Proceedings of the 35th
Conference on Decision and Control
Kobe, Japan * December 1996

FP06 4:50

Discrete Event Control of Nondeterministic Systems

Michael Heymann' and Feng Lin?

Abstract

Nondeterminism in discrete-event systems may occur
as a result of partial modeling. For the adequate de-
scription of nondeterministic systems and nondeter-
ministic phenomena, the trajectory-model formalism
that was introduced in [2] [4] is employed. In the
present paper we develop a theory of supervisory con-
trol for nondeterministic discrete-event systems sub-
ject to trajectory-model specifications. We show how
well known algorithms for supervisory control (of de-
terministic systems) under partial observation can be
adapted for synthesis of supervisors for nondeterminis-
tic systems.

1 Introduction

Most of the published research on control of discrete-
event systems (DES) has focused on systems that are
modeled as deterministic finite state machines. For
such systems, an extensive theory has been developed
[14]. A great deal of attention was also given to the con-
trol of partially observed discrete-event systems [10], in
which only a subset of the system’s events are avail-
able for external observation. For such systems, nec-
essary and sufficient conditions for existence of super-
visors, algorithms for supervisor synthesis, for off-line
as well as on-line implementation, have been obtained,
and a wide variety of related questions have been in-
vestigated.

Partially observed systems frequently exhibit nonde-
terministic behavior. There are, however, situations in
which the system’s model is nondeterministic not be-
cause of partial observation but, rather, because either
the system is inherently nondeterministic, or because
only a partial model of the system is available and some
or all of its internal activities are unmodeled.

In contrast to deterministic discrete-event systems,
whose behaviors are fully specified by their generated
language, nondeterministic systems exhibit behaviors
whose description requires much more refinement and
detail. Further, while in the deterministic case, legal
behavior of a system can be adequately expressed in
terms of a language specification, this is clearly not
always true when the system is nondeterministic. In-
deed, to formally capture and specify legal behavior of
the controlled system, it may be necessary to state, in

! Department of Computer Science, Technion, Israel Institute
of Technology, Haifa 32000, Israel. Work completed while the
author was a Senior NRC Research Associate at NASA Ames
Research Center, Moffett Field, CA 94035 and supported in part
by the Technion Fund for Promotion of Research.

2Department of Electrical and Computer Engineering, Wayne
State University, Detroit, MI 48202. Work supported in part by
the National Science Foundation under grant ECS-9315344.

0-7803-3590-2/96 $5.00 © 1996 IEEE

addition to the permitted language, also the degree of
nondeterminism that the controlled system is allowed
to retain. The trajectory model formalism was intro-
duced in [2] and [4] as a semantic framework for mod-
eling and specification of nondeterministic behaviors,
and it was shown to adequately capture nondetermin-
istic behaviors that one might wish to discriminate and
distinguish by discrete-event control. Thus, for control
purposes, nondeterministic discrete-event systems can
be modeled either as nondeterministic automata {(with
e-transitions) or as trajectory models.

In recent years, there has been increasing interest in
supervisory control of nondeterministic systems as re-
ported, e.g., in [12] [13] [15] [9] {1]. However, while
some existence conditions for control of nondeterminis-
tic systems have been derived, few explicit algorithms
for supervisor synthesis have been reported. Indeed,
the direct supervisor synthesis for nondeterministic sys-
tems seems to be quite a difficult task.

Motivated by this observation, we began an investi-
gation, [7] [5] [6], of the connection between the su-
pervisory control problem for general nondeterministic
systems and the corresponding problem for partially
observed deterministic systems. Our work led us to de-
velop an approach to synthesis of supervisors for nonde-
terministic systems wherein direct advantage is taken
of the existing theory for control under partial obser-
vation.

In the present paper we consider the supervisory con-
trol problem of nondeterministic discrete-event systems
subject to trajectory-model specifications. Our ap-
proach to the supervisor synthesis is based on the fol-
lowing basic idea: We first synthesize from the given
system, by adding to it hypothetical transitions and
hypothetical uncontrollable and uncbservable events,
a deterministic system whose partially observed image
{in the sense that the hypothetical events are obviously
not observed) is the original nondeterministic system.
We call this procedure lifting. Before performing the
lifting, the legal (trajectory model) specification is em-
bedded in the original nondeterministic system model
in a way that can readily be dealt with in the corre-
sponding lifted deterministic system. The next step
of the synthesis 1s to construct a supervisor for the
lifted system subject to the (obvious) condition that
the artificially added events are neither observable nor
controllable. Such a supervisor can readily be con-
structed using the well known theory and algorithms
for supervisory control of partially observed systems.
It is self evident, and we show it formally, that a su-
pervisor synthesized in this way is applicable for the
original nondeterministic system and satisfies the spec-

4445

ifications. Moreover, we show that if the supervisor
designed using this approach is optimal for the lifted
system, it is also the optimal supervisor for the original
system. Thus, since control under partial observation
1s well known, we only have to, ultimately focus on the

auxiliary steps of model lifting and specification em-
bedding.

The simplest version of the supervisory control prob-
lem for nondeterministic systems is the case when the
model is given as a nondeterministic automaton and
the specification of legal behavior is given by a set of
illegal states that must be avoided. This case, in which
we refer to the specification as static, has been dis-
cussed in [5] and we only review it here briefly for the
sake of completeness. Basically, the only algorithmic
step needed in the static case, prior to the employ-
ment of standard synthesis algorithms, is the lifting
algorithm (which, as was shown in [5], can actually be
sidestepped if one wishes to do so).

In the present paper we focus attention on the case
where the specification is given as a trajectory model,
where the central issue is the trajectory-embedding.
That is, the main problem is the correct interpretation
of the specification as a restriction of permitted system
behavior. This is done by embedding of the specification
in the plant model, so that we can ultimately proceed,
just as in the static case, using the lifting technique.

We deal in the present paper only with safety specifica-
tions and ignore the important question of liveness, or
nonblocking, issues to be addressed extensively in [7].

In Section 2 we briefly review the relevant aspects of the
theory of supervisory control under partial observation,
in Section 3 we review the main concepts of nonde-
terministic discrete-event systems and their represen-
tations, and reexamine the relation between the tra-
Jjectory models and their corresponding nondeterminis-
tic automata. Also, a “lifting” formalism is presented
by which the nondeterministic system is translated (or
lifted) to a deterministic system, by introducing hy-
pothetical events. The lifted system is constructed so
that its projection yields the original nondeterministic
system. In Section 4 we review the supervisory control
of nondeterministic systems with static (state-based)
specifications, in which the specification of legal be-
havior is given as a subset of legal states. In Section
5 we investigate in detail the problem of supervisory
control with dynamic trajectory-model specifications.
We develop an algorithmic framework for translation
of the supervisory control problem with dynamic spec-
ifications to an equivalent problem with static specifi-
cations. Finally, in Section 6 we conclude the paper
with a brief discussion of the methodology for supervi-
sor synthesis.

2 Deterministic supervisory control under
partial observation

In this section we briefly review the basic results of su-
pervisory control for deterministic systems under par-
tial observation. The uncontrolled system is described

by a (deterministic) automaton G' = (%, Q, 4, ¢,) with
elements defined in a usual way. The language gener-
ated by G is denoted by L(G). The event set is par-
titioned into controllable (observable) and uncontrol-

lable {unobservable) disjoint subsets: ¥ = X, U Yue

(= X U Zu0). A supervisor is a disablement map
v : PL(G) — 2*¢ (where P : ¥* — %% is the pro-
jection map that deletes the unobserved events) such
that, following an observed string s€ PL(G), (s) de-
notes the set of events ¢ € X that are disabled by the
supervisor. The language generated by the supervised
system is denoted by L(y/G).

We say that a language K is closed, if it equals its prefix
closure. We also define controllability, normality and
observability as in [14] [10]. The basic supervisor exis-
tence result is that for a nonempty language K C L(G)
there exists a supervisor « such that L(y/G) = K if and
only if K is closed, controllable and observable. One
important fact regarding the relation between observ-
ability and normality is given by the following proposi-
tion, which is essential to the development in this paper
[11].

Proposition 1 If £, C X,, then a language is control-
lable and observable if and only if it is controllable and
normal.

An important property of controllable {normal) lan-
guages 1s that the supremal controllable and normal
sublanguage supCN (E) of a language F exists.

3 Nondeterminism

In this section we briefly review the trajectory-model
formalism of [4] (see also [15]).

A trajectoryis a record associated with a run of a sys-
tem (. It is more detailed than a trace s € L(G) in that
1t lists, in addition to the successfully executed events,
also events that the system might have rejected (or re-
fused), if offered, after each successful event. Thus, a

trajectory is an object in 2% x (£x2%)" of the form
t= (X0,0'1,X1} ...,Xk_l,crk,Xk),

where o; denotes the ith executed event, and X, the
ith refusal, denotes the set of events refused after the
1th executed event. The initial refusal Xy is the set
of events that are refused before any event is executed.
The trace associated with ¢ is defined as tr(t) = 1...0%.

A trajectory is called valid if o; & X;_; for all i >
0. For a trajectory t = (Xq,{01,X1),..., (08, Xi)), 2
trajectory r is a prefiz of ¢, denoted r<t, if

r = (Xo, (01, X1), ..., (05, X5))

and 0<j<k. The set of all prefixes of ¢ is called the
prefiz-closure of t and is denoted pref(t). A trajectory
r is said to be dominated by ¢, denoted rZ¢, if it is
of the form r = (Yo, (11, Y1), .-y (s, Y2)), with p; =
o; for 1<i<k, and Y;CX; for 0<j<k. The set of all

4446

trajectories dominated by ¢ is called the completion, or
dominance-closure, of t and denoted comp(t). Finally,
we define the closure of ¢, cl(t), as

Cl(t) = Uyecomp(t) pT'Cf('U),

and the closure of a set of trajectories 7 as cl(T) :=
Uyer cl(t). We say that a set of trajectories T is closed®
if T = (7). We say that a set of trajectories 7 is
saturated if the following condition holds:

(Vk=1,2,.)(Vj:0<j<k)(VoeX - Xj)

(((XO, (UI)XI)’ ~-,(0'k,Xk)) eT
/\(Xo,(0‘1,X1),...,(0",Xj)(0',@))¢7-)

= {Xo, (01, X1), ..., (0, X5 U {o})..(ok, X)) € T).

Definition 1 * A (possibly) nondeterministic process
P is a closed and saturated subset P C 2% x (2x2%)".

Let 7 be a set of trajectories. We say that a trajec-
tory t € T is dominant (in 7) if there is no trajectory
t' € T, ¥ # t, such that tCt'. The set of all dom-
inant trajectories in 7 is called the dominance-set of
T and is denoted dom(7). The following proposition
states that a process P is completely characterized by
its dominance set.

Proposition 2 Let P be a process. Then cl(dom(P))
=P.

We shall next examine how trajectory-model represen-
tations of discrete event systems are related to their
representation as automata. Consider a discrete-event
system given by a nondeterministic finite automaton
(possibly with e—transitions), P = (2 U {¢}, @,9, q0)
over the event set X, with a transition function 4 :
Q x (2 U {e}) — 29. Assume, further, that the system
is nondivergent. We proceed now to obtain the set of
trajectories associated with P. First, we associate with
each state ¢€@ its mazimal-refusal-set Xq C X,

Xq = {o€X | (Y¢'ce*(9))d(¢', 0) = B}

where €*(q), the e—closure of ¢, is defined inductively
(8] as

gee*(q) and ¢'€e*(q) = (¢, €)Ce*(q).

With each path p = (qo,01, ¢1, ..., 0%, ¢&) in P, we as-
sociate a trajectory ¢, in the following way: First we
represent p as a formal trajectory by replacing each
state in p by its maximal refusal set. That is, we write
tp = (Xgo, 01, Xq1, -y Ok, Xg,.). (Note that in t,, some
of the o-s may be ¢.) Then, to obtain the trajectory
tp associated with p, we delete all epsilons from fp,
and in the resulting string we replace all consecutive

3 A closed set of trajectories is always nonempty since it in-
cludes the null trajectory (8,¢).

4The above definition is a simplified version of Definition 12.1
in [4] since we deal here only with termination-free nondivergent
processes. The concepts of termination and divergence are dis-
cussed in detail in [4]. Intuitively, a process is nondivergent if it
cannot engage in an unbounded string of unobserved transitions.

refusal sets by their union. Denoting the set of tra-
Jjectories t, associated with all e—stable paths in P by
dom(P) (a path p = (qo,01, 41, --., 0k, g} is e—stable
if no e-transitions emanate from g¢i), the trajectory
model of P (which we also denote P) is obtained as
P = cl(dom(P)).

Conversely, we shall recall [4] that we can construct a
nondeterministic state machine (represented as a tran-
sition graph with e-transitions) directly from the set
dom(P) or, more specifically, from the set M(P) de-
fined as

M(P) = UtEdom(‘P) pref(t)'

In view of the correspondence between trajectory mod-
els and nondeterministic automata, we can use either
of them to model a nondeterministic system. We shall
use the same symbol to denote both the nondeterminis-
tic automaton and its associated trajectory model. The
languages generated and marked by a nondeterministic
automaton R are denoted by L(R) and L,,(R) respec-
tively.

Let L C X* be a prefix-closed language and let 7 M(L)
denote the set of all trajectory models that share L as
their trace set. Then if P and Q are two processes
in TM(L), we are justified in saying that P is more
nondeterministic than Q whenever Q C P [4].

Definition 2 A process P is called deterministic if for
every trajectory (Xo,(o1,X1),..., (0%, X)) € P and
any o € ¥

(Xo, (0‘1, Xl), ooy (O'k,Xk), (0’, ﬁ))ep <
(Xo, (0’1, X1), ey (Uk, XU {0‘}))¢P

The (unique) smallest process in TM(L) is determin-
istic [4] [6] and denoted det(L), and the largest process
in TM(L) (the union of all such processes) is denoted
nondet(L). An algorithm for construction of det(L) is
given in [4].

Consider a nondeterministic automaton, possibly with
¢—transitions,

R = (2U{¢},Q,6,9,)

over the event set . We introduce now a procedure
for constructing a deterministic automaton

R=(SUX,Q,4,q)

over an extended event set SUX', such that R = R\ g

That is, R reduces to R upon replacing by ¢-transitions
all its transitions labeled by events in ¥’. This “lift-
ing” procedure is based on first extending R to a stan-
dard nondeterministic automaton with ¢—transitions,
and then replacing the ¢ labels by labels from the event
set ¥/ = {Tl,TQ, }

4447

Procedure Extend(R — R)

1. @ :=@Q;
2. Foreachge Qando e X
If |6(q,0)| > 1, add one more state, ¢’

and add e—transitions as follows:

Q:=Qu{d}
(g,0) =1{d'};
6(q' €)== d(q,0);

else set
8(g,0) := b(q,0);

3. For each g € Q

Replace the ¢—transitions by transitions la-
beled 71, 74, ... as follows:

If S(q,c) = {q1,--., qn}, then set
(q’ Tl) = {QI}
(Q> Tn) = {Qn}

4. End of Procedure

4 Supervisory control with static specifications

In the present section we briefly review the supervisory
control problem of nondeterministic systems subject to
static (i.e. state-based) specifications [5]. Specifically,
suppose that the system under consideration is mod-
eled as a nondeterministic automaton

= (E U {€}>Q)Ja QO,Qb),

where Qb C Q, qo€Qy, is a subset of forbidden states
that the system is not allowed to visit. Control is
achieved by a supervisor v : L(P) = 2%, where y(s)
is the set of (controllable) events that are disabled by
the supervisor after execution of s. The static supervi-
sory control problem is to construct a legal supervisor
v such that the supervised system /P never visits a
state in @». The supervisor v is also required to be
least restrictive in the sense that for every other legal
supervisor 4/ and every s€L(P), v(s)C+'(s) .

The supervised system, /P, is obtained as follows.

First, the language L(v/P) generated by /P, is given,
inductively, as

1. € € L(y/P); and
2. (Vs € L(v/P))(Vo € X)soc € L(y/P)oso €
L(P) Ao & v(s).

Then the trajectory model v/P of the supervised sys-
tem is obtained as

7/P = Pl|det(L(v/P)),

where .||. denotes the strict synchronous composition of
trajectory models [4] [6]. Next, we lift P by applying
to it the procedure Extend to obtain the deterministic
automaton

P = (Zu E/)QySSQO)Qb)’

where
Q=QU{g€Q—Q:5(g,¢) CQu}.

The “legal” language EC L(P) is now defined to be the
set of all strings that visit only good states in P. That
is, E = {s € L(P) : (Vt < 5)8(qgo,t) & Op}. Tt then
follows that P\g: = P

Furthermore, the supervisor that restricts P to the
supremal controllable and normal sublanguage of E is
also the least restrictive (optimal) legal supervisor for
‘P. Thus, we can translate a supervisory control prob-
lem of a nondeterministic system, subjected to static
specifications, into a supervisory control problem un-
der partial observation of a lifted deterministic system.

5 Supervisory control with dynamic
specifications

In this section we assume that the system under con-
sideration is a nondeterministic automaton

P = (2U{e},Q,6,q0),

and the specification of legal behavior is a dynamic
specification, given to us as a (generally nondetermin-
istic) automaton

H = (SU{e}, H, . ho).

We shall next explain in some detail how we interpret
this dynamic specification as a “bound” on permitted
behaviors that the controlled system is allowed to re-
tain.

First we note that a trajectory in H whose associ-
ated trace is not in L(P) is definitely impossible in
P. Therefore, we must first restrict the specification
to behaviors whose associated traces P is capable of
executing. Thus, we first replace H by
H = (SU{e}, H, ¢, ho) := #||det(L(P)).

We note that # satisfies the constraint L(H) =
L(M)NL(P)CL(P) and retains all the relevant nonde-
terministic aspects of H. Next, we turn to the lan-

guage constraint imposed by # on P. To this end we
construct the deterministic automaton

Ha = (E, Ha, ¥a, hao) := det(L(H)),

whieh we shall employ as our “language specification”.
Next, we extend H,4 to an automaton

Ha= (S, Ha,bg, hao, Ha),

4448

where Hy := HaU{hs}, with hy, being a new state that
we call the bad state, and ¥, being defined as
= i v _ { dalha,0) if Pa(ha, o) is defined
Valha, 0) = { he otherwise.

We immediately note that L(H,) = £* and Ly, (H4) =
L(Hg4) = L(H).

Next we construct the automaton P = P|{H4, which
can be represented as

5 = (E U {6},-67,3, EO’_Q-Q)’

where @ = Q x Ha, Ty = (g0, hao), @, = Q% Hy, and
where for § = (g, h4) € Q and ¢ € %, §(F, o) is defined
as:

3(F,0) = {7 = (6(¢', 0) x ¥(ha,0)) : ¢' € €*(q)}.

We note at once that L, (P) = L(P)NLm (H4) = L(H),
and we can readily prove that the trajectory models of
P and of P coincide:

Proposition 3 P = P.

Thus, the problem of synthesizing a supervisor <y
that maximizes L(y/P) subject to the constraint that
L{y/P)CL(H), is equivalent to synthesizing a supervi-
sor 7 that maximizes L(7/P) subject to the constraint
that L(¥/P)CLm(P). This latter problem consists of
synthesizing a least restrictive supervisor such that all
paths of /P are confined to the subset of good states
_Q_g = @xHy. This is clearly a supervisory control
problem with static specifications of the type discussed
in Section 4.

We now turn to the more restrictive aspect of our spec-
ification, namely, to the requirement that the super-
vised system satisfy the trajectory-model specification
v/PCH.

In view of Proposition 3, we shall employ P as our plant
model. Indeed, in this model we already marked the set
Q, of all the “good” states such that L, (P) = L(H).
It remains now only to determine the subset of these
“good” states that consists of all states that can be
reached via paths whose associated trajectories are in

#H. More precisely, we wish to construct from P, the
automaton

P:=(2U{e},Q,0,7,Q,),
such that a path of P;,
p= (6076;6(%’ ~-;€,ﬁf)°»0'1,ﬁa ~-~,Uk,§11c»f, ~--,§;;k),

belongs to @, (in the sense that each of its states be-
longs to @J;) if and only if its associated trajectory
t, € #H. Thus, @, is the largest subset of states in
Q that can be reached by paths in P;, whose associ-

ated trajectories are in #. To this end we employ the
following

Algorithm 1 (Trajectory inclusion)
Input:

e Plant automaton: P = (ZU {¢}, @, 9, EO,QQ),

* Specification automaton: H = (SU{e}, H, 4, ho)
satisfying L(H) C (Z(P}).

Output:
e Automaton: P, = (XU {¢},@,9,7,,Q,)-

Preliminaries

e Represent P and H as trajectory model automata
by augmenting each state label » with its maxi-
mal refusal set X,.

o Set M := Qg.
e Set M :=0.
o Set Q, := 0.

o Set (V7 € Q,)R(7) :=0.
Initialize algorithm

1. Set T := e*(qo)NM. ¥ T # 0, set T := qp. If
T =0, go to End.

2. Set E := e*(izo).

3. Choose a state h € E.

4. If XzCX;, add h to R(g).

5. Remove h from E.

6. If E#0, go to 3.

7. f R(3) # 0, add 7 to @, and to M.

8. Remove § from M and from T

9. If T # 0, choose a state g&€1" and go to 2.
Iterate

10. If M = 0 go to End.
11. Choose a state §€EM and set

§ =%, i= {oeX : [5(g, o)| > 0}.
12. If S = @, remove § from M and go to 10.
13. Choose a symbol o € S and set
T = @G0 M = {(7) T €8(@,0)} N,
and

E(7,0) := Upepp e (b(h, o))}

14. If T = @, remove ¢ from S and go to 12.

4449

15. Choose a state § € T and set E = E(7,0).

16. Choose a state h'€E.

17. If XzCX;,, add b’ to R(7).

18. Remove A’ from E.

19. If E # 0 go to 16.

20. I R(7) # 0, add 7 to @, and to M.

21. Remove 7' from M and from T and go to 14.

End.

The correctness of Algorithm 1 is stated in the following

Theorem 1 For any path p in P, p belongs to @, if
and only if {, € H.

The above theorem shows that we can always trans-
late a dynamic specification into an equivalent static
specification.

6 Supervisor synthesis

In the previous section we have seen that the super-
visory control problem for a nondeterministic system
with dynamic specification can be translated to an
equivalent problem with static specifications. We shall
thus assume that the problem is already formulated as
one with static specifications. That is, we assume that
the system and specification are described by

P = (E U {6}1 Q’ J! q01 Qb)‘
where @y is the set of bad states that must be avoided.

To synthesize a supervisor we first lift P to P using
the procedure Extend and define E as in Section 4. If
E is not controllable and observable with respect to
L(P), then we find the largest sublanguage of E that
is controllable and observable (which, in view of the
fact that ¥, C £ = %,, is its supremal controllable
and normal sublanguage) and synthesize a supervisor
based on that language. The supervisor design is then
carried out off-line in the usual way [10].

An alternate approach for supervisor synthesis is to
design a supervisor “on-line”. We again lift P to P but
we then proceed somewhat differently: We compute the
supremal controllable sublanguage of the legal language
E. This can be done with linear complexity for a closed
language E. We then design a supervisor on-line using
the results of [3]. The resulting supervisor will generate

the supremal controllable and normal sublanguage of
E.

Finally, we remark that the lifting procedure can actu-
ally be bypassed and a direct synthesis approach can
be employed, as discussed in detail in [6] [5].

References

[1] M. Fabian and B. Lennartson, 1994. Object ori-
ented supervisory control with a class of nondeter-
ministic specifications, Report No CTH/RT/I-94/007,
Chalmers University of Technology, Goteborg, Sweden.

[2] M. Heymann, 1990. Concurrency and discrete-
event control. IEEE Control Systems Magazine, 10(4),
pp. 103-112.

[3] M. Heymann and F. Lin, 1994. On-line control
of partially observed discrete event systems. Discrete
Event Dynamic Systems: Theory and Applications,
4(3), pp. 221-236.

[4] M. Heymann and G. Meyer, 1991. An algebra
of discrete-event processes. NASA Technical Memoran-
dum 1028/8.

[5] M. Heymann and F. Lin, 1995. On observability
and nondeterminism in discrete event control, Proceed-
ings of th 33rd Allerton Conference on Communication,
Control, and Computing, pp. 136-145.

[6] M. Heymann and F. Lin, 1996. Discrete event
control of nondeterministic discrete event systems, CIS
Report No 9601, Technion, Haifa, Tsrael

[7] M. Heymann and F. Lin, 1996. Nonblocking su-
pervisory control of nondeterministic systems, to ap-
pear.

[8] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[9] K. Inan, 1994. Nondeterministic supervision un-
der partial observation. in G. Cohen and J.-P. Quadrat,
Eds., 11th International Conference on Analysis and
Optimization of Systems, pp. 39-48, Springer Verlag.

[10] F. Lin and W. M. Wonham, 1988. On observ-
ability of discrete event systems. Information Sciences,
44(3), pp. 173-198.

[11] F. Lin and W. M. Wonham, 1994. Supervisory
control of timed discrete event systems under partial
observation, IEEFE Transactions on Automatic Control,

40(3), pp. 558-562.

[12] A. Overkamp, 1994. Supervisory control for non-
deterministic systems. Proccedings of 11th Interna-
tional Conference on Analysis and Optimization of Sys-
tems, pp. 59-65.

[13] A. Overkamp, 1996. Supervisory control us-
ing failure semantics and partial specifications, IEEE
Transactions on Automatic Control, to appear.

[14] P. J. Ramadge and W. M. Wonham, 1989. The
control of discrete event systems. Proceedings of IEEE,
77(1), pp. 81-98.

[15] M. Shayman and R. Kumar, 1995. Supervisory
control of nondeterministic systems with driven events
via prioritized synchronization and trajectory models.
SIAM Journal of Control and Optimization, 33(2), pp.
469-497.

4450

