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Abstract

In this paper, we will incrementally build a complete pursuit algorithm to dei#h & 2-players PEG in presence of a
single unknown convex obstacle. We will first provide a sufficient @i to achieve capture without disappearance. Then,
we will solve thecircular obstacle problema particular problem highlighting a necessary trade-off between ifanee and
capture. Next, thepole problem as a generalization, of the convex obstacle problem will be tackled. dlaéiom and the
corresponding strategies will be detailed. A quasi-optimal pursuit syrategegards the time to capture will be provided for
the pole problem, and then transposed for the more geocengkx obstacle problerfror the cases leading to the evader victory
in the pole problem, a last strategy allowing a maximal deviation of the line apgisarance will be added to complete to our
pursuit algorithm. Finally, our complete pursuit algorithm will be adapteds® a heuristic minimization method instead of
the strategy suggested by the resolution of the pole problem for the casksgleéo the pursuer victory. Different heuristics,
one being an approximation of the solution of the pole problem, will be coedpaith respect to the size of the capture basin
and will highlight thez interest of our pursuit algorithm.

I. INTRODUCTION

Continuous differential games have been widely studiedesthe pioneering work of Issacs [Isaacs, 1965]. In padicul
pursuit-evasion games (PEGs) have received a great deatewitian, particularly in free spaces for problems such as
the missile guidance [Isaacs, 1965]4djek, 1975], [Basar and Olsder., 1982], [Espiau et al., 1,.9%dng and Um;, 1996],
[Hutchinson et al., 1996]. Interesting recent works ineluble notion offorward reachable setérelated to maneuverability
of the pursuer) for a team of pursuers against a fast moviagesv{Chung et al., 2006], [Chung and Furukawa, 2006]. In
contrast, PEGs in cluttered unknown environments, whestagles imply specific movement constraints of the pursuer
for maintaining visibility and the possibility for the evad to hide, represent a more recent problem, for which a
definitive solution has not yet been found. The problem hanbsplit into several classes. A first class of problems
is addressed when the evader is not yet visible. Two majaregsxan be discussed: the first consists in developing
algorithms in order to find one or several static or dynamiadevs, in an environment either known or unknown, with
either a single pursuer or a team of pursuers [Suzuki and Shitaa 1992], [LaValle et al., 1997b], [Park et al., 2001],
[Sachs et al., 2004], [Chen et al., 2005], [Gerkey et al.,6200hese approaches suggest that before tracking an evader
efficient solutions to find it should be proposed. The secamekstion, often referred as the Art Gallery Problem, conigist
the efficient control of a team of robots so that every parthef ¢nvironment could be visible by at least one pursuer, thus
avoiding the intrusion of a robber in the art gallery [ChVal®75], [O’'Rourke, 1983], [O’'Rourke, 1987], [Shermer,99,
[O’'Rourke, 1998], [Gonzalez-Banos and Latombe, 2001].il&imvorks focus on the problem of the positioning a minimum
number of captors (movement captors or simply cameras) enatth gallery in order to remove invisible part of the
environment. This first class of problems addressed therggdhe evader: what should be done when the evader is not yet
visible.

Another major category of problems, that particularly ietgs us, arises as soon as the target(s) is/are visibleoAgipes
depend on the relative capabilities of the players, théatike knowledge, their objectives, and the number of perswand
evaders the mission scenarios consider. A first historicalstion was raised by David Gal known as the Lion and Man
Problem: a man (evader) and a lion (pursuer) are moving \wighsime speed within the non negative quadrant of the plane.
In [Sgall, 2001], a solution that the author claims to be lyeaptimal is proposed, consisting for the lion (whom cooates
are initially greater than the man’s coordinates) in algnhimself between the man’s position and a particular esice
point (the center of the smallest circle, touching its alifposition and both axis of the Euclidian space). More gaher
interesting solutions for 2-players PEGs have been prapedeen the map of the environment is known by the pursuer.
The evader may be predictable [LaValle et al., 1997a] or miaterestingly unpredictable [Murrieta-Cid et al., 2002],
[Murrieta-Cid et al., 2003], [Murrieta-Cid et al., 2004]sler et al., 2004]. Thanks to the knowledge of the environime
scenarios mostly focus on maintaining the visibility of ttaeget. Recent solutions rely on the use of a graph of mutual
visibility: the environment is first subdivided into reggnand a graph that describes the visibility of each regiorhey
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others [Murrieta-Cid et al., 2008]. A NP-hard method basedhis mutual visibility graph is proposed to provide a susfitt
condition for maintaining the visibility. Another intertiasg study highlights that situations in which the targeth ceever be
captured [Cheung, 2005] may exist, even when the evadedspesmaller than the pursuer speed. Scenarios in which the
pursuer has to stay at a fixed distance from the evader hadbedsotackled [Muppirala et al., 2005].

In this paper, we consider a minimalist 2-players PEG in gmes of obstacles, by assuming that: a) the map of the
environment is also unknown; b) the exact positions of thesyeer and the evader are unknown. The mapping of the
obstacles is not aimed since: 1) mapping is a classical afiddeeumented problem, 2) PEGs in known environments is
also well documented (but not definitively solved), 3) weuass that none of the opponents had time to do the mapping
before the conflict, 4) we assume that the game ends upon fitereaor the disappearance of the evader, 5) we obviously
agree that the use of the map can be helpful for further pisréuithe same environment, 6) we hope in the future to deal
with dynamic obstacles (moving obstacles, obstacles sbhpeges due to a non planar ground ...).

The problem of PEGs in unknown cluttered environment hasreh extensively studied: provided solutions mostly aim
at maintaining visibility in a classical indoor environntein [Gonzalez-Banos et al., 2002], [Lee et al., 2002], thethod
is based on the minimization of a heuristic called escage Asmore recent work proposed a better heuristic based on
an approximated computation of what is called the vantage fiBandyopadhyay et al., 2006]. Interestingly, the aighor
point out that trying to maximize the instantaneous vigipilas done in [Gonzalez-Banos et al., 2002], [Lee et alQ220
actually increases the latter probability of the evadeapli®arance, as opposed to a better balancing betweengctbsin
distance to the obstacle and maintaining visibility, whidems to offer a better global behavior of the algorithm.

Note that the capture as a termination mode in these prestadges was not considered; the sole objective was to niainta
the visibility of the target as long as possible. Moreovbeses studies did not consider the evader as smart, rgsintan
problem description without antagonist goals for the persaand the evader.

Hence, an interesting facet of this paper is to considera®epl PEGs in presence of obstacles as an antagonist game, in
which the evader is at least as smart as the pursuer and baltlerof have antagonist objectives. As Isaacs early aid:
Difficulty of the problems when - and such is the essence oédheory - there are two opponents with conflicting aims and
each is to make the best possible decisions understandidgading into account that his antagonist is doing the same..
If we seek conflicting objectives - and only such cases aretefdst - the situation assumes something on the naturesof th
game’”

A last approach that should be cited before entering thet hidathe paper is the use of genetic algorithm, inspired
by evolutionist neuro-ethological data about the develepinof pursuit and evasion capabilities among the animatispe
[Miller and CIiff, 1994], [CIiff and Miller, 1996], in orderto incrementally generate populations of pursuers andessad
that progress in parallel (ie: that co-evaluate) [NitsgHi@03], [Eaton et al., 2002], [Choi et al., 2004].

In the following, we will incrementally build a complete @it algorithm to deal with a 2-players PEG in presence of a
single unknown convex obstacle. We will first provide a sigfi¢ condition to achieve capture without disappearanaset
on the properties of the famous parallel pursuit. Then, wieseive thecircular obstacle problema particular problem in
which the evader, initially located on a circular obstaties to hide behind it. The pursuer, initially located oe tangent
to the obstacle crossing the evader position, has to cafftarevader in minimum time or at least has to maximally deisy i
disappearance. Next, timwle problem as a generalization of the convex obstacle problem, wilido&led. In this problem,
the pursuer tries to capture the evader and the evader driegate the line of sight in order to create a contact with & po
(corresponding to a point). The solution and the correspponstrategies will be detailed. A quasi-optimal pursuiastgy as
regards the time to capture will be provided for the pole ol and then transposed for the more geneoalvex obstacle
problem For the cases leading to the evader victory in the pole probk last strategy allowing to maximally rotating the
line of disappearance will be added to complete to our puedgbrithm. Finally, our complete pursuit algorithm wileb
adapted to use a heuristic minimization method instead efsthategy suggested by the resolution of the pole problem fo
the cases leading to the pursuer victory. Different heiggsfinspired from the literature, or proposed here, on@deain
approximation of the solution of the pole problem) will bengmared with respect to the size of the capture basin (initial
conditions of the pursuer leading to capture without digapance), highlighting the performance enhancement atidoy
our solutions.

Il. INTEREST OF THE CONVEX OBSTACLE PROBLEM

In this paper, a particular subset of the possible gamesgdheex obstacle problemwill be investigated. The rules are
the following:
Rule 1: The map of the environment is initially unknown.
Rule 2: The pursuer is faster than the evader.
Rule 3: Each player knows the maximal speed of the other playe
Rule 4: The environment contains a single convex obstacle
Rule 5: The pursuer wins if it captures the evader in finitestiwhile avoiding its disappearance
Rule 6: The evader wins if it succeeds in hiding or if it infelit delays the capture.



The rulel has already been justified previously. The rales classical in PEGs since if the evader is faster or as fast as
the pursuer, as a general rule, it can evade easilihe rule3 is also used since it largely extends the methods that can be
developed. Moreover, the speed of an antagonist can benconsly estimated.

However, at first sight, one can wonder why the disappearasca termination mode in an environment containing a
single convex obstacle is interesting (rulgss, 6). Indeed, in such an environment, even if the evader disapp®r a
while, the pursuer will eventually see it again and captuig/isimply executing the following procedure: first it reaslithe
disappearance point and then it turns around the obstamhg dtis boundary. If the evader also moves along the boundary
of the obstacle, the pursuer will obviously capture it. @tfiee, the pursuer can move along the obstacle boundary unti
being on a line orthogonal to the boundary of the obstaclesimg the position of the evader. In such a situation, captur
is guaranteed without future disappearance by many pussaitegies since the capture region is likely to not be edtdy
the obstacle.

Even if the obstacle is not convex but is simply such that qaaiht of its boundary can be seen from at least one point
outside the convex hull of the obstacle (let us call this kifdtacle anooklessobstacle), we could prove that capture is
guaranteed. Indeed, after disappearance, if the pursugtysiollow the convex hull of the obstacle (which is the dlest
path that allow to see all the points on the boundary of a rexskbbstacle), either the evader has not entered the convex
hull so the pursuer can always reach a position such thatoih ihe line orthogonal to the convex hull crossing the evader
position (similar to the previous problem that consider avea obstacle), or the evader has entered the convex hutidn
later case, the pursuer can always recover the sight of th@eesby simply moving along the convex hull. Once the sight
is recovered, the pursuer may use some strategies to pitexeeatader to exit the convex hull (the problem becomes close
to a Lion and Man Problem for which solutions exist).

So, why should the disappearance be considered as a teoninadde in the case of a single convex or even a nooklees
obstacle. In presence of a single non-nookless obstaclevera obstacles, once the evader has disappeared, theoe is
deterministic guaranty to recover its sight. Indeed, when fiursuer sees a nook in the obstacle, either it enters thle no
but the evader may simply have followed the convex hull, erghrsuer follows the convex hull but the evader may simply
have entered the nook and may hide in a region that is not keef&aln the convex hull. The same dilemma occurs with
several obstacles: the pursuer can never know if the evadetunned around the obstacle behind which it has disapbeare
or if it is hidden behind another obstacle. To solve suchasibms, several pursuers seem to be required.

That is why it is very important to not lose the sight of the égsa and this is why the disappearance as a termination
mode is very important, even if there is only a single convbstacle. An efficient pursuer in such a game will largely
reduce the probability to face non-deterministic situagi@s described above in a more general case. Hence, thefcase o
a PEG in presence of a single obstacle can be reduced to a PEGawingle convex obstacle in order to gain insight
about the general problem. Moreover, although the convetagle problem is the simplest 2-players PEGs in presence of
unknown obstacles, an optimal solution has not yet beendfoun

IIl. SUFFICIENT CAPTURE CONDITION UNDER VISIBILITY CONSTRAINT

In this section, a general sufficient condition that guararadpture thanks to the properties of the famous paralledipur
will be established. The region, where this condition hpls/ers the major part of the environment.

Assume for a moment the absence of obstacles. The BSR (Bauonti&afe Region) is defined as the frontier of the
region in which the evadel is able to go without being captured, what ever the purgudoes. If the pursuer is faster than
the evader, the classical BSR of the evader involved in a RE&fiee 2D space (no obstacles) is defined by an Apollonius
circle [Isaacs, 1965], [Petrosjan, 1993], [Nahin, 200 #isTdefinition is evader-centered. We define herepiesuit region
related to a particular strategy as the set of positions ¢hatbe reached by the pursuer during the game when using a
particular strategy. We define also tbapture regiorrelated to a particular strategy as the set of positions evtier capture
can occur. Obviously, the capture region is included in thespit region. Finally, we introduce a short terminologyab
specific geometric objects such as disappearance vemexopfidisappearance and line of sight (see fig. 1.a)

A. Apollonius pursuit properties

Let consider a PEG in the 2D plan with no obstacles, invohargjngle purser faster than a single evader. The following
convention will be used:

« Points in the space are noted with capital letters (such apdint A).

« The coordinates of a poiMl are noted(z,,y,) and(r,,6,) in a polar coordinates system.

« A vector between the origin of the coordinates syﬂa}m anditat pbis noteda.

« A vector between tw%ointsl and B will be noted AB but alsob — a.

o The angle of a vectoAB is notedf,p.

1Actually, in Lion and Man problemgSgall, 2001], the evader can be captured even if its speéideisame as the pursuer speed thanks to a line of
sight pursuit for which the reference point is well chosen.
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Fig. 1. a) Terminology: the ling PT') is the line of disappearance (i.e.: the tangent to the olestaossing the pursuer position), the liQ€F) is
the line of sight, andl" is the disappearance vertex. b) lllustration of the Apadlisrcircle o7 for v = 4 (the pursuer is twice faster than the evader),
E:(0,0)andP : (6,0). R=4andC : (—2,0). The Apollonius pursuit is equivalent to a parallel purgait the lines of sight are parallel). Note that
/" is included ineZ’ and ththe two circle intersects iA.

e ||| is the Euclidian 2d-norm.

« The distance between two pointsand B can be notedd B but also||b — a|.

« Geometrical objects are noted with calligraphically venittietters (such as the circig).

The following notations and relations will be used:

« p is the position of the pursuer.

« e is the position of the evader.

o v, is the maximal speed of the pursuer.

v, is the maximal speed of the evader.

» v < vp, Meaning that the pursuer is faster than the evader.

o« Yy=k%= (Z—Z)2 the square of the ratié of the pursuer speed above the evader speed.

« v > 1 since the pursuer is faster than the evader.

Let us remind some basics results about 2-players PEGs amgugtnaight line motion of the evader. To capture in
minimum time, the optimal pursuit strategy is obviously eigtht line motion towards the closest point of capture (afpo
of capture is such that the time to arrive to this point is tama for both the antagonists). If the evader adopts a straigh
line motion, the locus of interceptiaw’ is the set of pointsX : (z,y) such that@ = ”‘%’c”, more recognizable as:

klle—z|=lp—=| @)

&/ is an Apollonius circle withZ and P as references points arkdas parameter (eq. 1 is precisely the definition of an
Apollonius circle). Such a circle can be notét E, P, k) The following expression are implied by the equation 1:

(Hefmll)z _ (upfmu)z

o 2)
vle—z|*~|p-=|*=0

With a few substitutions and arrangements, it follows theagign of the Apollonius circle centered @hwith the radius

R:
c=—""(e—p)
v—1
R = —|le —p|® o
= ——=.e—p
(-1
C'is obviously aligned withZ and P, and its the radiug? only depends on the distan{ie — p|| between the evader and

the pursuer. Thusy, located on the extension of the segmfRf], can be expressed as= e — —1—(p — e). We finally

~y—1



note that the distance betweéhand P only depends on the distance betwdérand P as follow (this result will be used
later):

le=pll=v7.R=—"le-p (4)

The fig. 1.b illustrates the circles for a given~y and for the given initial positions of the pursuer and thedeva

If the evader trajectory is a straight line toward a painbf the circle.«, there is no better strategy for the pursuer than
going also to the poin#, since it will go to A in straight line at its maximal speed. This strategy, oftalied Apollonius
pursuit, is time-optimal for straight line motion. Any othpursuer movement will allow the evader to travel a distance
greater tharjle — al|.

A well known properties of the Apollonius pursuit is that alilye (EP) during the game is parallel to the initial one.
Indeed, as highlighted by the fig. 1.b, assume the evader basdifromE to E’. Let p be the ratio of the segmefE 4]
that has been traveled by going from to £’ (‘e'_e” = p). During the same time, the pursuer has moved’tp and

el —
obviously: l€=¢l — IP’~#ll The pointA being of the Apollonius circle, it follows thatie—el — lo—pl ”” . By dividing the
two previous equallty and with a few arrangement, it follctivat:

le’ ~al _ lp’ ~al
le—al ~ lp—al

The intercept theorem (or Thales theorem) implies thatittee(IE P) and (E’P’) are parallel. Hence, the Apollonius pursuit
is more generally called the parallel pursuit, for antagtmnthat do not move in straight line during the game.

We introduced here the nanié-strategy to refer to the optimal parallel pursuit, the ooatmuously minimizing the
distance||e — p|| (the notationlI-strategy is used in [Petrosjan, 1993]). THestrategy ensures that the pursuer will capture
the evader inside the circleZ, whatever the evader does. This point and other properfitisedI-strategy is reminded in
the followings.

B. Properties of thdI-strategy
If the evader does not move in straight line, the applicafibdepends on the current evader velocity:

I: RS - R?
(E,v.,P) — 1,

It is well known that, in free space (absence of obstacle)hef pursuer is faster than the evader, thenIihstrategy
guaranties the capture of the evader inside the initial lpals circle. in finite time without disappearance. Moreover,
the Apollonius circlee is the BSR of the evader (i.e.: the intersection of the captagions of all the pursuit strategies).

Let us prove the first point. ThE-strategy will first be proved to allow for the evader captimside the initial Apollonius
circle o (ie: this will prove that the Apollonius circles is the capture region related to thestrategy whatever the evader
does). To prove this point, note that adopting ffiestrategy implies that the new Apollonius circle after afinitesimal
move of the evader and the pursuer is fully included in th&ahApollonius circle oZ. Then, an upper bound of the time
to achieve the capture can be computed, by noting thailtls&rategy is at the equilibrium as regard a min-max approach
Finally, it will be reminded (thought it is trivial) that ifie pursuer does not adopt tHestrategy, the evader may be captured
outside the circle, implying that the Apollonius circle letBSR of the evader.

Let £/ and P’ be the point reached by the pursuer and the evader after aitésiinal duration:

e =e+uv.dt

p' =p+v,.dt
Let us call«’ the new Apollonius circle centered aff with radius R’ related to the new position®’ and E’ of the
antagonists. As previously, = I\‘sz_:\‘l‘ = 'h{’l j;"'l‘ is the ratio of the segmenE A] and [PA] respectively traveled by the

evader and the pursuer by going respectively flbrio £’ and fromP to P’. The coordinate$.” and P’ can be expressed
as:

’

e = e+pla—ce) (5)

p’ = p+pla—p) (6)
By inserting these expression in the definition of the cemted the radius of the Apollonius circle, and with a few

arrangements, it follows the equation of the circi€:

{c’:c—l—p.(a—c)

R =(01-p).R %



We have shown here that the cent&rof the circle«/’ belongs to the segmef@ A], which is a radius of7. Obsviously,
the point A belongs to the new circles’ since it is still located at the same time of travel from theéagonists. Hence
R = la—{|.

We now have to prove that/’ is fully included in.«. Actually, we have to show that the two circles have at most a
single intersection point which is precisely; Let us provide a geometrical proof (see fig. 1.b for the itaison): consider
two circles./ and o/’ centered respectively off and C’. The centerC’ # C' is located on a radiugC' A] with A a point
of /. The two circles intersect at least i Let A’ ## A be a point of«/. To prove the full inclusion ofeZ’ in o7, we
have to prove tha€’A’ > C'A.

If CC'A’is atriangle therCC’'+C’A’ > CA’. SinceCA’' = CA=CC'+C'A = CA, thenCC'+C'A’ > CC'+C'A
Hence, we have’ A’ > C'A. If CC'A’ is not a triangle, ast’ # A, [AA’] is a diameter ofer implying thatC’'A’ =
CC'+ CA’. As CC’" #£0, it is trivial that C' A’ > C' A’ which conclude the proof.

Of course, if the evader does not travel at maximal speedhehepositions will be such that the new maximal Apollonius
circle (taking the maximal speed into account) is also idetliin the initial one.

Indeed, on the fig. 1.b, if the evader would not have movedsamiaximal speed, the new pursuer position would be
closer to the new evader position. The pursuer would agt@ths a pointA located on the segmefit A]. Indeed, for two
Apollonius circlese/ and </ sharing the same reference poirifsand P but with two different speed ratios, respectively
k and k such thatt > &k > 1 (k corresponds precisely to the Apollonius circle for an evadeving slower thany.), all
the points on the Apollonius circle with the parametefthe higher) are inside the other Apollonius circle. Notstfihat
if one point of <7 is inside <7, all the points of</ are inside</, since the two circles cannot intersect (an intersection
means that a single point is at two different distance rdtios» £ and P, which is impossible). Second, 1€l andO be
the intersection of the segmefit P| with the circless’ and.«/ | respectively. It is clear the(D belongs to the segmefE 0]
sincelle —o|| = ||e Pl < mlle—pll = lle—o. As O, a point of &/ is inside«, < is inside.Z. Thus, if the evader

does not move at |ts maximal speed, the pursuer aims a pblntated on the segmehE A]. The new pursuer position
noted P’ thus belongs to the segmelit’ P’]. -
The new maximal Apollonius circle is obviously included hetinitial one. Indeed, for two Apollonius circleg’ and <7’
sharing the inner reference poiit and the same speed raio> 1, but such that the outer reference points, respectively
P’ and P’ are different:P’ belongs to[£’ P'] (the two circles<’” and .7 correspond precisely to the maximal Apollonius
circles after an infinitesimal movement of the evader retpelyg at maximal speed and at a slower speed),is inside.s’.
Note first that if one point of#’ is inside«’, all the points ofz’ are insidew’, since the two circles can not intersect (an
intersection means that a single point is a the same distaticefrom E’ and two different pointd®’ and P belonging to
[E'P'], which is impossible). Second, l&' and O’ be the intersection of the segmqrﬁt’P’] W|th the circles«’ and o/’
respectively. It is clear thad’ belong to the segmeff’O’] since|le’ — o’|| = k+1 lle’ —p'|| > — k+1 lle’ =p'|| = |le— 2|

As O', a point of</’ is inside.w’, /' is inside.s’. Sinces/’ C /' C of, the new Apollonius circle after an infinitesimal
movement in inside the initial one whatever the evader does.

Moreover, as the only intersection of the cirelé and.«’ is precisely the pointd aimed by the evader, it is obvious that
as soon as the evader does not travel in straight line at xsnmahspeed, it will allow the pursuer to capture it closelitto
initial position. Indeed, if the evader change its directad motion at timet > 0 even at maximal speed, the new Apollonius
circle will no longer have any contact point with the initieilrcle /. Hence, for any poini&; inside .o/ reached by the
evader while the pursuer has reaclgd the greatest distance between the evader and the purbadaligtancd|e; — p1]|)
is obtained for a straight line motion of the evader at makispeeed.

The capture occurs in finite time, since a bound to the timeafiure exists. As the time to capture is linear with the
traveled distance, resulting form the integration of thinitesimal movements of the pursuer and the evader, let sk fir
compute the movement of the evader that maximikes— p’|| = (1 — p).||e — p|| after an infinitesimal movement. Note
that this direction minimizeg. We also have that = Hdt Y=, The pointA that minimizesp also maximizegle — a||. Let
us expressa in a different manner as before:

{ xy =z} + Ri.cos(a) ®)

Y = yi + Ri.sin(a)

We now look for thea™ € [0, 2x[ that maximizes the distandge — a||:

2
o = argmax (e - a) = arg max (e - a)
ael0,27| ael0,27[



With a few arrangements, the problem becomes:

a* = argmax ((xc — x.)cos(a) + 9
a€l0,27[
(e = ye)sin(a) ) (10)

By stU(Mng the variation of this function with respect 4o we have thaiv* = 0gc wherefg¢ is the direction of the
vector EC'. Hence, the strategy of the evader in order to maximizes thed distance to the pursuer after infinitesimal
movement is simply to run away£c being precisely the opposite direction of the pursuer althegline of sight). In
parallel, the worst evader strategy is to go toward the murssince the direction of the pursuefzc also minimizes the
future distance between the antagonists. In both casd]{teategy leads the pursuer to simply aim an optimal evaker |
in a pure pursuit strategy, known as the optimal pursuiti(egaany motion of the evader). THé-strategy is time optimal
for any straight line motion of the evader but also againstdptimal evasion strategy (which is a straight line motidrije
II-strategy respects the equilibrium of the min-max approach

The maximal time to capturg* corresponds to the optimal value of a PEG involving 2 playeits simple motion in
free space:
_llp—ell

Vp — Ve

t*

The II-strategy allows for the evader capture in finite time.

To finally prove that the capture region of thkstrategy is the BSR of the evader, it is sufficient to notiwe facts:
first, there exists a strategy, thestrategy, that allows for the capture inside the initialofpnius circleo/. Second, if the
evader travels in straight line, any other strategy difiefeom theIl-strategy will allow the evader to go outsidé. The
Apollonius circle is the BSR of the evader.

Finally, let S, and S; be the points such that the liné®S,.) and (P.S;) are the right and left tangent lines to the circle
o/ starting from P. The union of the triangleé”S,.S; and the circlees represents the pursuit region (the set of all the
pursuer-evader positions during the game) related tdTistrategy.

C. A sufficient condition to guaranty capture without disepmnce

Our goal is to provide here a general sufficient conditionuargnty capture under visibility constraint. For convenis
we adopt the same terminology as used in [Gonzalez-Bands, €082], [Lee et al., 2002], [Bandyopadhyay et al., 2006]:
the set of points that are visible from the pursuer at tintefines a region called thasibility region The visibility region
is composed by botlsolid edgesand free edgesA solid edge represents an observed part of the physicahabs of
the environment as opposed to a free edge, which is caused bgdiusion (see fig. 1.a) and is aligned with the pursuer
position. In order to hide, the evader must cross a free efigg.point of a free edge is called an escape point. All the
points belonging to the free edges are potential escapéspdihe disappearance corresponds to the intersectiore difgtht
of sight with an obstacle.

An obvious capture condition under visibility constraiatthe following:

Condition 3.1:If the Apollonius circlees does not intersect neither any free edge, nor any obstéaa,the capture is
guaranteed without disappearance by adoptingltretrategy.

Indeed, the absence of free edge in the Apollonius circldigapghe absence of obstacle in the part of the pursuit region
which is outside the Apollonius circle. Since the Apollamidircle does not intersect any obstacle, the pursuit regfon
the Il-strategy is empty. Everything is thus as a PEG in free spadeipursuer adopts thH-strategy since none of the
possible segmerjZ’ P’] can intersect an obstacle.

At first sight, one could think that if the initial Apolloniusircle does not intersect any free edge, then capture is
guaranteed. The fig. 2.a illustrates an example without ey €dge intersecting the initial Apollonius circle, iliaing
anyway a movement of the evader that will lead to break the dihsight if the pursuer adopts thestrategy. Nevertheless,
such situations only happen for particular obstacle shépmsintersect the Apollonius circle. Hence, it is possitoieefine
the capture condition by refining which kind of obstacleslisveed in the capture region.

Our general sufficient condition to guaranty capture withdisappearance is the following:

Condition 3.2: If the Apollonius circle does not intersect any free edge #nthe shape of the obstacles inside the
Apollonius circle can not lead to break the line of sight i€thursuer adopts thH-strategy, then capture is guaranteed
without disappearance by adopting tHestrategy.

We propose here a simple method to verify if the evader is &bleide from a pursuer using thid-strategy or not.

To simplify, rotate and translate the initial coordinatesteyn such that the new purser position is the origin of the new
coordinates system, the line of sight becomes the absaisetha a_b)scise oF is positive (translation of a vectorp and
rotation of an angle-0pg with 6pg the orientation of the vectaPFE in the initial coordinates system). The figure 2.b is
drawn after this transformation. Then, for each veréx(x,,y,) of the obstacle inside the Apollonius circle, Bt be the
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Fig. 2. a) lllustration of the creation of a free edge durihg game that did not exist at the beginning of the game: at thimfiag, the pursuer sees
all the obstacle boundaries (blue polygon) that belong éopthrsuit region. Herey = 4: the pursuer is twice faster than the evader. There cleaitse
an evasion strategy that will break the line of sight with tistacle at time s if the pursuer adopts thH-strategy. b) Identification of the vertices that
can break the line of sight if the pursuer adopts khstrategy. For each vertex inside the Apollonius circleysider a pointE’ at a very small distance
on the right of the vertex. If the evader can redch (i.e. the segmentE E’] does not intersect any obstacle edge), hstrategy fails. In this example,
only the verticesiz 3 and V3 5 prevents thdl-strategy to capture the evader without disappearancealFtive other vertices, it is clear thd' is inside
an obstacle, implying that the evader is not able to reactetbssape points.

point at an arbitrarily small distaneeon the right of the verte¥: z.. = x, + ¢ andy.. = y,. If E’ is inside the obstacle,
the evader cannot use the vertéxto hide from a pursuer using thé-strategy since it would need to cross an obstacle
edge. Hence, capture without disappearance is guaranjeaddpting thell-strategy, if for all obstacle verticelg, inside
the Apollonius circle and all the relatefl;, none of the segmen{&'E} | intersects any obstacle edge. For example, in the
figure 2.b, the vertice§V; 3, V> 5} prevent to verify this condition, thus prevent to guarardptare.

In the following, as soon as the condition 3.2 holds, the perrsvill adopt thell-strategy to terminate the game.

D. Region of adoption of th8-strategy

Given a convex obstacle and a position of the pursuer, letongpate the set of initial evader positions such that the
II-strategy guaranties capture, thanks to the conditionkéh&c2 (refer to fig 4.a).

First, note that, for a convex obstacle, the two contacttgaifithe left and right tangents to the obstacle startinghftbe
pursuer position are the only disappearance vertices. &eraill the points between the left and right lines of dissypnce
are visible fromP. If the evader is between the two lines of disappearance jfatgitime to go to a given disappearance
vertex is greater than the time for the pursuer to go to theesaentex, then thél-strategy guaranties capture.

Indeed, the first point of the condition 3.2 is verifyied besa there is no free edge inside the initial Apolonius circle
Moreover, the obstacle being convex, the vertices belantpnthe Apollonius circle cannot break the line of sight i€th
pursuer adopts th8l-strategy (second point of the condition 3.2). This can baatestrated by noting that for any future
possible position of the evadér’ inside the Apollonius circle and the corresponding posifits of the pursuer, an occlusion
implies the presence of a poilit of the obstacle betweel’ and P’, which is impossible due to the convexity of the obstacle.
Indeed, perform first the translation of a vectep and the rotation of an anglefpg (see fig. 3.a) in order to simplify
being between the two tangent®T;) and (PT}), it follows that0 < fpr, < 7 and —7 < 6p7, < 0. The obstacle being
convex, all the visible points of the obstacle between the tangents belong to the triangleT,.7;. Consider a possible
disappearance poirft’ in the Apollonius circle. IfE’ (with a positive abscise) is not in the triangl&l,. 7;, E’ is not a
disappearance point since it is clear that there is not aint pbthe obstacle (all belonging to the triangR®;.7;) between
E’ and all the possiblé®’ on the left of E’. Hence,E’ being a disappearance point, there exists a pdimtf the obstacle
betweenE’ and P': y, = y.» andx, = x.» — € with e > 0. V inside the trianglePT,. T; implies 0pr, < 0py < Opr,. Itis
obvious by construction that the poift is inside the triangld; VT, sincefpr,. < Oy, < (Byvp =0) < Oyr, < Opr, and
E’ located in the same half-plan &3 (the left one) relatively to the lin€7;7,.). The obstacle being convex, the segments
[T;V] and [V'T,] belong to the obstacle: hence the trian@l& T, to the obstacle, which is impossible sinEg, a point of
this triangle, is, by essence of a disappearance pointideutse obstacle.

To sum-up, if the evader is between the two line of disappearand if the two vertices of disappearance are outside the
Apollonius circle, thell-strategy guaranties capture without disappearance.dctipe, the verification of the second point
of the condition 3.2 requires to be checked only if the evaslemot between the the two lines of disappearance.

Second, if the evader is not between the two lines of disappeea, what are the positions the set of evader positions
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Fig. 3. a) If the evader is between the left and right line cfagipearance and if the disappearance vertices do not keforthe Apollonius circle,
then, any disappearance poifit is included in the triangld; VT, (V being the obstacle point creating the occlusion with thesypeir), hence is inside
the obstacle, which is impossible. Thi&strategy allows for the capture. b) Computation of the minidiatance between the evader and the line of
disappearance, in order to guaranty that the Apolloniuslecidoes not contain any free edge. Here, the (i) is the line of disappearance and the
disappearance vertek is assumed to belong to the segmghiS]. We demonstrate is the text that the distafieH is linear with respect to the distance
PH. The line(ES) is perpendicular to the lineE P) (8 = «). This information helps to determine the set of the positibthe evader such that no free
edge intersects the Apollonius circle for a given obstaclé a given pursuer’s position, when the evader is not betwieerwo lines of disappearance
(see fig. 4.a.a).

such that the Apollonius circle is tangent to a free edge® Niost that if the evader can arrive to a disappearance vertex
T before the pursuerk(ET < PT), this vertex belongs to the Apollonius pursuit and the geptannot be guaranteed
Otherwise, the fig 3.b helps us to compute the minimal digtdmetween the evader and a free edge to guaranty capture
under visibility constraint by adopting tHé-strategy. In fig 3.b(P.S) is the line of disappearancé] is the projection off
on the line(PS) and EH is then the distance between the line of disappearance anelvtder. The disappearance vertex
T belongs to the segmefP.S], otherwise the circle would be tangent to the line of disappece but not tangent with the
corresponding free edge (each vertex inside the Apolloaitcte should be verified to lead or not to a future line of sigh
occlusion). The center of the Apollonius circle is not@dand, of course, the linéC'S) and (P.S) are perpendicular.

We are looking for an expression of the distai¢H with respect to the distandd P. The Pythagor theorem also implies
that EH? = £ES? — HS?. As the line(EH) and (CS) are parallel and due to the Thales theorem, note that:

CP_PS _CS o

EP HP EH ~-1
S being on the Apollonius circle, it follows that:

2
ps?=P 0 pp
v (=1
H belonging to[PS] we have:
1
HS? = (PS— HP)* = HP?
( ) (y=17

Hence: 1
FH=HP ———
v—1

The frontier between the evader positions such that the lépiok circle intersects the line of disappearance or dags n
is a line (d;) starting fromP. The anglex between this line and the line of disappearance is constant:

a=tan? (\/%)

Note also that the lin¢£S) and (£°P) are perpendicular. Indeed, in the rectangular triamglé E, the anglePEH =
@ = 5 — a. In the rectangular triangl€ EH, the angles = SEH is such that

e (30

2Until the end of the section, the distance between two paineand B will simply be notedAB.



SinceSH = —.HP and EH = HP, it follows:

\/7

B = tan*(

1
=«

AT
Thus, (ES) and (EP) are perpendicular SINCBES = o+ a = 3

Building of the set of the evader positions such that the itmmd3.2 holds is now trivial. Indeed, in the fig 3.b, assume
that S = T (S is the disappearance vertd). The circle centered 08 = T and crossingt is noted%; in fig.3.b and is
such thatPS = k.ES (or PT = k.ET). As (EP) is perpendicular with ES) (hence with(ET)), the anglex is such
that the line(d;) is tangent to the circl&;. The contact point between the circtg and its tangent starting fror® is the
starting point of the frontier between the evader positismsh that the Apollonius circle is tangent to the relatee feege.

The evader positions such that the condition 3.2 holds aemlias the white region in fig 4.a. For the proposed obstacle,
the TI-strategy allows for the capture in the whole region wheseApollonius circle includes a part of the obstacle but no
free edges. In the following, we will focus on the strategyatiopt when the evader position does not belongs to the region
where thell-strategy guaranties capture.
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Fig. 4. a) For a given obstacle (convex) and a given positfdhe pursuer, the figure distinguishes the set of the evaoigtipns such that thEl-strategy
guaranties capture without disappearance (region notexd)drom the positions for which a free edge intersect thellpius circle (region colored in
light pink). The two dotted circles are the evader positisnsh that the time to go to the disappearance vertex is equélotb the antagonists. b) The
circular obstacle problem: The evader is moving along the Bapnof a circular obstacl&., centered orO with the radiusR.. %} is another circle
centered orO with a radiusR,, defined such tha% = Z" = k (the speeds are constant). The pursuer is initially locatethe tangent o%. touching
the evader position. It tries to capture the evader in minimime while maintaining its visibility (or at least it tries to ldg the time to disappearance
as long as possible). This corresponds to stay on the tangerit will be shown. What is its trajectory, if it starts at atdincer(0)? Or at least, what
are the kinematics equations of its trajectory.

IV. THE CIRCULAR OBSTACLE PROBLEM

In order to gain insight about what should be done if the diowi3.2 does not hold, the circular obstacle problem
defined in fig. 4.b will be investigated. The solving of thismga will highlight the existence of a necessary trade-off
between maximizing visibility and minimizing the time toptare.

In this game, the evader moves along the boundary of a ciroblstacle?, (the radius ofé, is R, andC is the center).
The pursuer is initially located on the tangent4p crossing the evader position. The pursuer tries to capheesvader
as fast as possible while maintaining its visibility, or aast it tries to delay the evader disappearance as long aiblgos
The evader is initially on the boundary of the obstacle. Hemoving along the boundary is obviously optimal in order
to disappear since this movement maximally deviate the-fflalie from which the evader is visible. Assume tl#t is
another circle centered ofi with a radiusR, defined such tha% “—" =k (the speeds are constant, as usual). Hence,
We = }gi = ”” is then the angular speed of the evader. The pursuers spegdH w.. R

From the pursuer point of view, minimizing the time to captyor maximizing the t|me of visibility maintenance if
the capture is impossible) while maintaining the visiilis equivalent to stay on the tangent. Indeed, the fig 5.atite
how the pursuer can consume its velocitydt depending on its distanceto the centetC (to simplify the notation, the
coordinate of the pursué? in the polar coordinates system centered’®arer andf, respectively the radius and the angle
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Fig. 5. a) The circular obstacle problem: For an infinitesinmhtion of the evaderdgp.), how can the pursuer consume its veloaity.dt when located

at a distance* from the rotation cente€. 7 and# are the radial and tangential unitary vectors of the polardinate system centered @i The five
circles (¢,) centered onP represents the possible positions the pursuer can reathrespect tor, by consuming its velocityw,.dt. From inside to
outside:r > R; implies that the circlez, does not intersect the new tangent (instantaneous disa@ppeaas soon as the evader moves) R; is

the limit case after which disappearance is instantaneBysx< r < R; implies that the pursuer can maintain the visibility unti= R; (where the
disappearance occurs);= R, implies that the pursuer can infinitely maintain the visilililut can not close the distance to the evader (infinite game
duration); andr < R, implies that the pursuer is able to decrease the distanceetevi@ider while maintaining visibility (capture is guarantée finite
time). b) Decomposition of the pursuer velocity for an infigiteal movement of the evader.

of the point P). The evader performs an infinitesimal angular movemint= w..dt betweent andt + dt. Let %, be the
circle corresponding to the locus of the possible pursusitipons after an infinitesimal movement. With respectridhe
circles centered or® on the fig 5.a represent the possible positigfisthe pursuer can reach by consuming its velocity
vp.dt.

First, it is clear that the only solution for the pursuer toim@n the evader visibility is to aim a point on the circle
¢, that will be in the half-plane from which the evader is visildtt + dt . Second, among all the choices, the best local
choice to either capture as fast as possible or at least amaitiie visibility as long as possible is to aim the point whic
is the closer to the future evader position: this point isially the intersection of the circl&, with the future tangent that
minimizesr at timet + dt (hence minimizing its distancé to the evader sincé? = r? — R? as long as the pursuer is on
the tangent line to the obstacle). Three cases are possittterespect tor and to the number of intersections of the circle
%, with the future tangent:

o > Ry;: no intersection point exists: the disappearance is itet@ous as soon as the evader moves.

« 7 = R;: there exists a single intersection: this corresponds ® lilmit case, after which the disappearance is
instantaneous. Indeed, in this case, as the radidescreases, the next situation will correspond to the firsé.ca

o r < R;: two intersection points exist: in this case, the pursuestnaim the pointP* that minimizesr at timet + dt
(the left one in the figure 5.a). Let us call the radius ofP*. Three sub-cases are possible:

— r* < r: the pursuer close the distance to the evader ()) and the capture will eventually occurs in finite time.

— r* = r: the pursuer stay on the circle with the radiu¢ = 0), and the game duration will be infinite.

— r* > r: the pursuer gets away from the evadér( 0): it can only maintain visibility by increasing the distanc
to the evader, which will eventually disappear.

Let us express the radial and tangential components of theupu speed in order to locally minimize the distance to
the evader under visibility constraint. The fig 5.b illusts the different variables to solve the problem, considedn
infinitesimal angular movementy. of the evader.

The pursuer movement can be decomposed into one radial anthhgential components{ is the aimed position at
t + dt):

o dT, = r.d¢.: the tangential component in order to maintain visibilithile remaining at the same distance from the

evader.

o dT: = r.d¢: the tangential component in order to reach the [[6&*) after having performedTy.

« dR: the radial component in order to reach the pditit after having performiT;, and dTx.

The infinitesimal velocity vector is expressed as follows:
N
t

Up.dt = —dR.7 + (dT + dT¢) (12)



with 7 and ¢ the radial and tangential unitary vectors of the ﬂ)}lar_g'mmdz system centered dn.
Let us computedT; as a function ofdR. The angler = (PE, PC) is really helpful, sincev = sinfl(%), and
tan(v) = ‘% by construction (see fig 5.b). We deduce that:

dTe = dR.tan(v)
= tan(sin_l(&))
r
= L.d}% (12)
\/r? — R?
The pursuer velocity can now be expressed as follows:
R, —

7@) t (13)

This expression of the pursuer velocity allows to remaint@ntangent (valid foiP* and also for the second intersection
point of the future tangent with the circlé,) and is valid in any case if of course< R; (remember thaf?; is the limit
case).

The pursuer speed being constant, we obtain the followiffgrdntial equation (norm of the pursuer velocity):

2

. T . 2rwe.R
72 + 7. .t w it —v,2=0

N oy

— . —> .
vy =17 + (we.r — 7.

(14)

This equation is quadratic and admits two expressions (@foteds_ andr, such that'_ < r), corresponding to the
two intersections of the future tangent with the lo&is of the future pursuer position:

/.2 2
F_ = w.(}ge_ /Rl%—l—Rg—rQ)
/02 2
7'~+ = w‘(Re+ /R%‘FRE*'I'Q) (15)

r
ReachingP* obviously corresponds to use the smallest expressiomMoreover, the radiu®; (the limit case for which the
circle €, has a single intersection with the future tangent) can bepcbad easily since this is the one for which = 7 :

o=y

— y/R2+ R?—-R}=—\/R2+ R? - R}

o Ry=./R2+R? (16)

The kinematics equation of the pursuer trajectory, coimgjsn locally minimizing the distance to the evader undes th
visibility constraint for the circular obstacle problem is

/02 2
= P VI T e ’"T Re (R. — \/R%+ R2 —12)

7. Re

/oy

Unfortunately, the pursuer trajectory cannot be expresisaaks to classical known functions. The fig. 6.a and 6.b show
the course of the game for an initial position of the pursueseto but inside the limit circl&), (r(0) < R,), on the limit
circle (r(0) = R,), and close to but outside the limit circle(0) > R,). The trajectories are generated with a numerical
solver of differential equation (ode45) provided by MatRbEach time step can be seen as a new initial condition, se thes
trajectories contains almost all the trajectories foridghitonditions such that(0) < R;.

The resolution of this game is interesting for at least thiesesons: the first one is that most of the methods for vigibili
maintenance in known environment provided until now assumeolygonal environment in order to decompose it into a
finite number of sub-regions. In the case of a circular obstabe number of regions would be infinite and the known
methods cannot be applied. The second reason is that thie glarly illustrates the trade-off between fast capturg an
visibility maintenance in PEGs in presence of obstacleghéf visibility maintenance is a hard constraint of the game.
The last one is that this resolution gives insight on whatusthde done in unknown environment: it seems that doing the
minimal but necessary effort to maintain visibility and saming the spare power in reducing the distance to the future
evader position is a relevant strategy, actually localliirogl. The only constraint is to estimate what would be thisimal
necessary effort for visibility maintenance.
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Fig. 6. The circular obstacle problem. a) Hef®, = 400, v, = 4, Re = 200, ve = 2. 7(0) = 399 for the inner trajectory ana(0) = 401 for the
outter one. The inner green circle is the obsta&lg)( and the outer green circle is the limit circtg, (These circle correspond to the infinite trajectories
of the pursuer and the evader whei®) = R;). The red and the blue trajectories are respectively thediary of the pursuer and the evader. The crosses
and the star on the trajectories, plotted at the same time ls&p,to verify that the pursuer is always on the tangent tocihge, touching the evader
position. b) Here,R, = 250, v, = 2.5, R = 200, ve = 2. r(0) = 249 for the inner trajectory and(0) = 251 for the outer one.

V. A 2-PERSONPEGBIASED BY A SINGLE UNKNOWN CONVEX OBSTACLE CONSTRUCTION OF AN ALGORITHM

A. The pole problem

Let us consider some given initial condition for the convestacle problem. As illustrated by the fig. 1.a from the parsu
point of view, the evader will try to hide by crossing the liokdisappearance forward the segm@Rf] (by crossing the
free edge). This line of disappearance can be seen as aatichored on the fixed disappearance veffiexand such that
the pursuer controls its orientation.

As the pursuer does not know the shape of the obstacle outsidisibility region, the worst case would be an extremely
sharp obstacle. Hence, a simplification of the convex olsst@oblem is to consider the disappearance vefteas a simple
pole or a punctual obstacl.is now taken as the center of a polar coordinate system asrdbed in the fig. 7. The position
of the evader and the pursuer are now respectively npted.) and (r,, 6,).

Fig. 7. The pole problem: an approximation of the convex olstamblem.T" is the disappearance vertex, which can be seen as a simpléypdhe
pursuer in a worst case scenario. kebe the angle between the lineET)and (EP). The evader wins the game if it can change the sign of the angle
or if it can arrive to the pole before the pursuer. The pursues if it can avoid the evader to win, and if it can arrive te thole before the evader. The
colored semi-circle represents the positions such thatwadee can arrive to the pole before the pursuer by simply mowingraight line (the radius is
%’ and with k = 2). Inside the semi-circle, the evader wins, and otherwiseptitauer wins as shown in the text.

The pole problem is defined as follows:



« The evader wins if it can change the sign of the angler if it can arrive to the pole before the pursuer & 0)

where a final infinitesimal move terminate the game.

» The pursuer wins if it can arrive to the pole before the evddgr= 0 andr, < r.) while maintaining the sign of.

Obviously, if %’ > r., then the evader wins whatever the pursuer does by simphggoward the pole/{ = —v. and
d. = 0). On the fig. 7, for the drawn position of the pursuer @ng 2, the initial positions of the evader such that> r,
is the colored semi-circle (the problem is symmetrical dog 0).

If %” < r., Whatever the evader does, it will be shown there exists autustrategy that guaranties the pursuer victory.
Suppose that initiallyx > 0 as in the fig. 7. In order to avoid the evader disappearaneeptinsuer must maintaia > 0
and it is sufficient to arrive at the pole before the evademsuee the victory. It is only sufficient because at a given mom
of the game, the capture may be guaranteed by adoptinftteategy (condition 3.2). To preserve the sigmgfa simple
strategy is to rotate at the same angular speed as the evatlar spend the spare power of the velocity vector in deangasi
the distance to the pole (let us call this strategy dhimvariant strategy). The kinematics equation of the persadopting
the a-invariant strategy is:

6, = O
(18)

.2
co_ 2 _ .2
Tp = Vp rp2.0p

Let us show that thev-invariant enables the pursuer to arrive to the pole in fititee. We have the following relations
(with 7, < 0, andéd. > 0 as in the figure 7):

. 9
2 .2 2
v, = 71p +rp b
2
v )
2 _ U o 2
v, = 12 =7+ 1.0,

Assume that% < re (it is at least true fort = 0), we deduce that:
2

2 Tp
Te > ﬁ
.2
2
.2 r,°.0
rede > Lot
2 2 2
Yoo g2 o Y Tp
k2 © k2 k2
;2
n2 o< (19)
€ k2

Whatever the sign of., sincer), < 0, we have the following relation% < Te.
Let us express the derivative at times a limit;

re(t + dt) — re(t)

7e(t) = lim

dt—0 dt
. . et dt) —rp(t)
rp(t) = Jim S

Assumef”T(t) < 7 (t) and % < re(t) (at least true for = 0), it follows that

re(t + dt) — re(t) rp(t+dt) —rp(t)

dltlglo dt dltlglo k.dt
_re(tHdt)  rp(t) et dt) —re(t)
T T kar © am, it
Hence,
t+dt
re(t+dt)>7ap(7+)

We have shown that, if. > k.r;,, the a-invariant strategy implies thafz < .. We have shown that if.(t) > k.r,(t)
and ”’T(” < Te(t), thenr.(t + dt) > k.r,(t + dt). Hence, if the pursuer uses theinvariant strategy and if initially
re(0) > k.r,(0), thenr.(t) > k.r,(t) for all t > 0.

Let t* be the instant such tha(¢*) = 0 (the pursuer arrives at the pole). It is clear that the evalaot yet arrived at
the pole since.(t*) > k.r,(t*) = 0.



It finally has to be proved that the pursuer is able to arrivehatpole in finite time. Consider the following relation:
rp = m.k.re

with m > 0 a temporal function. If we can show that thg admit a negative upper bound, the pursuer is obviously able t
arrive to the pole. Let us compute the upper limitrf

S 9 _ .. 9 2
maxr, = \/vp rp2.max(6.)

/ 2
v
2,2 .27
k?.v, TPTQ
e

= —kwe/(1 —m?2) (20)

Now, if we can prove thath < 0, then we would have proved that whatever the evader doesy-steategy enables the
pursuer to decrease faster and faster the distance to thequ@rantying to arrive to the pole in finite time.
. 1 rpre —rery
- - ep 21
m R— (21)
The sign ofri depends om’,r, — rery. If 7. > 0, it is clear thatin < 0 since it is known that), < 0. If 7, < 0, it follows
rp < kre and thatk.r, — r, > 0, we have:

Tple — TeTp < Te(k.re —1p)
< 0 (22)

In any caseri < 0, which means that the pursuer is able, even in worst caseyrneeme faster and faster to the pole.

A last remarks is thate can be arbitrarily small without changing the solution o€ throblem. Hence, a faster pursuit
strategy than thew-invariant strategy is to aim the pole as long|as> ¢, with ¢ a security margin arbitrarily chosen, and
to use then-invariant strategy whefw| = e. We call this strategy the-minimal strategy which is defined as follow:

b,= 0
if la| > e {p
Fo—

p= Up
(23)
0, = 6.
and otherwise "
rp = —\/vp2—rp2.0,

This strategy is locally quasi-optimal since it does theimal necessary effort to maintain visibility and maximatgduce

the distance to the victory position. Interestingly, gotoward the pole is equivalent to aim a future position of aader
trying to hide by crossing the free edge. It corresponds tadaptive proportional pursuit such that the referencetgsin
not a future position of the evader but rather a potentiahgsqoint, being precisely on the line of disappearance. The
solution of the pole problem is the following:

o If r, < k.r. and if the pursuer adopts theminimal strategy (or even the-invariant strategy), the capture without
disappearance is guaranteed in finite time.
o If r, > k.r. and if the evader goes directly towards the pole, disappears guaranteed.

B. From the pole problem to the convex obstacle problem

The difference between the pole problem and the convex dbgtaoblem is that the antagonists can not rotate indeffjnite
around the pole. Indeed, the poiftbelongs to two obstacle edges. As a consequence, on onel@nertinimal strategy
no longer guaranties capturesif > =2, but only guaranties to see the next obstacle edge with@aipgearance. On the
other handr, < %’ does no guaranty the evader disappearance. Indeed, 4f 2, the pursuer can rotate the line of
disappearance by performing a tangential movement in dodeope to see the hidden part of the obstacle before the levade
disappearance. Two cases must be considered according@sh®mp of the orthogonal projectioi of the evader position
on the line of disappearandéT’).

If the projectionH of the position of the evader on the line of disappearancetdorward [PT] (see fig. 8.a), then the
evader may disappear by simply reaching the p@infThe best the pursuer can do is to spent the time requirechéor t
evader to go td" in maximally rotating the line of disappearance. Consideirele centered o, with the radiusk.r. (the
distance the pursuer can travel while the evader tries tthréee pointT’). To maximally deviate the line of disappearance,
the pursuer must aim the tangent line to this circle crostiegpointT’, as illustrated on the fig 8.a. For a given position



r. Of the evader, the maximal deviation of the line of disapapee is the anglé* = sin‘l(%) and the distance between
p

the pursuer and the poirft will be rf = /7,2 — k%.r.2 at the end of the complete movement. The velocity vector of
the pursuer must form an angle = cos—l(’“r'#) with the line (PT). Of course, as soon as a new obstacle edge becomes
visible, the pursuer has to wonder about its new strateggrdioty to what it sees. Let us call the angle between the
current line of disappearance and the next visible obstaie. Ifw > §*, the evader is able disappear whatever the pursuer
does. Ifw < ¢*, the game will continue since the pursuer will see a new chstadge before the evader disappearance.
In the following, this strategy will be called th& D — LoD strategy (standing for Maximal Deviation of the Line of
Disappearance).

|
I

\ Region B

,

Region where
Te < Tp d§

a) b)

Fig. 8. a) How can the pursuer maximally rotate the line of disapance if the. < %" and if the projectiond of E on the line(PT') belongs to
the segmen{PT] (the light pink region is not considered for the moment). Thesper must draw the circle centered on its position with aus#ir.
(corresponding to the position it can reach in straight lividle the evader is going td@") and must aim the contact point of the tangent to the circle
crossing the poinfl” (this tangent is the maximally rotated line of disappearaheepursuer can create while the evader goe¥’xoMore simply, its
velocity vector must from an anglét = cos—l(kr‘—;ﬂ) with the line (PT). In this example, whatever the pursuer does, the evader éstallisappear

by reaching the poinf” becauses > 1. If w < 6, the game would continue whatever the evader does. b) Whaehappthe projection of E on
the line (PT) is on the extension of the segmditT’] (the light pink region has been treated previously). If thader is in the region AK.r. > 7p), it
cannot reach any linés before the pursuer. The pursuer will adops&raninimal strategy until it sees a new disappearance vertekelfevader is in the
region B E.re < rp), there always exist a liné; the evader can reach before the pursuer, at least ferZ — o which corresponds for the evader to
reach the poinf". The pursuer can only deviate the line of disappearance pe bm see the hidden part of the obstacle before the evadetega line
of disappearance.

If H is located on the extension of the segmg?’] (see fig. 8.b), the problem is more complex. Indeed, there emest
a future free edge the evader can reach during the game. Tineise free edges lie outside the pursuer visibility region
and form an anglé with the line (PT). A particular future line of disappearance is notel).

Note that the possible anglesuch that the evader can reach the lifzeare boundedd + o < § (o = ETP’, with P’
the symmetrical point of” with respect tdl'), because reaching a line such that o > 7 is equivalent to reach the point
T and is also equivalent to reach the lidg with § = %i — a.

In order to hide by crossing a lingls), the best evader motion is to aim its own projection on this.liLet D be this
projection. LetD; be the projection ofP on the line(ds). Going straight toD; would then be the best solution for the
pursuer to avoid the disappearance of the evader. Hencevtter looks for a line such that|le — ds| — [|p — ds| < 0
(the time for the evader to go th@; is smaller than the time for the pursuer to goldg). The evader looks for & above
which k.r..sin(a + §) — rp.sin(d) < 0.

First, if k.r. > r, (region A if the fig. 8.b), such a line does not exist. Indeed:

kre > 1 (24)

k.re.sin(6) > rp.sin(d) (25)

kresin(d+a) > rp.sin(d) (26)

kre.sin(d +a) —rp.sin(d) > 0 (27)

(28)



Hence, if the evader is in the regioh the pursuer will use the-minimal strategy as suggested by the resolution of the
pole problem in order to maintain the evader visibility isgeing a new vertex that "deals new cards”.

Second, if72 > r. (region B of the fig 8.b), everything becomes drastically more comphence, we decided to not
tackle the case in this article. In the following, the purswél adopt the a-minimal strategy if the evader is in the region
B of the fig 8.b, but we are aware that this case should be caesidesry thoroughly and carefully in order to determine
an efficient strategy. We are also aware thatdheinimal strategy may lead to the evader disappearanceisiregion.

C. An incrementally built pursuit algorithm for the convesstacle problem

Incrementally, a complete pursuit strategy, which comtbitieee strategies and determine which one is the most releva
according to the current situation, has been built:

« Il-strategy: if the condition 3.2 holds, the pursuer will addye II-strategy to conclude the game. All the games the
pursuer can win will finish by the adoption of théstrategy.

« MD-LoD strategy: if the projection of the evader position iH the line (PT) is not on the extension of the segment
[PT] and if %’ > re, the pursuer uses the MD-LoD strategy to maximally devihteline of disappearance in order
to hope to get the sight of the next hidden edge of the obstHdlee two possible vertices of disappearance (the left
one and the right one) verify this condition, the pursuerutth@eviate the line of disappearance for whigh- ¢ is
the higher,t, andt. being the time to reach a given disappearance vertex foectisply the pursuer and the evader.

« a-minimal strategy: If the projectiod{ on the closest disappearance line if forward the segriiéy, then thea-
minimal strategy will be used as suggested by the resolufathe pole problem. Yet, if. < % we noticed that a
better strategy, which is not under the scope of this artisldéikely to exist and should be built.

The figure 9 illustrates on a given example (a given positibthe pursuer and a given convex) which strategy is used
according to the evader positions. In the following, thecapt underlying thex-minimal strategy will be compared with
other heuristics that has been proposed in the literatutbatrappears relevant.

VI. HEURISTIC COMPARISON

In this section, our pursuit algorithm, especially the iagt of thea-minimal strategy, will be evaluated. A measure to
compare the efficiency of different algorithms is propostd: size of the capture basins. The proposed methods in the
literature for the problem of visibility maintenance areséd on heuristics. Our experiment will consist in buildirg t
capture basin of our pursuit algorithm if a particular hsticiis used instead of the-minimal strategy. Heuristics inspired
by [Gonzalez-Banos et al., 2002], [Bandyopadhyay et al0620as well as other simple heuristics that appears relevan

. +P

Obstacle

Region not visible from the pursuer position

Evader positions for which thea —minimal strategy is used

I Evader positions for which the MD-LoD strategy is used

Evader positions for which the parallel pursuit is used

,,,,,,, Geometrical lines or forms that helps
to distinghush the regions

Fig. 9. Strategy used with respect to the evader positianaffixe position of the pursuer and a given convex obstacle.



for the problem, one approximating theminimal strategy, will be compared. We choose to not diyechplement the
a-minimal strategy because it requires more informatiort tha other heuristics (the evader angular speed relatedeto t
disappearance vertex). Anyway, it will be shown that theriséia approximating the--minimal strategy largely outperforms
the other heuristics. A last important point concerns thadev strategy. Although this article does not deal with ievas
we need that the pursuer plays against a relatively smadeevin this section, an evasion strategy (which we do nabcla
to be optimal but simply smart) will be proposed and usesrafiahe pursuer in the experiments.

A. Capture and evasion basin

In order to compare pursuit heuristics, a measure is neetleel.method proposed here is somehow inspired by the
dynamical systems theory. Let the couple evader-pursuarcbhepled dynamical system. As each opponent state is ctatyple
determined by3 coordinates(z, y, ) (or 2 for simple motion without any constraints on the turningejathe dynamical
system is defined bg dimensions. The topology of the obstacles corresponds fghadimensional set of parameters. An
important criterion that can be taken into account to jydtifat a pursuit algorithm is better than another one is therme
of the capture basin (ie: the set of initial conditions sueéit tthe pursuer eventually wins the game): the wider theucept
basin, the better the pursuit algorithm for this environmém optimal algorithm should be such that all the captursirm
related to other algorithms are included in the capturenbasihis optimal algorithm for any convex obstacles.

As it is particularly difficult to represent such a basin fo2-players PEG (at leadtdimensions), and even more difficult
to analyze it, the heuristic comparison will be reduced ia fibllowings to the building of capture basins, assuming tha
set of initial conditions is fixed (the initial state of theagler). Then, for a given paving of the environment, we builel t
capture basin of each heuristic 2ndimensions. For example, in the circular obstacle probkd,capture basin related to
the optimal pursuit-evasion strategy is the ring definedHgy det of pointgr, §) such thatk. < r < R, and the evasion
basin is obviously the set of points such that R,,.

B. List of the variables

Before describing the different heuristics that will be gared, let us first give the list of the variables on which they
rely. Then we will define the evader strategy. The obstacle jlygon (or at least a segmeidt) when it is seen by the
pursuer and>¥ when it is seen by the evader (see fig 10).

« T, andT; are the two vertices of the polygad such that the line$PT,.) and (P1;) are the right and left tangents
to the polygonG starting fromP (the two lines of disappearance). The two free edges caneso the extension of
the segment$PT;] and[PT,].

« H, and H; are respectively the projections of the evader on the lindisdppearancéPT,.) and (PT;).

. 7, andr; are the distances between the pursuer and the vefficasdT; respectivelyr, = ||[p—t.| andr; = ||p—t||.

o r, andrl: if H, (resp.H;) is forward[PT,] (resp. forward PT;]), we introducer] = ||t, — k.|| (resp.r] = |[t; — hi]|)
the distance betwe€h. and H,. (resp. betweerd; and H;).

« h, andh; are the distances the evader has to travel in order to hidedsgiog(P7,) and (PT;) forward [PT,] and
forward [PT;) respectively. If the path to hide is a broken line, the disteamust be computed accordingly.

« [: distance between the line of sight and the disappearantexve

To summarize, with the subscript= {r, 1} specifying that either the right or left disappearanceeseit consideredy,

is the distance between the pursuerand the disappearance vertéy, h, is the distance the evader must travel to reach
the closest disappearance point on the line of disappeafd@iE,) (the pointH, if H, is forward [PT,] or the pointT,
otherwise) and”, is the distance between the disappearance véifeand the projectiorf of the evader on the extension
of the segmentPT,] (if the projection on the free edge does not exist becdiisés not forward[PT,], thenr! = 0).

C. Heuristics-based pursuit algorithm under visibilitynstraint

In order to equitably compare the different heuristic andatckle the problem of a real game where the players have
opposite objectives, we first need a smart evader. Evasidmnidiyg is not a trivial problem. An obvious local strategy fo
the evader is to locally aim the most secure disappearanice (¥, or 7,) or at least to run-away in order to delay an
unpreventable capture. Evasion strategies not being uhdescope of this article, the algorithm to choose the masiree
disappearance point is not provided here.

1) Foreword: The problem of a 2-players PEG in an unknown cluttered enuient has recently been tackled. The
proposed solutions consist in locally minimizing eithee #scape risLee et al., 2002], [Gonzalez-Banos et al., 2002] or
the vantage timg[Bandyopadhyay et al., 2006]. The sole problem of the sliaveie was addressed in these works: the
termination modes were either the duration of the game orhendisappearance of the evader. Interestingly, the vantage
time minimization (let us call this approach VTM) seems tdpauform the escape risk minimization (ERM). The authors
have highlighted that the surveillance is enhanced by a gpatahcing between the radial movement (the movement t@vard
the disappearance point) and the tangential movemento@ttal to the line of disappearance). The ERM gives a too high
influence to the tangential movement, and increase the lattdability for a smart evader to escape. On the contragy, t



Fig. 10. Distances and points used for the computation of éheistics by the pursuer. Here, we consider the left lineisappearance: = ||p — t||,
wherever the evader is. As regard the evaBeif its projection H on the line(PT) is not forward the segmenf’T], h = ||le — t|| andr> = 0. If H is
forward [PT], h = ||le — h||, r; = ||T'— H]|| and finallyl is the distance between the line of disappearance vertexhenihe of sight. These definitions
hold for both the right and left line of disappearance. Heeaeh variable can be noted with a subsciript {r, !} specifying which line is considered:
(ra, Tl ha)-

VTM give a higher influence to the radial movement. By an eddgrease of the distance to the disappearance vertex, the
influence of the future tangential movement is higher anowallfor longer visibility maintenance. Here, we claim thae t
most interesting balancing between the radial and the tdijeomponents of the velocity actually corresponds ta@imal
necessary effort in visibility maintenance in order to nmaaily close the distance to the disappearance vertemifimal
strategy). As the evader must aim the disappearance lineder do disappear, closing the distance to the disappearanc
vertex somehow corresponds to for the pursuer to move t@aaffditure position of an evader that would try to hide.

2) List of the heuristics:As previously said, the minimization of the different hetids will be used instead of the
a-minimal strategy in our global pursuit algorithm. One oés$k heuristics leads to a pursuit behavior that is very dimse
the a-minimal strategy.

The first heuristic Hgr is inspired by the escape risk function proposed in [GorzzBlnos et al., 2002],
[Lee et al., 2002]:

Ve. Ty

!
Hon = 2o, G
Step after step, the pursuer should choose to move in ordmirimize Hgr. An average among all the free edges could
have been used instead of the max operator as in [GonzaleasBa al., 2002], [Lee et al., 2002] but the resulting betravi
would leads the pursuer to equilibrated the escape risk grabirthe free edge influences, whereas the max operator leads
to prior focus on the riskiest free edge. A preferable metldd estimate the most critical free edge= {r,(} (it is trivial
in the region where the heuristic minimization is used assitiated by the fig. 9). Hence, the following heuristig;  is

equivalent to the heuristiél}; ;:
r

HER:E

with r = 7.~ andh = h,~. In the following, we will use this more simple formalisn?  7/..). The constant= is removed,
since it has no influence on the local minimization. !

The second heuristic inspired by [Bandyopadhyay et al.6P@ins at reducing the vantage time, which corresponds to
the time required to push the evader in the area such thatistende to hide is greater than the distance to avoid hiding
(assuming that the current evader velocity will not changg authors proposed an approximated computation ofithes t
They first estimate the vertek, behind which the evader tries to hide (equivalent to fitfijl Here, the most critical escape
patha* € {r,1} is first computed. The velocity vecter. ¥ +v; ¢ (7 and ¢ are the unit vectors in the tangential and the
radial direction) that minimizes the vantage time, alsoimines the risk defined as:

r—~h

H =
vr v v (1 /1) — ve




The authors deduced that the correct velocity vectofds/ /72 + r/?)(r7 + r’?), by differentiating Hy 1 with respect
to v; andv,.

A third heuristic we introduce here simply compares theatlise the pursuer has to travel to avoid hiding (by reaching
the vertex that may break the line of sight) with the distafarethe evader to reach the related free edgec {r, 1} is
first computed. This heuristic (let it be callspatial hidability) is the following:

HSH:rfh

Note that this heuristic is simpler but very closeA 7, since the vantage time estimation results from the integraf
the expressiom — h.

We also proposed a forth heuristic that compares the timdetkeby the pursuer to avoid hiding with the time for the
evader to reach the related free edge (let us ca#imporal hidability, knowing z* € {r,[}:

HTH =r—k.h

Finally, we propose a last heuristic which approximatesdhminimal strategyx* € {r,[} is first computed. As long
as the distancé between the line of sight and the disappearance veftéx greater than a given security distarigethe
heuristic minimization should lead the pursuer to aim thgagpearance vertex. When the distahdecome smaller than
lo, the heuristic minimization should lead the pursuer to uag pf its velocity to perform a tangential movement. The
following heuristic calledH 45, 4 (Standing for Alpha-Minimal Approximation) provides suahbehavior:

loyn
HAMA =T — (%) .h
with n > 1 that can be adapted (= 2 in the following to delay the beginning of the tangential rament). If] is greater
thanly, (%)”h is negligible as compared with and the pursuer will aim the disappearance vertex.décomes smaller
thanly, » becomes negligible as compared w(t%?)”.h leading the pursuer to perform a tangential movement.
For comparison, the direction of movement for each heuaristotmputed by differentiating the heuristic, is given i th

table I. We note that the heuristid$,r and Hsg have the same gradient direction.

Algo. Expression “ radial component ‘ tangential component
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DIRECTION OF THE GRADIENT OF THE PROPOSED HEURISTICEL.

In the following, the capture basin of our pursuit algorithembedding each one of the proposed heuristic instead of the
a-minimal strategy will be compared for different obstadges against the smart evasion strategy introduced pedyio

D. Results in a virtual environment

In fig 11.a, 11.b, and 11.c, the capture basins of our purfyotrighm, using the minimization each of the heuristi€s r,
Hry, Hsp, Hyr and H 44, are displayed for different obstacles. The capture bastheopure pursuit is also displayed.
The 2 dimensions of the capture basin correspond to the initialtipms (=, y) of the pursuer from which it achieves the
capture of the evader always starting at the same pogi@ioyi5) (the length unit is the meter). The speed are= 2 and
v, = 4 m.s~!. As foreseen, the best algorithm is undoubtedly the AHAimipation. The related capture basin includes
almost all the other capture basins. Inspired from the sglaf the pole problem, this strategy leads the pursuer totlagm
disappearance vertex as fast as possible while minimallytes-balancing the movements of the evader when the line of
sight and the line of disappearance are very close: thetitireof the movement is such that the pursuer does not chége t
orientation of the disappearance line excepted in ordeotopensate the evader tangential move when the disappearanc
is imminent. The fast reaching of the disappearance vettews for easier visibility maintenance because the resglir
leverage to compensate the evader tangential movemenbevithinimal when the disappearance becomes imminent.

Moreover, by aiming the disappearance vertex, the pursedonms an adaptive proportional navigation since it aims
a future position of the evader (obviously, the evader ainpoiat on the disappearance line). The resulting behavior is
between a pure pursuit and thestrategy: the pursuer moves along the shortest path todtental points of capture.

The fig 11.c provides an example of a game in our 2D virtual rervhent: The evader uses the strategy described
previously and the pursuer uses our pursuit algorithm with AMA heuristic minimization (the one approximating the
a-minimal strategy). In this situation, only the AMA miningidon allows for the capture.



C d)
Fig. 11. a,b,c) Capture basin of each algorithm: The positibthe evader is fixed (the red crosses). The red polygon iolistacle. The dark blue
basin correspond to a simple pure pursuit, the light blue orteé ERM, the cyan one to the THM, the orange and yellow ormadsi superimposed) to
the SHM and the VTM respectively, and the maroon one to the AM/AMpected for particular cases due to the non-optimal behafithe evader, the
capture basin of the strategy approximating éheninimal strategy includes all the other capture basins.ld}thation of the AMA heuristic minimization

that approximates the-minimal strategy. The pursuer aims the disappearance vestéong as possible and begins to perform a tangential movement
when disappearance becomes imminent. The other heuristictdalow for the evader visibility maintenance.

VIl. CONCLUSION

In this article, the problem of pursuit under visibility cgiraint in an unknown cluttered environment has been tdckle
First, a sufficient condition of capture in the presence dfnanvn obstacles has been established. ksrategy consisting
in an optimal parallel pursuit guaranties the capture wittdisappearance if the capture region (the Apolloniudejrdoes
not contains any free edge and if the obstacles includedeircéipture region can not break the future line of sight. Wa the
wonder what should be done in other situations.

We first solved the circular obstacle problem, a particulamg in which the evader moves along the boundary of a
circular obstacle and the pursuer is initially located ongent line to the obstacle touching the evader position. The
resolution highlighted that, under visibility constraitite pursuit algorithm that locally optimizes the time tepuae leads
in parallel to perform the minimal necessary effort in maining the visibility. The pole problem has then been ingadéed.
This game is an approximation of an extremely sharp obstaatex. The solution showed that the pursuer wins if it can
arrive to the pole before the evader, by simply compensatiegrotation of the line of sight with a rotation of the line
of disappearance. Otherwise, the evader wins by simplyhiegahe pole. This has led us to propose a pursuit strategy
called thea-minimal strategy consisting in moving towards the disawpace vertex as fast as possible while preventing
the imminent evader disappearance by a minimal compensatithe line of sight rotation. In the general case of a convex
obstacle, this strategy guaranties the pursuer to see gi@stacle vertex without evader disappearance in themeghere
it wins the pole problem. In the region where the evader wiresfole problem, the generalization to the case of a convex
obstacle is harder. If the projection of the evader on the ihdisappearance is not on the related free edge, we atadli
a pursuit behavior that aims at maximally rotating the lidedisappearance before the evader disappearance, in arder t
hope to see the hidden part of the obstacle. This stratedgdc®ID-LoD, standing for maximal Deviation of the Line of
Disappearance, allows extending the capture basin incpéati situations. If the projection of the evader positiciomgs
to a free edge, the analysis becomes much more difficult asdneiunder the scope of this article.

Incrementally, a pursuit algorithm has been built. It conelsi thell-strategy if it guaranties capture without disappearance,
the MD — LoD strategy when the evader is able to arrive to the disappearsartex before the pursuer (and if it



projection of the line of sight does not belongs to a free gdgel thea-minimal strategy otherwise. Finally, we compared
the capture basins of our pursuit algorithm modified such tha minimization of a given heuristic is used instead of
the a-minimal strategy. Two of these heuristics were inspiredplbgvious heuristics found of the literature (escape risk
[Gonzalez-Banos et al., 2002], [Lee et al., 2002] and vantiige [Bandyopadhyay et al., 2006]), two of them appeared
relevant to the problem (spatial and temporal hidabilityyl &he last one was built to approximate theminimal strategy.

As foreseen, the strategy consisting in closing the digtancthe disappearance vertex as fast as possible and dang th
minimal necessary effort to maintain visibility extende tbapture basin.

All along the article, even though the building of an evasstrategy was not addressed, the evader has always been
considered as intelligent. For the simulation, we propoge@metrical method to locally aim the most secure instatas
escape point or to run away if disappearance is impossibl@atticular situation, it is clear that a better evasioatefyy
exists as highlighted by the pole problem.

In future work, it will be important to provide more global asion strategies in order to evaluate how far the one we
proposed is from an optimal and to imagine the possible @ewis of our algorithm. The concepts underlying the buidin
of our pursuit algorithm, especially the-minimal strategy and the sufficient capture condition wialgshed based on
the properties of thél-strategy, should be also considered to tackle the probfeseweral unknown non-convex obstacles.
Based on the insight provided by this study, it is also pdedib investigate new pursuit concepts involving severaspers
in presence of multiple obstacles, not necessarily noskles
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