boundary can be seen from at least one point
outside the convex hull of the obstacle (let us call this kindobstacle anooklessobstacle), we could prove that capture is
guaranteed. Indeed, after disappearance, if the pursuer simply follow the convex hull of the obstacle (which is the shortest
path that allow to see all the points on the boundary of a nookless obstacle), either the evader has not entered the convex
hull so the pursuer can always reach a position such that it ison the line orthogonal to the convex hull crossing the evader
position (similar to the previous problem that consider a convex obstacle), or the evader has entered the convex hull. Inthis
later case, the pursuer can always recover the sight of the evader by simply moving along the convex hull. Once the sight
is recovered, the pursuer may use some strategies to preventthe evader to exit the convex hull (the problem becomes closer
to a Lion and Man Problem for which solutions exist).

So, why should the disappearance be considered as a termination mode in the case of a single convex or even a nooklees
obstacle. In presence of a single non-nookless obstacle or several obstacles, once the evader has disappeared, there isno
deterministic guaranty to recover its sight. Indeed, when the pursuer sees a nook in the obstacle, either it enters the nook
but the evader may simply have followed the convex hull, or the pursuer follows the convex hull but the evader may simply
have entered the nook and may hide in a region that is not seeable from the convex hull. The same dilemma occurs with
several obstacles: the pursuer can never know if the evader has turned around the obstacle behind which it has disappeared
or if it is hidden behind another obstacle. To solve such situations, several pursuers seem to be required.

That is why it is very important to not lose the sight of the evader, and this is why the disappearance as a termination
mode is very important, even if there is only a single convex obstacle. An efficient pursuer in such a game will largely
reduce the probability to face non-deterministic situations as described above in a more general case. Hence, the case of
a PEG in presence of a single obstacle can be reduced to a PEG with a single convex obstacle in order to gain insight
about the general problem. Moreover, although the convex obstacle problem is the simplest 2-players PEGs in presence of
unknown obstacles, an optimal solution has not yet been found.

III. SUFFICIENT CAPTURE CONDITION UNDER VISIBILITY CONSTRAINT

In this section, a general sufficient condition that guaranty capture thanks to the properties of the famous parallel pursuit
will be established. The region, where this condition holds, covers the major part of the environment.

Assume for a moment the absence of obstacles. The BSR (Boundary of Safe Region) is defined as the frontier of the
region in which the evaderE is able to go without being captured, what ever the pursuerP does. If the pursuer is faster than
the evader, the classical BSR of the evader involved in a PEG in a free 2D space (no obstacles) is defined by an Apollonius
circle [Isaacs, 1965], [Petrosjan, 1993], [Nahin, 2007]. This definition is evader-centered. We define here thepursuit region
related to a particular strategy as the set of positions thatcan be reached by the pursuer during the game when using a
particular strategy. We define also thecapture regionrelated to a particular strategy as the set of positions where the capture
can occur. Obviously, the capture region is included in the pursuit region. Finally, we introduce a short terminology about
specific geometric objects such as disappearance vertex, line of disappearance and line of sight (see fig. 1.a)

A. Apollonius pursuit properties

Let consider a PEG in the 2D plan with no obstacles, involvinga single purser faster than a single evader. The following
convention will be used:

• Points in the space are noted with capital letters (such as the pointA).
• The coordinates of a pointA are noted(xa, ya) and (ra, θa) in a polar coordinates system.
• A vector between the origin of the coordinates system and a point A is noteda.
• A vector between two pointsA andB will be noted

−−→
AB but alsob − a.

• The angle of a vector
−−→
AB is notedθAB .

1Actually, in Lion and Man problems[Sgall, 2001], the evader can be captured even if its speed isthe same as the pursuer speed thanks to a line of
sight pursuit for which the reference point is well chosen.
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Fig. 1. a) Terminology: the line(PT ) is the line of disappearance (i.e.: the tangent to the obstacle crossing the pursuer position), the line(PE) is
the line of sight, andT is the disappearance vertex. b) Illustration of the Apollonius circle A for γ = 4 (the pursuer is twice faster than the evader),
E : (0, 0) andP : (6, 0). R = 4 andC : (−2, 0). The Apollonius pursuit is equivalent to a parallel pursuit(all the lines of sight are parallel). Note that
A ′ is included inA ′ and ththe two circle intersects inA.

• ‖.‖ is the Euclidian 2d-norm.
• The distance between two pointsA andB can be notedAB but also‖b − a‖.
• Geometrical objects are noted with calligraphically written letters (such as the circleC ).
The following notations and relations will be used:
• p is the position of the pursuer.
• e is the position of the evader.
• ve is the maximal speed of the pursuer.
• vp is the maximal speed of the evader.
• ve < vp, meaning that the pursuer is faster than the evader.
• γ = k2 = (

vp

ve
)2 the square of the ratiok of the pursuer speed above the evader speed.

• γ > 1 since the pursuer is faster than the evader.
Let us remind some basics results about 2-players PEGs assuming straight line motion of the evader. To capture in

minimum time, the optimal pursuit strategy is obviously a straight line motion towards the closest point of capture (a point
of capture is such that the time to arrive to this point is the same for both the antagonists). If the evader adopts a straight
line motion, the locus of interceptionA is the set of pointsX : (x, y) such that‖e−x‖

ve
= ‖p−x‖

vp
, more recognizable as:

k.‖e − x‖ = ‖p − x‖ (1)

A is an Apollonius circle withE andP as references points andk as parameter (eq. 1 is precisely the definition of an
Apollonius circle). Such a circle can be notedC (E,P, k) The following expression are implied by the equation 1:

(
‖e−x‖

ve

)2

=
(

‖p−x‖
vp

)2

γ.‖e − x‖2 − ‖p − x‖2 = 0
(2)

With a few substitutions and arrangements, it follows the equation of the Apollonius circle centered onC with the radius
R: 




c =
γ.

γ − 1
.(e − p)

R2 =
γ

(γ − 1)2
.‖e − p‖2

(3)

C is obviously aligned withE andP , and its the radiusR only depends on the distance‖e−p‖ between the evader and
the pursuer. Thus,C, located on the extension of the segment[PE], can be expressed asc = e − 1

γ−1 (p − e). We finally



note that the distance betweenC andP only depends on the distance betweenE andP as follow (this result will be used
later):

‖c − p‖ =
√

γ.R =
γ

γ − 1
‖e − p‖ (4)

The fig. 1.b illustrates the circleA for a givenγ and for the given initial positions of the pursuer and the evader.
If the evader trajectory is a straight line toward a pointA of the circleA , there is no better strategy for the pursuer than

going also to the pointA, since it will go toA in straight line at its maximal speed. This strategy, often called Apollonius
pursuit, is time-optimal for straight line motion. Any other pursuer movement will allow the evader to travel a distance
greater than‖e − a‖.

A well known properties of the Apollonius pursuit is that anyline (EP ) during the game is parallel to the initial one.
Indeed, as highlighted by the fig. 1.b, assume the evader has moved fromE to E′. Let ρ be the ratio of the segment[EA]

that has been traveled by going fromE to E′ (‖e′−e‖
‖a−e‖ = ρ). During the same time, the pursuer has moved toP ′, and

obviously: ‖e′−e‖
ve

= ‖p′−p‖
vp

. The pointA being of the Apollonius circle, it follows that:‖a−e‖
ve

= ‖a−p‖
vp

. By dividing the
two previous equality and with a few arrangement, it followsthat:

‖e′ − a‖
‖e − a‖ =

‖p′ − a‖
‖p − a‖ = 1 − ρ

The intercept theorem (or Thales theorem) implies that the line (EP ) and(E′P ′) are parallel. Hence, the Apollonius pursuit
is more generally called the parallel pursuit, for antagonists that do not move in straight line during the game.

We introduced here the nameΠ-strategy to refer to the optimal parallel pursuit, the one continuously minimizing the
distance‖e−p‖ (the notationΠ-strategy is used in [Petrosjan, 1993]). TheΠ-strategy ensures that the pursuer will capture
the evader inside the circleA , whatever the evader does. This point and other properties of the Π-strategy is reminded in
the followings.

B. Properties of theΠ-strategy

If the evader does not move in straight line, the applicationΠ depends on the current evader velocity:

Π : IR6 → IR2

(E,−→ve , P ) 7→ −→vp

It is well known that, in free space (absence of obstacle), ifthe pursuer is faster than the evader, then theΠ-strategy
guaranties the capture of the evader inside the initial Apollonius circleA in finite time without disappearance. Moreover,
the Apollonius circleA is the BSR of the evader (i.e.: the intersection of the capture regions of all the pursuit strategies).

Let us prove the first point. TheΠ-strategy will first be proved to allow for the evader captureinside the initial Apollonius
circle A (ie: this will prove that the Apollonius circleA is the capture region related to theΠ-strategy whatever the evader
does). To prove this point, note that adopting theΠ-strategy implies that the new Apollonius circle after an infinitesimal
move of the evader and the pursuer is fully included in the initial Apollonius circleA . Then, an upper bound of the time
to achieve the capture can be computed, by noting that theΠ-strategy is at the equilibrium as regard a min-max approach.
Finally, it will be reminded (thought it is trivial) that if the pursuer does not adopt theΠ-strategy, the evader may be captured
outside the circle, implying that the Apollonius circle is the BSR of the evader.
Let E′ andP ′ be the point reached by the pursuer and the evader after an infinitesimal duration:

e′ = e + ve.dt

p′ = p + vp.dt

Let us callA ′ the new Apollonius circle centered onC ′ with radiusR′ related to the new positionsP ′ and E′ of the
antagonists. As previously,ρ = ‖e′−e‖

‖a−e‖ = ‖p′−p‖
‖a−p‖ is the ratio of the segment[EA] and [PA] respectively traveled by the

evader and the pursuer by going respectively fromE to E′ and fromP to P ′. The coordinatesE′ andP ′ can be expressed
as:

e′ = e + ρ.(a − e) (5)

p′ = p + ρ.(a − p) (6)

By inserting these expression in the definition of the centerand the radius of the Apollonius circle, and with a few
arrangements, it follows the equation of the circleA ′:

{
c′ = c + ρ.(a − c)

R′ = (1 − ρ).R
(7)



We have shown here that the centerC ′ of the circleA ′ belongs to the segment[CA], which is a radius ofA . Obsviously,
the pointA belongs to the new circleA ′ since it is still located at the same time of travel from the antagonists. Hence
R′ = ‖a − c′‖.

We now have to prove thatA ′ is fully included in A . Actually, we have to show that the two circles have at most a
single intersection point which is preciselyA. Let us provide a geometrical proof (see fig. 1.b for the illustration): consider
two circlesA andA ′ centered respectively onC andC ′. The centerC ′ 6= C is located on a radius[CA] with A a point
of A . The two circles intersect at least inA. Let A′ 6= A be a point ofA . To prove the full inclusion ofA ′ in A , we
have to prove thatC ′A′ > C ′A.

If CC ′A′ is a triangle thenCC ′+C ′A′ > CA′. SinceCA′ = CA = CC ′+C ′A = CA, thenCC ′+C ′A′ > CC ′+C ′A.
Hence, we haveC ′A′ > C ′A. If CC ′A′ is not a triangle, asA′ 6= A, [AA′] is a diameter ofA implying that C ′A′ =
CC ′ + CA′. As CC ′ 6= 0, it is trivial that C ′A′ > CA′ which conclude the proof.

Of course, if the evader does not travel at maximal speed, thenew positions will be such that the new maximal Apollonius
circle (taking the maximal speed into account) is also included in the initial one.

Indeed, on the fig. 1.b, if the evader would not have moved at its maximal speed, the new pursuer position would be
closer to the new evader position. The pursuer would actually aims a pointÃ located on the segment[EA]. Indeed, for two
Apollonius circlesA and Ã sharing the same reference pointsE andP but with two different speed ratios, respectively
k and k̃ such that̃k > k > 1 (k̃ corresponds precisely to the Apollonius circle for an evader moving slower thanve), all
the points on the Apollonius circle with the parameterk̃ (the higher) are inside the other Apollonius circle. Note first that
if one point of Ã is insideA , all the points ofÃ are insideA , since the two circles cannot intersect (an intersection
means that a single point is at two different distance ratiosfrom E andP , which is impossible). Second, letO and Õ be
the intersection of the segment[EP ] with the circlesA andÃ respectively. It is clear that̃O belongs to the segment[EO]

since‖e− õ‖ = 1
ek+1

‖e−p‖ < 1
k+1‖e−p‖ = ‖e−o‖. As Õ, a point ofÃ is insideA , Ã is insideA . Thus, if the evader

does not move at its maximal speed, the pursuer aims a pointÃ located on the segment[EA]. The new pursuer position
notedP̃ ′ thus belongs to the segment[E′P ′].

The new maximal Apollonius circle is obviously included in the initial one. Indeed, for two Apollonius circlesA ′ andÃ ′

sharing the inner reference pointE′ and the same speed ratiok > 1, but such that the outer reference points, respectively
P ′ and P̃ ′ are different:P̃ ′ belongs to[E′P ′] (the two circlesA ′ and Ã correspond precisely to the maximal Apollonius
circles after an infinitesimal movement of the evader respectively at maximal speed and at a slower speed),̃A ′ is insideA ′.
Note first that if one point ofÃ ′ is insideA ′, all the points ofÃ ′ are insideA ′, since the two circles can not intersect (an
intersection means that a single point is a the same distanceratio from E′ and two different pointsP ′ and P̃ ′ belonging to
[E′P ′], which is impossible). Second, letO′ and Õ′ be the intersection of the segment[E′P ′] with the circlesA ′ and Ã ′

respectively. It is clear that̃O′ belong to the segment[E′O′] since‖e′ − o′‖ = 1
k+1‖e′ − p′‖ > 1

ek+1
‖e′ − p̃′‖ = ‖e− õ′‖.

As Õ′, a point ofÃ ′ is insideA ′, Ã ′ is insideA ′. SinceÃ ′ ⊂ A ′ ⊂ A , the new Apollonius circle after an infinitesimal
movement in inside the initial one whatever the evader does.

Moreover, as the only intersection of the circleA andA ′ is precisely the pointA aimed by the evader, it is obvious that
as soon as the evader does not travel in straight line at its maximal speed, it will allow the pursuer to capture it closer toits
initial position. Indeed, if the evader change its direction of motion at timet > 0 even at maximal speed, the new Apollonius
circle will no longer have any contact point with the initialcircle A . Hence, for any pointE1 inside A reached by the
evader while the pursuer has reachedP1, the greatest distance between the evader and the pursuer (the distance‖e1 −p1‖)
is obtained for a straight line motion of the evader at maximal speed.

The capture occurs in finite time, since a bound to the time to capture exists. As the time to capture is linear with the
traveled distance, resulting form the integration of the infinitesimal movements of the pursuer and the evader, let us first
compute the movement of the evader that maximizes‖e′ − p′‖ = (1 − ρ).‖e − p‖ after an infinitesimal movement. Note
that this direction minimizesρ. We also have thatρ = dt.ve

‖e−a‖ . The pointA that minimizesρ also maximizes‖e − a‖. Let
us expressA in a different manner as before:

{
xa

k = xc
k + Rc

k.cos(α)

ya
k = yc

k + Rc
k.sin(α)

(8)

We now look for theα∗ ∈ [0, 2π[ that maximizes the distance‖e − a‖:

α∗ = arg max
α∈[0,2π[

(
e − a

)
= arg max

α∈[0,2π[

(
e − a

)2



With a few arrangements, the problem becomes:

α∗ = arg max
α∈[0,2π[

(
(xc − xe)cos(α) + (9)

(yc − ye)sin(α)
)

(10)

By studying the variation of this function with respect toα, we have thatα∗ = θEC whereθEC is the direction of the
vector

−−→
EC. Hence, the strategy of the evader in order to maximizes the future distance to the pursuer after infinitesimal

movement is simply to run away (θEC being precisely the opposite direction of the pursuer alongthe line of sight). In
parallel, the worst evader strategy is to go toward the pursuer, since the direction of the pursuer−θEC also minimizes the
future distance between the antagonists. In both case, theΠ-strategy leads the pursuer to simply aim an optimal evader like
in a pure pursuit strategy, known as the optimal pursuit (against any motion of the evader). TheΠ-strategy is time optimal
for any straight line motion of the evader but also against the optimal evasion strategy (which is a straight line motion). The
Π-strategy respects the equilibrium of the min-max approach.

The maximal time to capturet∗ corresponds to the optimal value of a PEG involving 2 playerswith simple motion in
free space:

t∗ =
‖p − e‖
vp − ve

The Π-strategy allows for the evader capture in finite time.
To finally prove that the capture region of theΠ-strategy is the BSR of the evader, it is sufficient to notice two facts:

first, there exists a strategy, theΠ-strategy, that allows for the capture inside the initial Apollonius circleA . Second, if the
evader travels in straight line, any other strategy different from theΠ-strategy will allow the evader to go outsideA . The
Apollonius circle is the BSR of the evader.

Finally, let Sr andSl be the points such that the lines(PSr) and (PSl) are the right and left tangent lines to the circle
A starting fromP . The union of the trianglePSrSl and the circleA represents the pursuit region (the set of all the
pursuer-evader positions during the game) related to theΠ-strategy.

C. A sufficient condition to guaranty capture without disappearance

Our goal is to provide here a general sufficient condition to guaranty capture under visibility constraint. For convenience,
we adopt the same terminology as used in [Gonzalez-Banos et al., 2002], [Lee et al., 2002], [Bandyopadhyay et al., 2006]:
the set of points that are visible from the pursuer at timet defines a region called thevisibility region The visibility region
is composed by bothsolid edgesand free edges. A solid edge represents an observed part of the physical obstacles of
the environment as opposed to a free edge, which is caused by an occlusion (see fig. 1.a) and is aligned with the pursuer
position. In order to hide, the evader must cross a free edge.Any point of a free edge is called an escape point. All the
points belonging to the free edges are potential escape points. The disappearance corresponds to the intersection of the light
of sight with an obstacle.

An obvious capture condition under visibility constraint is the following:
Condition 3.1: If the Apollonius circleA does not intersect neither any free edge, nor any obstacle, then the capture is

guaranteed without disappearance by adopting theΠ-strategy.
Indeed, the absence of free edge in the Apollonius circle implies the absence of obstacle in the part of the pursuit region
which is outside the Apollonius circle. Since the Apollonius circle does not intersect any obstacle, the pursuit regionof
the Π-strategy is empty. Everything is thus as a PEG in free space if the pursuer adopts theΠ-strategy since none of the
possible segment[E′P ′] can intersect an obstacle.

At first sight, one could think that if the initial Apolloniuscircle does not intersect any free edge, then capture is
guaranteed. The fig. 2.a illustrates an example without any free edge intersecting the initial Apollonius circle, illustrating
anyway a movement of the evader that will lead to break the line of sight if the pursuer adopts theΠ-strategy. Nevertheless,
such situations only happen for particular obstacle shapesthat intersect the Apollonius circle. Hence, it is possibleto refine
the capture condition by refining which kind of obstacles is allowed in the capture region.

Our general sufficient condition to guaranty capture without disappearance is the following:
Condition 3.2: If the Apollonius circle does not intersect any free edge andif the shape of the obstacles inside the

Apollonius circle can not lead to break the line of sight if the pursuer adopts theΠ-strategy, then capture is guaranteed
without disappearance by adopting theΠ-strategy.

We propose here a simple method to verify if the evader is ableto hide from a pursuer using theΠ-strategy or not.
To simplify, rotate and translate the initial coordinate system such that the new purser position is the origin of the new
coordinates system, the line of sight becomes the abscise, and the abscise ofE is positive (translation of a vector−p and
rotation of an angle−θPE with θPE the orientation of the vector

−−→
PE in the initial coordinates system). The figure 2.b is

drawn after this transformation. Then, for each vertexV : (xv, yv) of the obstacle inside the Apollonius circle, letE′ be the
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Fig. 2. a) Illustration of the creation of a free edge during the game that did not exist at the beginning of the game: at the beginning, the pursuer sees
all the obstacle boundaries (blue polygon) that belong to the pursuit region. Here,γ = 4: the pursuer is twice faster than the evader. There clearly exists
an evasion strategy that will break the line of sight with theobstacle at timetf if the pursuer adopts theΠ-strategy. b) Identification of the vertices that
can break the line of sight if the pursuer adopts theΠ-strategy. For each vertex inside the Apollonius circle, consider a pointE′ at a very small distance
on the right of the vertex. If the evader can reachE′ (i.e. the segment[EE′] does not intersect any obstacle edge), theΠ-strategy fails. In this example,
only the verticesV2,3 andV2,5 prevents theΠ-strategy to capture the evader without disappearance. Forall the other vertices, it is clear thatE′ is inside
an obstacle, implying that the evader is not able to reach these escape points.

point at an arbitrarily small distanceǫ on the right of the vertexV : xe′ = xv + ǫ andye′ = yv. If E′ is inside the obstacle,
the evader cannot use the vertexV to hide from a pursuer using theΠ-strategy since it would need to cross an obstacle
edge. Hence, capture without disappearance is guaranteed by adopting theΠ-strategy, if for all obstacle verticesVk inside
the Apollonius circle and all the relatedE′

k, none of the segments[EE′
k] intersects any obstacle edge. For example, in the

figure 2.b, the vertices{V2,3, V2,5} prevent to verify this condition, thus prevent to guaranty capture.
In the following, as soon as the condition 3.2 holds, the pursuer will adopt theΠ-strategy to terminate the game.

D. Region of adoption of theΠ-strategy

Given a convex obstacle and a position of the pursuer, let us compute the set of initial evader positions such that the
Π-strategy guaranties capture, thanks to the condition thanks 3.2 (refer to fig 4.a).

First, note that, for a convex obstacle, the two contact points of the left and right tangents to the obstacle starting from the
pursuer position are the only disappearance vertices. Moreover all the points between the left and right lines of disappearance
are visible fromP . If the evader is between the two lines of disappearance, andif its time to go to a given disappearance
vertex is greater than the time for the pursuer to go to the same vertex, then theΠ-strategy guaranties capture.

Indeed, the first point of the condition 3.2 is verifyied because there is no free edge inside the initial Apolonius circle.
Moreover, the obstacle being convex, the vertices belonging to the Apollonius circle cannot break the line of sight if the
pursuer adopts theΠ-strategy (second point of the condition 3.2). This can be demonstrated by noting that for any future
possible position of the evaderE′ inside the Apollonius circle and the corresponding position P ′ of the pursuer, an occlusion
implies the presence of a pointV of the obstacle betweenE′ andP ′, which is impossible due to the convexity of the obstacle.
Indeed, perform first the translation of a vector−p and the rotation of an angle−θPE (see fig. 3.a) in order to simplify.E
being between the two tangents(PTl) and (PTr), it follows that 0 ≤ θPTl

≤ π and−π ≤ θPTr
≤ 0. The obstacle being

convex, all the visible points of the obstacle between the two tangents belong to the trianglePTrTl. Consider a possible
disappearance pointE′ in the Apollonius circle. IfE′ (with a positive abscise) is not in the trianglePTrTl, E′ is not a
disappearance point since it is clear that there is not any point of the obstacle (all belonging to the trianglePTrTl) between
E′ and all the possibleP ′ on the left ofE′. Hence,E′ being a disappearance point, there exists a pointV of the obstacle
betweenE′ andP ′: yv = ye′ andxv = xe′ − ǫ with ǫ > 0. V inside the trianglePTrTl implies θPTr

≤ θPV ≤ θPTl
. It is

obvious by construction that the pointE′ is inside the triangleTlV Tr sinceθPTr
< θV Tr

< (θV E′ = 0) < θV Tl
< θPTl

and
E′ located in the same half-plan asP (the left one) relatively to the line(TlTr). The obstacle being convex, the segments
[TlV ] and [V Tr] belong to the obstacle: hence the triangleTlV Tr to the obstacle, which is impossible sinceE′, a point of
this triangle, is, by essence of a disappearance point, outside the obstacle.

To sum-up, if the evader is between the two line of disappearance and if the two vertices of disappearance are outside the
Apollonius circle, theΠ-strategy guaranties capture without disappearance. In practice, the verification of the second point
of the condition 3.2 requires to be checked only if the evaderis not between the the two lines of disappearance.

Second, if the evader is not between the two lines of disappearance, what are the positions the set of evader positions
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Fig. 3. a) If the evader is between the left and right line of disappearance and if the disappearance vertices do not belongs to the Apollonius circle,
then, any disappearance pointE′ is included in the triangleTlV Tr (V being the obstacle point creating the occlusion with the pursuer), hence is inside
the obstacle, which is impossible. TheΠ-strategy allows for the capture. b) Computation of the minimaldistance between the evader and the line of
disappearance, in order to guaranty that the Apollonius circle does not contain any free edge. Here, the line(PS) is the line of disappearance and the
disappearance vertexT is assumed to belong to the segment[PS]. We demonstrate is the text that the distanceEH is linear with respect to the distance
PH. The line(ES) is perpendicular to the line(EP ) (β = α). This information helps to determine the set of the position of the evader such that no free
edge intersects the Apollonius circle for a given obstacle and a given pursuer’s position, when the evader is not betweenthe two lines of disappearance
(see fig. 4.a.a).

such that the Apollonius circle is tangent to a free edge? Note first that if the evader can arrive to a disappearance vertex
T before the pursuer (k.ET < PT ), this vertex belongs to the Apollonius pursuit and the capture cannot be guaranteed2.
Otherwise, the fig 3.b helps us to compute the minimal distance between the evader and a free edge to guaranty capture
under visibility constraint by adopting theΠ-strategy. In fig 3.b,(PS) is the line of disappearance,H is the projection ofE
on the line(PS) andEH is then the distance between the line of disappearance and the evader. The disappearance vertex
T belongs to the segment[PS], otherwise the circle would be tangent to the line of disappearance but not tangent with the
corresponding free edge (each vertex inside the Apolloniuscircle should be verified to lead or not to a future line of sight
occlusion). The center of the Apollonius circle is notedC and, of course, the line(CS) and (PS) are perpendicular.

We are looking for an expression of the distanceEH with respect to the distanceHP . The Pythagor theorem also implies
that EH2 = ES2 − HS2. As the line(EH) and (CS) are parallel and due to the Thales theorem, note that:

CP

EP
=

PS

HP
=

CS

EH
=

γ

γ − 1

S being on the Apollonius circle, it follows that:

ES2 =
PS2

γ
=

γ

(γ − 1)2
.HP 2

H belonging to[PS] we have:

HS2 = (PS − HP )2 =
1

(γ − 1)2
.HP 2

Hence:
EH = HP.

1√
γ − 1

The frontier between the evader positions such that the Apollonius circle intersects the line of disappearance or does not
is a line (dl) starting fromP . The angleα between this line and the line of disappearance is constant:

α = tan−1
( 1√

γ − 1

)

Note also that the line(ES) and (EP ) are perpendicular. Indeed, in the rectangular trianglePHE, the angleP̂EH =

α = π
2 − α. In the rectangular triangleSEH, the angleβ = ŜEH is such that

β = tan−1
( SH

EH

)

2Until the end of the section, the distance between two pointsA andB will simply be notedAB.



SinceSH = 1
γ−1 .HP andEH = 1√

γ−1
.HP , it follows:

β = tan−1(
1√

γ − 1
) = α

Thus,(ES) and (EP ) are perpendicular sincêPES = α + α = π
2 .

Building of the set of the evader positions such that the condition 3.2 holds is now trivial. Indeed, in the fig 3.b, assume
that S = T (S is the disappearance vertexT ). The circle centered onS = T and crossingE is notedCl in fig.3.b and is
such thatPS = k.ES (or PT = k.ET ). As (EP ) is perpendicular with(ES) (hence with(ET )), the angleα is such
that the line(dl) is tangent to the circleCl. The contact point between the circleCl and its tangent starting fromP is the
starting point of the frontier between the evader positionssuch that the Apollonius circle is tangent to the related free edge.

The evader positions such that the condition 3.2 holds are drawn as the white region in fig 4.a. For the proposed obstacle,
the Π-strategy allows for the capture in the whole region where the Apollonius circle includes a part of the obstacle but no
free edges. In the following, we will focus on the strategy toadopt when the evader position does not belongs to the region
where theΠ-strategy guaranties capture.

Region not visible from the pursuer position

Obstacle

guaranty capture without disappearance

guaranty capture without disappearance
Evader positions for which parallel pursuit does 

Evader positions for which parallel pursuit does not

to distinghush the regions
Geometrical lines or forms that helps 

P

E PP P
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Rp Ce

Cp
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Fig. 4. a) For a given obstacle (convex) and a given position of the pursuer, the figure distinguishes the set of the evader positions such that theΠ-strategy
guaranties capture without disappearance (region not colored) from the positions for which a free edge intersect the Apollonius circle (region colored in
light pink). The two dotted circles are the evader positionssuch that the time to go to the disappearance vertex is equal for both the antagonists. b) The
circular obstacle problem: The evader is moving along the boundary of a circular obstacleCe, centered onO with the radiusRe. Cp is another circle
centered onO with a radiusRp defined such that

Rp

Re
=

vp

ve
= k (the speeds are constant). The pursuer is initially locatedon the tangent ofCe touching

the evader position. It tries to capture the evader in minimum time while maintaining its visibility (or at least it tries to delay the time to disappearance
as long as possible). This corresponds to stay on the tangent, as it will be shown. What is its trajectory, if it starts at a distancer(0)? Or at least, what
are the kinematics equations of its trajectory.

IV. T HE CIRCULAR OBSTACLE PROBLEM

In order to gain insight about what should be done if the condition 3.2 does not hold, the circular obstacle problem
defined in fig. 4.b will be investigated. The solving of this game will highlight the existence of a necessary trade-off
between maximizing visibility and minimizing the time to capture.

In this game, the evader moves along the boundary of a circular obstacleCe (the radius ofCe is Re andC is the center).
The pursuer is initially located on the tangent toCe crossing the evader position. The pursuer tries to capture the evader
as fast as possible while maintaining its visibility, or at least it tries to delay the evader disappearance as long as possible.
The evader is initially on the boundary of the obstacle. Hence, moving along the boundary is obviously optimal in order
to disappear since this movement maximally deviate the half-plane from which the evader is visible. Assume thatCp is
another circle centered onC with a radiusRp defined such thatRp

Re
=

vp

ve
= k (the speeds are constant, as usual). Hence,

ωe = ve

Re
=

vp

Rp
is then the angular speed of the evader. The pursuer’s speed is vp = ωe.Rp.

From the pursuer point of view, minimizing the time to capture (or maximizing the time of visibility maintenance if
the capture is impossible) while maintaining the visibility is equivalent to stay on the tangent. Indeed, the fig 5.a illustrate
how the pursuer can consume its velocityvp.dt depending on its distancer to the centerC (to simplify the notation, the
coordinate of the pursuerP in the polar coordinates system centered onC arer andθ, respectively the radius and the angle
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Fig. 5. a) The circular obstacle problem: For an infinitesimal rotation of the evader (dφe), how can the pursuer consume its velocityvp.dt when located
at a distancer from the rotation centerC. ~r and~t are the radial and tangential unitary vectors of the polar coordinate system centered onC. The five
circles (Cv) centered onP represents the possible positions the pursuer can reach with respect tor, by consuming its velocityvp.dt. From inside to
outside:r > Rl implies that the circleCv does not intersect the new tangent (instantaneous disappearance as soon as the evader moves);r = Rl is
the limit case after which disappearance is instantaneous;Rp < r < Rl implies that the pursuer can maintain the visibility untilr = Rl (where the
disappearance occurs);r = Rp implies that the pursuer can infinitely maintain the visibility but can not close the distance to the evader (infinite game
duration); andr < Rp implies that the pursuer is able to decrease the distance to the evader while maintaining visibility (capture is guaranteed in finite
time). b) Decomposition of the pursuer velocity for an infinitesimal movement of the evader.

of the pointP ). The evader performs an infinitesimal angular movementdφe = ωe.dt betweent and t + dt. Let Cv be the
circle corresponding to the locus of the possible pursuer positions after an infinitesimal movement. With respect tor, the
circles centered onP on the fig 5.a represent the possible positionsCv the pursuer can reach by consuming its velocity
vp.dt.

First, it is clear that the only solution for the pursuer to maintain the evader visibility is to aim a point on the circle
Cv that will be in the half-plane from which the evader is visible at t + dt . Second, among all the choices, the best local
choice to either capture as fast as possible or at least maintain the visibility as long as possible is to aim the point which
is the closer to the future evader position: this point is actually the intersection of the circleCv with the future tangent that
minimizesr at time t + dt (hence minimizing its distanceL to the evader sinceL2 = r2 −R2

e as long as the pursuer is on
the tangent line to the obstacle). Three cases are possible,with respect tor and to the number of intersections of the circle
Cv with the future tangent:

• r > Rl: no intersection point exists: the disappearance is instantaneous as soon as the evader moves.
• r = Rl: there exists a single intersection: this corresponds to the limit case, after which the disappearance is

instantaneous. Indeed, in this case, as the radiusr decreases, the next situation will correspond to the first case.
• r < Rl: two intersection points exist: in this case, the pursuer must aim the pointP ∗ that minimizesr at time t + dt

(the left one in the figure 5.a). Let us callr∗ the radius ofP ∗. Three sub-cases are possible:

– r∗ < r: the pursuer close the distance to the evader (ṙ < 0) and the capture will eventually occurs in finite time.
– r∗ = r: the pursuer stay on the circle with the radiusr (ṙ = 0), and the game duration will be infinite.
– r∗ > r: the pursuer gets away from the evader (ṙ > 0): it can only maintain visibility by increasing the distance

to the evader, which will eventually disappear.

Let us express the radial and tangential components of the pursuer speed in order to locally minimize the distance to
the evader under visibility constraint. The fig 5.b illustrates the different variables to solve the problem, considering an
infinitesimal angular movementdφe of the evader.

The pursuer movement can be decomposed into one radial and two tangential components (P ∗ is the aimed position at
t + dt):

• dTφ = r.dφe: the tangential component in order to maintain visibility while remaining at the same distance from the
evader.

• dTξ = r.dξ: the tangential component in order to reach the line(CP ∗) after having performeddTφ.
• dR: the radial component in order to reach the pointP ∗ after having performdTφ anddTξ.

The infinitesimal velocity vector is expressed as follows:

−→vp.dt = −dR.−→r + (dTφ + dTξ)
−→
t (11)



with −→r and
−→
t the radial and tangential unitary vectors of the polar coordinate system centered onC.

Let us computedTξ as a function ofdR. The angleν = (
−−→
PE,

−−→
PC) is really helpful, sinceν = sin−1(Re

r
), and

tan(ν) =
dTξ

dR
by construction (see fig 5.b). We deduce that:

dTξ = dR. tan(ν)

= tan(sin−1(
Re

r
))

=
Re√

r2 − R2
e

.dR (12)

The pursuer velocity can now be expressed as follows:

−→vp = ṙ.−→r + (ωe.r − ṙ.
Re√

r2 − R2
e

)
−→
t (13)

This expression of the pursuer velocity allows to remain on the tangent (valid forP ∗ and also for the second intersection
point of the future tangent with the circleCv) and is valid in any case if of courser ≤ Rl (remember thatRl is the limit
case).

The pursuer speed being constant, we obtain the following differential equation (norm of the pursuer velocity):

ṙ2 r2

r2 − Re
2 + ṙ.

2.rωe.Re√
r2 − R2

e

+ ωe
2.r2 − vp

2 = 0

(14)

This equation is quadratic and admits two expressions ofṙ (noted ṙ− and ṙ+ such thatṙ− < ṙ+), corresponding to the
two intersections of the future tangent with the locusCv of the future pursuer position:

ṙ− =
ωe.

√
r2 − Re

2

r
.(Re −

√
R2

p + R2
e − r2)

ṙ+ =
ωe.

√
r2 − Re

2

r
.(Re +

√
R2

p + R2
e − r2) (15)

ReachingP ∗ obviously corresponds to use the smallest expressionṙ−. Moreover, the radiusRl (the limit case for which the
circle Cv has a single intersection with the future tangent) can be computed easily since this is the one for whichṙ− = ṙ+:

ṙ− = ṙ+

↔
√

R2
p + R2

e − R2
l = −

√
R2

p + R2
e − R2

l

↔ Rl =
√

R2
e + R2

p (16)

The kinematics equation of the pursuer trajectory, consisting in locally minimizing the distance to the evader under the
visibility constraint for the circular obstacle problem is:





ṙ =
ωe.

√
r2 − Re

2

r
.(Re −

√
R2

p + R2
e − r2)

θ̇ = ωe −
ṙ.Re

r.
√

r2 − R2
e

(17)

Unfortunately, the pursuer trajectory cannot be expressedthanks to classical known functions. The fig. 6.a and 6.b shows
the course of the game for an initial position of the pursuer close to but inside the limit circleCp (r(0) < Rp), on the limit
circle (r(0) = Rp), and close to but outside the limit circle (r(0) > Rp). The trajectories are generated with a numerical
solver of differential equation (ode45) provided by MatlabR©. Each time step can be seen as a new initial condition, so these
trajectories contains almost all the trajectories for initial conditions such thatr(0) ≤ Rl.

The resolution of this game is interesting for at least threereasons: the first one is that most of the methods for visibility
maintenance in known environment provided until now assumed a polygonal environment in order to decompose it into a
finite number of sub-regions. In the case of a circular obstacle, the number of regions would be infinite and the known
methods cannot be applied. The second reason is that this game clearly illustrates the trade-off between fast capture and
visibility maintenance in PEGs in presence of obstacles, ifthe visibility maintenance is a hard constraint of the game.
The last one is that this resolution gives insight on what should be done in unknown environment: it seems that doing the
minimal but necessary effort to maintain visibility and consuming the spare power in reducing the distance to the future
evader position is a relevant strategy, actually locally optimal. The only constraint is to estimate what would be this minimal
necessary effort for visibility maintenance.
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Fig. 6. The circular obstacle problem. a) Here,Rp = 400, vp = 4, Re = 200, ve = 2. r(0) = 399 for the inner trajectory andr(0) = 401 for the
outter one. The inner green circle is the obstacle (Ce), and the outer green circle is the limit circleCp (These circle correspond to the infinite trajectories
of the pursuer and the evader whenr(0) = Rp). The red and the blue trajectories are respectively the trajectory of the pursuer and the evader. The crosses
and the star on the trajectories, plotted at the same time step,help to verify that the pursuer is always on the tangent to thecircle, touching the evader
position. b) Here,Rp = 250, vp = 2.5, Re = 200, ve = 2. r(0) = 249 for the inner trajectory andr(0) = 251 for the outer one.

V. A 2-PERSONPEGBIASED BY A SINGLE UNKNOWN CONVEX OBSTACLE: CONSTRUCTION OF AN ALGORITHM

A. The pole problem

Let us consider some given initial condition for the convex obstacle problem. As illustrated by the fig. 1.a from the pursuer
point of view, the evader will try to hide by crossing the lineof disappearance forward the segment[PT ] (by crossing the
free edge). This line of disappearance can be seen as a stick,anchored on the fixed disappearance vertexT , and such that
the pursuer controls its orientation.

As the pursuer does not know the shape of the obstacle outsideits visibility region, the worst case would be an extremely
sharp obstacle. Hence, a simplification of the convex obstacle problem is to consider the disappearance vertexT as a simple
pole or a punctual obstacle.T is now taken as the center of a polar coordinate system as illustrated in the fig. 7. The position
of the evader and the pursuer are now respectively noted(re, θe) and (rp, θp).

E

P

T

α

α

Fig. 7. The pole problem: an approximation of the convex obstacle problem.T is the disappearance vertex, which can be seen as a simple poleby the
pursuer in a worst case scenario. Letα be the angle between the lines(ET )and(EP ). The evader wins the game if it can change the sign of the angleα
or if it can arrive to the pole before the pursuer. The pursuerwins if it can avoid the evader to win, and if it can arrive to the pole before the evader. The
colored semi-circle represents the positions such that the evader can arrive to the pole before the pursuer by simply movingin straight line (the radius is
rp

k
and withk = 2). Inside the semi-circle, the evader wins, and otherwise thepursuer wins as shown in the text.

The pole problem is defined as follows:



• The evader wins if it can change the sign of the angleα or if it can arrive to the pole before the pursuer (re = 0)
where a final infinitesimal move terminate the game.

• The pursuer wins if it can arrive to the pole before the evader(rp = 0 andrp < re) while maintaining the sign ofα.

Obviously, if rp

k
≥ re, then the evader wins whatever the pursuer does by simply going toward the pole (̇re = −ve and

θ̇e = 0). On the fig. 7, for the drawn position of the pursuer andk = 2, the initial positions of the evader such thatrp

k
≥ re

is the colored semi-circle (the problem is symmetrical forα < 0).
If rp

k
< re, whatever the evader does, it will be shown there exists a pursuit strategy that guaranties the pursuer victory.

Suppose that initiallyα > 0 as in the fig. 7. In order to avoid the evader disappearance, the pursuer must maintainα > 0
and it is sufficient to arrive at the pole before the evader to ensure the victory. It is only sufficient because at a given moment
of the game, the capture may be guaranteed by adopting theΠ-strategy (condition 3.2). To preserve the sign ofα, a simple
strategy is to rotate at the same angular speed as the evader and to spend the spare power of the velocity vector in decreasing
the distance to the pole (let us call this strategy theα-invariant strategy). The kinematics equation of the pursuer adopting
the α-invariant strategy is:





θ̇p = θ̇e

ṙp = −
√

vp
2 − rp

2.θ̇p

2
(18)

Let us show that theα-invariant enables the pursuer to arrive to the pole in finitetime. We have the following relations
(with ṙp < 0, and θ̇e > 0 as in the figure 7):

v2
p = ṙp

2 + rp
2.θ̇e

2

v2
e =

vp
2

k2
= ṙe

2 + re
2.θ̇e

2

Assume thatrp

k
< re (it is at least true fort = 0), we deduce that:

re
2 >

rp
2

k2

re
2.θ̇e

2
>

rp
2.θ̇e

2

k2

vp
2

k2
− ṙe

2 >
vp

2

k2
− ṙp

2

k2

ṙe
2 <

ṙp
2

k2
(19)

Whatever the sign oḟre, sinceṙp < 0, we have the following relation:ṙp

k
< ṙe.

Let us express the derivative at timet as a limit:

ṙe(t) = lim
dt→0

re(t + dt) − re(t)

dt

ṙp(t) = lim
dt→0

rp(t + dt) − rp(t)

dt

Assume ṙp(t)
k

< ṙe(t) and rp(t)
k

< re(t) (at least true fort = 0), it follows that

lim
dt→0

re(t + dt) − re(t)

dt
> lim

dt→0

rp(t + dt) − rp(t)

k.dt

lim
dt→0

re(t + dt)

dt
− rp(t)

k.dt
> lim

dt→0

re(t + dt) − re(t)

dt

Hence,

re(t + dt) >
rp(t + dt)

k

We have shown that, ifre > k.rp, the α-invariant strategy implies thatṙp

k
< ṙe. We have shown that ifre(t) > k.rp(t)

and ṙp(t)
k

< ṙe(t), then re(t + dt) > k.rp(t + dt). Hence, if the pursuer uses theα-invariant strategy and if initially
re(0) > k.rp(0), thenre(t) > k.rp(t) for all t > 0.

Let t∗ be the instant such thatrp(t
∗) = 0 (the pursuer arrives at the pole). It is clear that the evaderis not yet arrived at

the pole sincere(t
∗) > k.rp(t

∗) = 0.



It finally has to be proved that the pursuer is able to arrive atthe pole in finite time. Consider the following relation:

rp = m.k.re

with m > 0 a temporal function. If we can show that theṙp admit a negative upper bound, the pursuer is obviously able to
arrive to the pole. Let us compute the upper limit ofṙp:

max ṙp = −
√

vp
2 − rp

2.max(θe)
2

= −
√

k2.ve
2 − rp

2
ve

2

re
2

= −k.ve.
√

(1 − m2) (20)

Now, if we can prove thatṁ < 0, then we would have proved that whatever the evader does, theα-strategy enables the
pursuer to decrease faster and faster the distance to the pole, guarantying to arrive to the pole in finite time.

ṁ =
1

k
.
ṙpre − ṙerp

re
2

(21)

The sign ofṁ depends onṙpre − ṙerp. If ṙe > 0, it is clear thatṁ < 0 since it is known thatṙp < 0. If ṙe < 0, it follows
ṙp < kṙe and thatk.re − rp > 0, we have:

ṙpre − ṙerp < ṙe(k.re − rp)

< 0 (22)

In any case,ṁ < 0, which means that the pursuer is able, even in worst case, to converge faster and faster to the pole.
A last remarks is thatα can be arbitrarily small without changing the solution of the problem. Hence, a faster pursuit

strategy than theα-invariant strategy is to aim the pole as long as|α| > ǫ, with ǫ a security margin arbitrarily chosen, and
to use theα-invariant strategy when|α| = ǫ. We call this strategy theα-minimal strategy which is defined as follow:

if |α| > ǫ

{
θ̇p = 0

ṙp = vp

(23)

and otherwise





θ̇p = θe

ṙp = −
√

vp
2 − rp

2.θ̇e

2

This strategy is locally quasi-optimal since it does the minimal necessary effort to maintain visibility and maximallyreduce
the distance to the victory position. Interestingly, goingtoward the pole is equivalent to aim a future position of an evader
trying to hide by crossing the free edge. It corresponds to anadaptive proportional pursuit such that the reference point is
not a future position of the evader but rather a potential escape point, being precisely on the line of disappearance. The
solution of the pole problem is the following:

• If rp < k.re and if the pursuer adopts theα-minimal strategy (or even theα-invariant strategy), the capture without
disappearance is guaranteed in finite time.

• If rp ≥ k.re and if the evader goes directly towards the pole, disappearance is guaranteed.

B. From the pole problem to the convex obstacle problem

The difference between the pole problem and the convex obstacle problem is that the antagonists can not rotate indefinitely
around the pole. Indeed, the pointT belongs to two obstacle edges. As a consequence, on one hand the α-minimal strategy
no longer guaranties capture ifre >

rp

k
, but only guaranties to see the next obstacle edge without disappearance. On the

other handre ≤ rp

k
does no guaranty the evader disappearance. Indeed, ifre ≤ rp

k
, the pursuer can rotate the line of

disappearance by performing a tangential movement in orderto hope to see the hidden part of the obstacle before the evader
disappearance. Two cases must be considered according the position of the orthogonal projectionH of the evader position
on the line of disappearance(PT ).

If the projectionH of the position of the evader on the line of disappearance is not forward [PT ] (see fig. 8.a), then the
evader may disappear by simply reaching the pointT . The best the pursuer can do is to spent the time required for the
evader to go toT in maximally rotating the line of disappearance. Consider acircle centered onP , with the radiusk.re (the
distance the pursuer can travel while the evader tries to reach the pointT ). To maximally deviate the line of disappearance,
the pursuer must aim the tangent line to this circle crossingthe pointT , as illustrated on the fig 8.a. For a given position



re of the evader, the maximal deviation of the line of disappearance is the angleδ∗ = sin−1(k.re

rp
) and the distance between

the pursuer and the pointT will be r+
p =

√
rp

2 − k2.re
2 at the end of the complete movement. The velocity vector of

the pursuer must form an angleδ∗ = cos−1(k.re

rp
) with the line (PT ). Of course, as soon as a new obstacle edge becomes

visible, the pursuer has to wonder about its new strategy according to what it sees. Let us callω the angle between the
current line of disappearance and the next visible obstacleedge. Ifω > δ∗, the evader is able disappear whatever the pursuer
does. Ifω ≤ δ∗, the game will continue since the pursuer will see a new obstacle edge before the evader disappearance.
In the following, this strategy will be called theMD − LoD strategy (standing for Maximal Deviation of the Line of
Disappearance).

Region where
k.re < rp
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T
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E

EE′

P

P ′

Region A

Region B

T

δ
α

Dδ

Dδ

dδ

a) b)

Fig. 8. a) How can the pursuer maximally rotate the line of disappearance if there <
rp

k
and if the projectionH of E on the line(PT ) belongs to

the segment[PT ] (the light pink region is not considered for the moment). The pursuer must draw the circle centered on its position with a radius k.re

(corresponding to the position it can reach in straight linewhile the evader is going toT ) and must aim the contact point of the tangent to the circle
crossing the pointT (this tangent is the maximally rotated line of disappearance the pursuer can create while the evader goes toT ). More simply, its
velocity vector must from an angleδ+ = cos−1( k.re

rp
) with the line (PT ). In this example, whatever the pursuer does, the evader is able to disappear

by reaching the pointT becauseω > δ+. If ω ≤ δ+, the game would continue whatever the evader does. b) What happens if the projectionH of E on
the line(PT ) is on the extension of the segment[PT ] (the light pink region has been treated previously). If the evader is in the region A (k.re > rp), it
cannot reach any linedδ before the pursuer. The pursuer will adopt aα-minimal strategy until it sees a new disappearance vertex. Ifthe evader is in the
region B (k.re ≤ rp), there always exist a linedδ the evader can reach before the pursuer, at least forδ = π

2
− α which corresponds for the evader to

reach the pointT . The pursuer can only deviate the line of disappearance to hope to see the hidden part of the obstacle before the evader reaches a line
of disappearance.

If H is located on the extension of the segment[PT ] (see fig. 8.b), the problem is more complex. Indeed, there mayexist
a future free edge the evader can reach during the game. Thesefuture free edges lie outside the pursuer visibility region,
and form an angleδ with the line (PT ). A particular future line of disappearance is noted(dδ).

Note that the possible angleδ such that the evader can reach the linedδ are bounded:δ + α ≤ π
2 (α = ÊTP ′, with P ′

the symmetrical point ofP with respect toT ), because reaching a line such thatδ + α > π
2 is equivalent to reach the point

T and is also equivalent to reach the linedδ with δ = pi
2 − α.

In order to hide by crossing a line(dδ), the best evader motion is to aim its own projection on this line. LetDδ be this
projection. LetDδ be the projection ofP on the line(dδ). Going straight toDδ would then be the best solution for the
pursuer to avoid the disappearance of the evader. Hence, theevader looks for a line such thatk.‖e − dδ‖ − ‖p − dδ‖ < 0
(the time for the evader to go theDδ is smaller than the time for the pursuer to go toDδ). The evader looks for aδ above
which k.re.sin(α + δ) − rp.sin(δ) < 0.

First, if k.re > rp (regionA if the fig. 8.b), such a line does not exist. Indeed:

k.re > rp (24)

k.re.sin(δ) > rp.sin(δ) (25)

k.re.sin(δ + α) > rp.sin(δ) (26)

k.re.sin(δ + α) − rp.sin(δ) > 0 (27)

(28)



Hence, if the evader is in the regionA, the pursuer will use theα-minimal strategy as suggested by the resolution of the
pole problem in order to maintain the evader visibility until seeing a new vertex that ”deals new cards”.

Second, if rp

k
> re (region B of the fig 8.b), everything becomes drastically more complex. Hence, we decided to not

tackle the case in this article. In the following, the pursuer will adopt theα-minimal strategy if the evader is in the region
B of the fig 8.b, but we are aware that this case should be considered very thoroughly and carefully in order to determine
an efficient strategy. We are also aware that theα-minimal strategy may lead to the evader disappearance in this region.

C. An incrementally built pursuit algorithm for the convex obstacle problem

Incrementally, a complete pursuit strategy, which combined three strategies and determine which one is the most relevant
according to the current situation, has been built:

• Π-strategy: if the condition 3.2 holds, the pursuer will adopt the Π-strategy to conclude the game. All the games the
pursuer can win will finish by the adoption of theΠ-strategy.

• MD-LoD strategy: if the projection of the evader position H on the line (PT) is not on the extension of the segment
[PT] and if rp

k
> re, the pursuer uses the MD-LoD strategy to maximally deviate the line of disappearance in order

to hope to get the sight of the next hidden edge of the obstacle. If the two possible vertices of disappearance (the left
one and the right one) verify this condition, the pursuer should deviate the line of disappearance for whichtp − te is
the higher,tp and te being the time to reach a given disappearance vertex for respectively the pursuer and the evader.

• α-minimal strategy: If the projectionH on the closest disappearance line if forward the segment[PT ], then theα-
minimal strategy will be used as suggested by the resolutionof the pole problem. Yet, ifre <

rp

k
, we noticed that a

better strategy, which is not under the scope of this article, is likely to exist and should be built.

The figure 9 illustrates on a given example (a given position of the pursuer and a given convex) which strategy is used
according to the evader positions. In the following, the concept underlying theα-minimal strategy will be compared with
other heuristics that has been proposed in the literature orthat appears relevant.

VI. H EURISTIC COMPARISON

In this section, our pursuit algorithm, especially the interest of theα-minimal strategy, will be evaluated. A measure to
compare the efficiency of different algorithms is proposed:the size of the capture basins. The proposed methods in the
literature for the problem of visibility maintenance are based on heuristics. Our experiment will consist in building the
capture basin of our pursuit algorithm if a particular heuristic is used instead of theα-minimal strategy. Heuristics inspired
by [Gonzalez-Banos et al., 2002], [Bandyopadhyay et al., 2006], as well as other simple heuristics that appears relevant

to distinghush the regions

Obstacle

Region not visible from the pursuer position

Evader positions for which the 

Geometrical lines or forms that helps 

Evader positions for which the parallel pursuit is used 

Evader positions for which the MD−LoD strategy is used

−minimal strategy is usedα

P

Fig. 9. Strategy used with respect to the evader position, for a fixe position of the pursuer and a given convex obstacle.



for the problem, one approximating theα-minimal strategy, will be compared. We choose to not directly implement the
α-minimal strategy because it requires more information that the other heuristics (the evader angular speed related to the
disappearance vertex). Anyway, it will be shown that the heuristic approximating theα-minimal strategy largely outperforms
the other heuristics. A last important point concerns the evader strategy. Although this article does not deal with evasion,
we need that the pursuer plays against a relatively smart evader. In this section, an evasion strategy (which we do not claim
to be optimal but simply smart) will be proposed and uses against the pursuer in the experiments.

A. Capture and evasion basin

In order to compare pursuit heuristics, a measure is needed.The method proposed here is somehow inspired by the
dynamical systems theory. Let the couple evader-pursuer bea coupled dynamical system. As each opponent state is completely
determined by3 coordinates(x, y, θ) (or 2 for simple motion without any constraints on the turning rate), the dynamical
system is defined by6 dimensions. The topology of the obstacles corresponds to a high dimensional set of parameters. An
important criterion that can be taken into account to justify that a pursuit algorithm is better than another one is the volume
of the capture basin (ie: the set of initial conditions such that the pursuer eventually wins the game): the wider the capture
basin, the better the pursuit algorithm for this environment. An optimal algorithm should be such that all the capture basins
related to other algorithms are included in the capture basin of this optimal algorithm for any convex obstacles.

As it is particularly difficult to represent such a basin for a2-players PEG (at least4 dimensions), and even more difficult
to analyze it, the heuristic comparison will be reduced in the followings to the building of capture basins, assuming that a
set of initial conditions is fixed (the initial state of the evader). Then, for a given paving of the environment, we build the
capture basin of each heuristic in2 dimensions. For example, in the circular obstacle problem,the capture basin related to
the optimal pursuit-evasion strategy is the ring defined by the set of points(r, θ) such thatRe ≤ r < Rp and the evasion
basin is obviously the set of points such thatr > Rp.

B. List of the variables

Before describing the different heuristics that will be compared, let us first give the list of the variables on which they
rely. Then we will define the evader strategy. The obstacle isa polygon (or at least a segment)G when it is seen by the
pursuer andGE when it is seen by the evader (see fig 10).

• Tr and Tl are the two vertices of the polygonG such that the lines(PTr) and (PTl) are the right and left tangents
to the polygonG starting fromP (the two lines of disappearance). The two free edges correspond to the extension of
the segments[PTl] and [PTr].

• Hr andHl are respectively the projections of the evader on the line ofdisappearance(PTr) and (PTl).
• rr andrl are the distances between the pursuer and the verticesTr andTl respectively:rr = ‖p−tr‖ andrl = ‖p−tl‖.
• r′r andr′r: if Hr (resp.Hl) is forward [PTr] (resp. forward[PTl]), we introducer′r = ‖tr −hr‖ (resp.r′l = ‖tl −hl‖)

the distance betweenTr andHr (resp. betweenTl andHl).
• hr andhl are the distances the evader has to travel in order to hide by crossing(PTr) and (PTl) forward [PTr] and

forward [PTl) respectively. If the path to hide is a broken line, the distance must be computed accordingly.
• l: distance between the line of sight and the disappearance vertex.

To summarize, with the subscriptx = {r, l} specifying that either the right or left disappearance vertex is considered,rx

is the distance between the pursuerP and the disappearance vertexTx, hx is the distance the evader must travel to reach
the closest disappearance point on the line of disappearance (PTx) (the pointHx if Hx is forward [PTx] or the pointTx

otherwise) andr′x is the distance between the disappearance vertexTx and the projectionH of the evader on the extension
of the segment[PTx] (if the projection on the free edge does not exist becauseHx is not forward[PTx], thenr′x = 0).

C. Heuristics-based pursuit algorithm under visibility constraint

In order to equitably compare the different heuristic and totackle the problem of a real game where the players have
opposite objectives, we first need a smart evader. Evasion byhiding is not a trivial problem. An obvious local strategy for
the evader is to locally aim the most secure disappearance point (Hx or Tx) or at least to run-away in order to delay an
unpreventable capture. Evasion strategies not being underthe scope of this article, the algorithm to choose the most secure
disappearance point is not provided here.

1) Foreword: The problem of a 2-players PEG in an unknown cluttered environment has recently been tackled. The
proposed solutions consist in locally minimizing either the escape risk[Lee et al., 2002], [Gonzalez-Banos et al., 2002] or
the vantage time[Bandyopadhyay et al., 2006]. The sole problem of the surveillance was addressed in these works: the
termination modes were either the duration of the game or on the disappearance of the evader. Interestingly, the vantage
time minimization (let us call this approach VTM) seems to outperform the escape risk minimization (ERM). The authors
have highlighted that the surveillance is enhanced by a goodbalancing between the radial movement (the movement towards
the disappearance point) and the tangential movement (orthogonal to the line of disappearance). The ERM gives a too high
influence to the tangential movement, and increase the latter probability for a smart evader to escape. On the contrary, the
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Fig. 10. Distances and points used for the computation of the heuristics by the pursuer. Here, we consider the left line of disappearance.r = ‖p− t‖,
wherever the evader is. As regard the evaderE, if its projectionH on the line(PT ) is not forward the segment[PT ], h = ‖e− t‖ andr, = 0. If H is
forward [PT ], h = ‖e−h‖, r

,
r = ‖T −H‖ and finally l is the distance between the line of disappearance vertex andthe line of sight. These definitions

hold for both the right and left line of disappearance. Henceeach variable can be noted with a subscriptx = {r, l} specifying which line is considered:
(rx, r′x, hx).

VTM give a higher influence to the radial movement. By an earlydecrease of the distance to the disappearance vertex, the
influence of the future tangential movement is higher and allows for longer visibility maintenance. Here, we claim that the
most interesting balancing between the radial and the tangential components of the velocity actually corresponds to a minimal
necessary effort in visibility maintenance in order to maximally close the distance to the disappearance vertex (α-minimal
strategy). As the evader must aim the disappearance line in order to disappear, closing the distance to the disappearance
vertex somehow corresponds to for the pursuer to move towards a future position of an evader that would try to hide.

2) List of the heuristics:As previously said, the minimization of the different heuristics will be used instead of the
α-minimal strategy in our global pursuit algorithm. One of these heuristics leads to a pursuit behavior that is very closeto
the α-minimal strategy.

The first heuristic HER is inspired by the escape risk function proposed in [Gonzalez-Banos et al., 2002],
[Lee et al., 2002]:

H ′
ER = max

x∈{r,l}
(
ve.rx

vp.hx

)

Step after step, the pursuer should choose to move in order tominimize HER. An average among all the free edges could
have been used instead of the max operator as in [Gonzalez-Banos et al., 2002], [Lee et al., 2002] but the resulting behavior
would leads the pursuer to equilibrated the escape risk among all the free edge influences, whereas the max operator leads
to prior focus on the riskiest free edge. A preferable methodis to estimate the most critical free edgex∗ = {r, l} (it is trivial
in the region where the heuristic minimization is used as illustrated by the fig. 9). Hence, the following heuristicHER is
equivalent to the heuristicH ′

ER:

HER =
r

h

with r = rx∗ andh = hx∗ . In the following, we will use this more simple formalism (r′ = r′x∗ ). The constantve

vp
is removed,

since it has no influence on the local minimization.
The second heuristic inspired by [Bandyopadhyay et al., 2006] aims at reducing the vantage time, which corresponds to

the time required to push the evader in the area such that the distance to hide is greater than the distance to avoid hiding
(assuming that the current evader velocity will not change). The authors proposed an approximated computation of this time.
They first estimate the vertexTx behind which the evader tries to hide (equivalent to findx∗). Here, the most critical escape
pathx∗ ∈ {r, l} is first computed. The velocity vectorvr

−→r + vt
−→
t (−→r and

−→
t are the unit vectors in the tangential and the

radial direction) that minimizes the vantage time, also minimizes the risk defined as:

HV T =
r − h

vr + vt(r′/r) − ve



The authors deduced that the correct velocity vector is:(vp/
√

r2 + r′2)(r−→r + r′
−→
t ), by differentiatingHV T with respect

to vt andvr.
A third heuristic we introduce here simply compares the distance the pursuer has to travel to avoid hiding (by reaching

the vertex that may break the line of sight) with the distancefor the evader to reach the related free edge.x∗ ∈ {r, l} is
first computed. This heuristic (let it be calledspatial hidability) is the following:

HSH = r − h

Note that this heuristic is simpler but very close toHV T , since the vantage time estimation results from the integration of
the expressionr − h.

We also proposed a forth heuristic that compares the time needed by the pursuer to avoid hiding with the time for the
evader to reach the related free edge (let us call ittemporal hidability), knowing x∗ ∈ {r, l}:

HTH = r − k.h

Finally, we propose a last heuristic which approximates theα-minimal strategy.x∗ ∈ {r, l} is first computed. As long
as the distancel between the line of sight and the disappearance vertexT is greater than a given security distancel0, the
heuristic minimization should lead the pursuer to aim the disappearance vertex. When the distancel become smaller than
l0, the heuristic minimization should lead the pursuer to use part of its velocity to perform a tangential movement. The
following heuristic calledHAMA (standing for Alpha-Minimal Approximation) provides sucha behavior:

HAMA = r −
( l0

l

)n
.h

with n > 1 that can be adapted (n = 2 in the following to delay the beginning of the tangential movement). If l is greater
than l0,

(
l0
l

)n
.h is negligible as compared withr and the pursuer will aim the disappearance vertex. Ifl becomes smaller

than l0, r becomes negligible as compared with
(

l0
l

)n
.h leading the pursuer to perform a tangential movement.

For comparison, the direction of movement for each heuristic, computed by differentiating the heuristic, is given in the
table I. We note that the heuristicsHV T andHSH have the same gradient direction.

Algo. Expression radial component tangential component

ERM
r
h

−r −→r r2

h
.r′

−→
t

THM r − k.h −r −→r k.r′
−→
t

VTM
r−h

vr+vt(r′/r)−ve
−r −→r r′

−→
t

SHM k − h −r −→r r′
−→
t

AHAM n=2 r −
` l0

l

´2
.h −r −→r

` l0
l

´2
.r′

−→
t

TABLE I

DIRECTION OF THE GRADIENT OF THE PROPOSED HEURISTICS11.

In the following, the capture basin of our pursuit algorithm, embedding each one of the proposed heuristic instead of the
α-minimal strategy will be compared for different obstacle shapes against the smart evasion strategy introduced previously.

D. Results in a virtual environment

In fig 11.a, 11.b, and 11.c, the capture basins of our pursuit algorithm, using the minimization each of the heuristicsHER,
HTM , HSH , HV T andHAMA, are displayed for different obstacles. The capture basin of the pure pursuit is also displayed.
The 2 dimensions of the capture basin correspond to the initial positions (x, y) of the pursuer from which it achieves the
capture of the evader always starting at the same position(60, 75) (the length unit is the meter). The speed areve = 2 and
vp = 4 m.s−1. As foreseen, the best algorithm is undoubtedly the AHA-minimization. The related capture basin includes
almost all the other capture basins. Inspired from the solving of the pole problem, this strategy leads the pursuer to aimthe
disappearance vertex as fast as possible while minimally counter-balancing the movements of the evader when the line of
sight and the line of disappearance are very close: the direction of the movement is such that the pursuer does not change the
orientation of the disappearance line excepted in order to compensate the evader tangential move when the disappearance
is imminent. The fast reaching of the disappearance vertex allows for easier visibility maintenance because the required
leverage to compensate the evader tangential movement willbe minimal when the disappearance becomes imminent.

Moreover, by aiming the disappearance vertex, the pursuer performs an adaptive proportional navigation since it aims
a future position of the evader (obviously, the evader aims apoint on the disappearance line). The resulting behavior is
between a pure pursuit and theΠ-strategy: the pursuer moves along the shortest path to the potential points of capture.

The fig 11.c provides an example of a game in our 2D virtual environment: The evader uses the strategy described
previously and the pursuer uses our pursuit algorithm with the AMA heuristic minimization (the one approximating the
α-minimal strategy). In this situation, only the AMA minimization allows for the capture.
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Fig. 11. a,b,c) Capture basin of each algorithm: The positionof the evader is fixed (the red crosses). The red polygon is theobstacle. The dark blue
basin correspond to a simple pure pursuit, the light blue one to the ERM, the cyan one to the THM, the orange and yellow one (almost superimposed) to
the SHM and the VTM respectively, and the maroon one to the AMAM. Expected for particular cases due to the non-optimal behavior of the evader, the
capture basin of the strategy approximating theα-minimal strategy includes all the other capture basins. d) Illustration of the AMA heuristic minimization
that approximates theα-minimal strategy. The pursuer aims the disappearance vertex as long as possible and begins to perform a tangential movement
when disappearance becomes imminent. The other heuristic do not allow for the evader visibility maintenance.

VII. C ONCLUSION

In this article, the problem of pursuit under visibility constraint in an unknown cluttered environment has been tackled.
First, a sufficient condition of capture in the presence of unknown obstacles has been established. TheΠ-strategy consisting
in an optimal parallel pursuit guaranties the capture without disappearance if the capture region (the Apollonius circle) does
not contains any free edge and if the obstacles included in the capture region can not break the future line of sight. We then
wonder what should be done in other situations.

We first solved the circular obstacle problem, a particular game in which the evader moves along the boundary of a
circular obstacle and the pursuer is initially located on tangent line to the obstacle touching the evader position. The
resolution highlighted that, under visibility constraint, the pursuit algorithm that locally optimizes the time to capture leads
in parallel to perform the minimal necessary effort in maintaining the visibility. The pole problem has then been investigated.
This game is an approximation of an extremely sharp obstaclevertex. The solution showed that the pursuer wins if it can
arrive to the pole before the evader, by simply compensatingthe rotation of the line of sight with a rotation of the line
of disappearance. Otherwise, the evader wins by simply reaching the pole. This has led us to propose a pursuit strategy
called theα-minimal strategy consisting in moving towards the disappearance vertex as fast as possible while preventing
the imminent evader disappearance by a minimal compensation of the line of sight rotation. In the general case of a convex
obstacle, this strategy guaranties the pursuer to see the next obstacle vertex without evader disappearance in the region where
it wins the pole problem. In the region where the evader wins the pole problem, the generalization to the case of a convex
obstacle is harder. If the projection of the evader on the line of disappearance is not on the related free edge, we established
a pursuit behavior that aims at maximally rotating the line of disappearance before the evader disappearance, in order to
hope to see the hidden part of the obstacle. This strategy called MD-LoD, standing for maximal Deviation of the Line of
Disappearance, allows extending the capture basin in particular situations. If the projection of the evader position belongs
to a free edge, the analysis becomes much more difficult and was not under the scope of this article.

Incrementally, a pursuit algorithm has been built. It combines theΠ-strategy if it guaranties capture without disappearance,
the MD − LoD strategy when the evader is able to arrive to the disappearance vertex before the pursuer (and if it



projection of the line of sight does not belongs to a free edge) and theα-minimal strategy otherwise. Finally, we compared
the capture basins of our pursuit algorithm modified such that the minimization of a given heuristic is used instead of
the α-minimal strategy. Two of these heuristics were inspired byprevious heuristics found of the literature (escape risk
[Gonzalez-Banos et al., 2002], [Lee et al., 2002] and vantage time [Bandyopadhyay et al., 2006]), two of them appeared
relevant to the problem (spatial and temporal hidability) and the last one was built to approximate theα-minimal strategy.
As foreseen, the strategy consisting in closing the distance to the disappearance vertex as fast as possible and doing the
minimal necessary effort to maintain visibility extends the capture basin.

All along the article, even though the building of an evasionstrategy was not addressed, the evader has always been
considered as intelligent. For the simulation, we propose ageometrical method to locally aim the most secure instantaneous
escape point or to run away if disappearance is impossible. In particular situation, it is clear that a better evasion strategy
exists as highlighted by the pole problem.

In future work, it will be important to provide more global evasion strategies in order to evaluate how far the one we
proposed is from an optimal and to imagine the possible evolutions of our algorithm. The concepts underlying the building
of our pursuit algorithm, especially theα-minimal strategy and the sufficient capture condition we established based on
the properties of theΠ-strategy, should be also considered to tackle the problem of several unknown non-convex obstacles.
Based on the insight provided by this study, it is also possible to investigate new pursuit concepts involving several pursuers
in presence of multiple obstacles, not necessarily nookless.
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