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Proposition ���� Let P be a process� The class of controllable sublanguages of L�P � is

closed under set union�

Consider now a process P � and let �� the deadlock process� serve as supervisor� The con	

trolled process is then given as

���P � � P�jj�c
�� �����

and it is clear from Proposition �� that if S is any supervisor for P � then

L���P � � �S�P �� �����

Thus� the language ���P � is the smallest controllable sublanguage of P � We denote this

sublanguage by SP and call it the spontaneous language of P �

Theorem ���� Let P be a process� Let K � L�P � be a nonempty closed sublanguale� If

SP � K� then K contains a unique nonempty supremal controllable sublanguage�

Let K � �� be a closed language� Two traces s�� s� � K are called �Nerode� equivalent� if for

all t � K� s�bt � K � s�bt � K� Thus� two traces of K are equivalent if they have the same

continuations in K� We denote the �Nerode� equivalence	class of a trace s � K by �s�K or�

when no confusion can arise� simply by �s�� With the aid of the Nerode	equivalence relation�

it is easy to construct a state	transition graph �actually state	transition tree� as follows� Let

the state set Q be identi�ed with the set of all equivalence classes of K� If q� q� � Q are two

states such that q � �s� and q� � �t�� then there is an edge or transition labeled � from q to

q� if s� � �t�� We shall call this transition graph associated with K canonical�

De�nition ���� Let � � � be a given subset� A closed language K � �� is called �	�at if

for any s � K and ��� �� � K

s��� s�� � K � �s��� � �s���� �����

It is clear that if K is a �	�at closed language then the canonical state graph G of K has

the property that� given any state q of G� then all state	transitions labeled with events from

�� lead to the same target state q� �if the set of such transitions at q is nonempty��
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supervisor for a process P � then

L�S�P � � L�P�jj�c
S� � L�P �� �����

We can now introduce the concept of controllable languages�

De�nition ���� Let K be a closed sublanguage of L�P �� K is said to be controllable if and

only if there exists a supervisor S such that

K � L�P�jj�c
S�� �����

The following theorem is an abstract characterization of controllable languages� �Recall that

for a closed language K� det�K� is the deterministic process whose language is K as de�ned

in Section ������

Theorem ���� A closed language K is controllable if and only if

L�P�jj�c
det�K�� � K� �����

Proof� If ����� holds� then det�K� can serve as supervisor and there is nothing to prove�

Conversely� suppose that K is controllable� We need to show that det�K� satis�es ������

i�e�� that det�K� can be used as supervisor� Suppose S is a supervisor such that R �

P�jj�c
S and L�R� � K� Then ����� follows easily from Proposition ������ which implies that

L�P�jj�c
R� � L�R� and Corollary ����� which implies that L�P�jj�c

det�K�� � L�P�jj�c
R��

A more concrete characterization of controllability �which was actually used as de�nition

of controllability by Wonham and Ramadge in ���� is the following corollary to the above

theorem�

Theorem ���� A closed sublanguage K � L�P � is controllable if and only if for all traces

t� � L�P � such that t � K and � � ��

t� �� K � � � �c� ���
�

As an immediate consequence of Theorem ���� we have the following
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of P but their occurrence is possible only if they are not disabled by S� We model this

participation of S in events of �c by allowing them also to take place in S� Thus events of

�c will take place if and only if both processes P and S execute them concurrently� Finally�

events in �d cannot occur without being triggered by S� Thus� they must be in the priority

set B of S� If an event � � �d is also in A� then we interpret it as a closed
loop a closed	

loop driven event� meaning that the controller waits for the occurrence of the event in P

before it proceeds with its own transitions� Thus� closed	loop driven events are� in so far

as concurrancy is concerned� indistinguishable from events of �u �certain other restrictions

must be imposed for physical realizability �see e�g� ��� ���� but this will be of no concern to

us here�� However� events of �d can be triggered also open	loop� and hence will occur in the

concurrent process whenever they are triggered by S �whether or not they also occur in P �

and will occur in P �concurrently� whenever they are possible in P at the time� Open	loop

driven events thus di�er from events in �c in that they can take place in the concurrent

process even if the process P fails to participate� It is easily seen that open	loop driven

events play the same formal role in the supervisor as uncontrollable events in the process�

The controlled� or closed
loop� process is then given by

R � �S�P � �� PAjjBS� �����

The enablement	disablement control mechanism was introduced by Wonham and Ra	

madge in ��� while the �closed	loop� control mechanism with driven events was introduced

by Golaszevski and Ramadge in ���� and� �in a real	time control setting� by Brave and Hey	

mann ��� �and was called there forcing� The open	loop control mechanism with driven events

is new�

We identify process behavior with the language that it generates� Thus� a behavioral

speci�cation is� typically� a statement about languages� If �s � � is some event subset� then

a local speci�cation might consist of a pair of languages Ks� Ks � �s
� such that L�Pn���s

��

the localization of the process language to �s satis�es the constraint

Ks � L�Pn���s
� � Ks� ����

Frequently� Ks � � and the speci�cation might consist of the upper bound constraint only�

If �s � �� we call the corresponding speci�cation global�

In the remainder of the present section we con�ne our attention to the Wonham	

Ramdage framework of control ���� Thus we shall assume henceforth that � � �u � �c�

A �� �u � �c � � and B � �c� In view of Proposition ����� it is then clear that if S is a

��



The process p�P � is called the image of P under p� We can also de�ne the inverse image of a

process Q under a projection operator p as the union of all processes P such that p�P � � Q�

that is

p���Q� ��
�

�P j p�P � � Q��

or� alternatively�

p���Q� �� fe � O� j p�e� � Qg� �����

The proof that the set p���Q� as de�ned above satis�es the conditions of De�nition ���� is

straightforward and is left to the reader�

�� Control

The control of a discrete event process is accomplished through its interaction with the envi	

ronment� Thus� we think of the environment as being capable of in�uencing the occurrence

of certain events in the process under consideration� In particular� if the environment is itself

a process� called a supervisor� control can be achieved by the �prioritized� parallel composi	

tion of the process and the supervisor� To make this idea precise� something must be said

about the events that participate in the control process� Thus� the event set � is partitioned

into three disjoint subsets

� � �u � �c � �d� �����

where �u is the subset of uncontrollable events that occur spontaneously in the process

and cannot be disabled by the environment� �c is the set of controllable events that occur

spontaneously in the process but can be diasabled by the environment �and hence can be

thought of as requiring the participation of the environment�� and �nally �d is the set of

driven events that in order to take place must be triggered� or forced� by the environment�

To make this event classi�cation mathematically more precise� we require that the priority

sets A and B of the process P and the supervisor S� respectively� satisfy the conditions that

�u � �c � A and �c � �d � B�

Our interpretation of these priority sets is then as follows� Events in �u are always

initiated by and occur spontaneously in P � If they can also occur in the supervisor S� this

occurrence will be interpreted as being triggered by P and hence their occurrence in S will be

assumed to coincide with that in P � But if the supervisor cannot execute the corresponding

event in �u� it will still take place in P disregarding S� Events in �c are spontaneous events
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To this end de�ne for a trajectory e � P

ep �� �p��p�X��� ���� p
��p�X��� � � � ��k� p

��p�Xk���� �����

where p���X� denotes the inverse image of X under p�The de�nition of p�P � is then as

follows�

p�P � �� fp�e� � O� j ep � Pg� �����

Notice that ep � P implies that e � P in view of the fact that the inclusionX � p��p�X�

always holds� �The converse implication does not hold in general��

Proposition ����� The set p�P � is a process�

Proof� As usual� we need to show that conditions C�	C� of De�nition ���� are all satis�ed�

Thus� note �rst that for the trajectory e � ��� ��� p�e� � ��� ��� Also� p����� �� � ��� ���

whence ��� �� � p�P � and condition C� holds� To see that condition C� holds� suppose that

for some trajectory p�e� � p�P � �e � P � and some i� p��i� � p�Xi���� Then �i � p�Xi��

which is impossible since by de�nition of p�P �� p�e� � p�P � only if ep � P � Hence condition

C� holds� We turn now to condition C� and proceed as follows� Assume that

p�e� � �p�X��� �p����� p�X��� � � � �p��k�� p�Xk��� � p�P �

p�h� � �p�X��� �p����� p�X��� � � � �p��j�� p�Xj���p���� ��� �� p�P ��

Then by �����

ep � �p��p�X��� ���� p
��p�X��� � � � ��k� p

��p�Xk��� � P

hp � �p��p�X��� ���� p
��p�X��� � � � ��j� p

��p�Xj����� ��� �� P�

Upon applying condition C� to P � we then conclude that

gp �� �p��p�X��� ���� p
��p�X��� � � � ��j� p

��p�Xj � f�g�� � � � ��k� p
��p�Xk��� � P�

Thus

g �� �p�X��� �p����� p�X��� � � � �p��j�� p�Xj � f�g�� � � � �p��k�� p�Xk��� � p�P �

and condition C� holds� The remaining conditions are straightforward�
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Finally� the following relation between parallel composition and internalization will be im	

portant to our study of control�

Proposition ����� L��PAjjBQ�n��A� � L�Pn��A��

Proof� Since for a process P � we can identify L�P � with PT � its set of free trajectories �see

Section ������ we need to consider only the free trajectories of P and Q� We proceed by

induction on trajectory length� The trajectory ��� �� is in every process� So assume that the

proposition holds for all trajectories of length up to and including k� We shall show that the

proposition holds also for trajectories of length k � �� Let ��� w� � �PAjjBQ�n��A� be a free

trajectory of length k and� for � � A� assume that ��� wb��� ��� � �PAjjBQ�n��A� We wish

to show that this implies that ��� wb��� ��� � Pn��A as well� Let E be the subset of all free

trajectories e � P for which there exist f � Q satisfying

��� w� � en��A � �eAjjBf�n��A�

�Notice that free trajectories are always valid�� By assumption� the set E is nonempty and

for some e � E there exists f � Q� such that ��� w b ��� ��� � �eAjjBf� b ��� ��n��A� Since

� � A it then follows from De�nition ����� that eb��� �� � P � concluding the proof�

���� Projection Operator

Let p � �� � be a map� and extend p to a map b� � b� by de�ning p�	� �	 and p�
� �
�

Let P � P� be a process and let

e � �X�� ����X�� � � � ��k�Xk�� � P

be a trajectory� Then the map p is extended to trajectories by letting

p�e� � �p�X��� �p����� p�X��� � � � �p��k�� p�Xk���� �����

where for a subset X � ��� p�X� �� fp�x�jx � Xg� The map p is applied to execution

strings in a similar way� We call this operator p a projection operator� We wish to de�ne

p�P � to be the process whose execution strings are p�w� whenever the execution strings of

P are w� that is�

P
w
� Q � p�P �

p�w�
� p�Q�� ���
�
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Lemma ���� Let e �� �X� �� � �a � P �� If enfag �� e� � �a� P �nfag� then e � P and

enfag � Pnfag�

Proof� Let �X� �� � �a � P �� Then a �� X and� by condition �i� of De�nition �����

�X� ��nfag �� �X� ��� � �a � P �nfag if and only if for every fag�stabilizing �right�

execution string w such that �X�w� � �a� P �� �X�wfag� is valid� But each such execution

string w can be written as w � ��a� Z�bv�� where �Z� v� is a trajectory of P � Since v is clearly

also an fag�stabilizing �right� execution string� and wfag � vfag� it follows from condition �i�

of De�nition ���� �applied now to P � that if �X� �� � P then �X� ��nfag � Pnfag� It remains

to be shown that �X� �� � P � If �X� �� �� P � then there exists Y � X and x � X � Y such

that �Y� �� � P and �Y � fxg� �� �� P � By Condition C� of De�nition ���� this implies that

�Y� �x� ��� � P which in turn implies that �X� �a� Y ��x� ��� � �a� P �� Since x � X� it then

follows that �X� �x� ��� is not valid� But this is impossible since �X� ��nfag � �a � P �nfag�

concluding the proof�

Proof of Proposition ������ We shall prove the case when b � a� The case when

b �� a is straightforward� First note that as an immediate consequence of Lemma ���� we

have that Pnfag � �a � P �nfag� Thus� we only need to prove the reverse inclusion� i�e��

that �a � P �nfag � Pnfag� By Lemma ����� this is true for all trajectories of the form

e � �X� �� � �a � P �� As a further consequence of Lemma ���� it follows that for every

trajectory e � ��X� a��Y�� ��� � � � �Yk��� �k�� Yk� � �a � P �� such that enfag � �a � P �nfag�

there exists cY� � X such that f � ��cY�� ��� � � � �Yk��� �k�� Yk� � P � fnfag � Pnfag and

fnfag � enfag� This concludes the proof�

The internalization operator distributes over the internal choice�

Proposition ����	 �P �Q�nfag � Pnfag �Qnfag�

The internalization operator does not distribute over the external choice operator but the

following simplifying equation holds�

Proposition ����
 ��a� P � �Q�nfag � Pnfag � �P �Q�nfag�
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with w�n� as de�ned below� We can rewrite w� as

w� � ��X�� ����X�� � � � ��l���Xl����� �l� � �e�� �l�

where

e� � �X�� ����X�� � � � ��l���Xl�����

We now have

w�n� �� �e�n�� �l�� �����

where e�n� is the ��internalization of e� as de�ned above�

Example ���
 Let � � fa� b� c� dg� � � fag�and

w � �fc� dg� a��fb� dg� a��fa� b� cg� d��fb� c� dg� a��

Then�

wn� � �fb� c� dg� d��

Proposition ����� P
w
� Q � �Pn��

wn�� �Qn���

The above proposition implies� just as we might expect� that events in � occur sponta	

neously whenever they can and the process Pn� undergoes corresponding unobserved �silent�

transitions�

Proposition �����

�b� P �nfag �

��
�

Pnfag if b � a

�b� Pnfag� if b �� a

For the proof of Proposition ���� we shall make use of the following lemmas�

Lemma ����

�i� ���� a�bw�X�nfag � �w�X�nfag�

�ii� ���� a�bw�X�nfag � �a� P �nfag � �w�X�nfag � Pnfag�

��



Theorem ���� The internalization operator is well de�ned�

Proof� We need to show that for a process P � the set Pn� is a process� and thus satis�es

the conditions of De�nition ����� Conditions C�	C as well as C� are straightforward and

we shall prove condition C��

Let en� � �Y�� ���� Y�� � � � ��k� Yk�� � Pn� and assume that for some j � �  j  k and

some � � ����Yj� �Y�� ���� Y�� � � � ��j� Yj���� ��� �� Pn�� We need to show that this implies

that �Y�� ���� Y�� � � � ��j� Yj � f�g� � � � ��k� Yk�� � Pn��

Write e � �X�� ubw�� where u � ����X�� � � � ��l�Xl�� w � ��l���Xl��� � � � ��m�Xm�� and

�X�� u�n� � �Y�� ���� Y�� � � � ��j� Yj��� From the assumption that �Y�� ���� Y�� � � � ��j� Yj���� ��� ��

Pn�� we can conclude� upon making use of De�nition ���� �iii�� that �X�� ub��� ��� �� P � But�

upon applying condition C� of De�nition ���� to P � this implies that be � �X�� ����X�� � � � ��l�Xl�

f�g� � � � ��m�Xm� � P � Consequently� ben� � �Y�� ���� Y�� � � � ��j�Xj � f�g� � � � ��k�Xk�� �

Pn� and the proof is complete�

The following property is also easily proved

Theorem ���� For subsets ����� � �� �Pn���n�� � �Pn���n�� � Pn����� �

We turn now to the operational �transition� behavior of the internalization operator� First

we need to de�ne the internalization of �left� execution strings� If w is an execution string

of the process P � we shall denote by wn� the corresponding execution string of Pn� �after

internalization�� Let

w � �X�� ��� � � � �Xk��� �k��

If �i � � for all i � �� � � � � k� we de�ne wn� �� �� the empty string� In the general case�

write w � w�bw��� where

w� � �X�� ��� � � � �Xl��� �l��

w�� � �Xl� �l��� � � � �Xk��� �k��

with �l � ���� and �i � � for all i � l� �� � � � � k� We de�ne wn� as follows�

wn� �� �w�bw���n� �� �w�n��b�w���n�� � �w�n��b� � w�n��

��



De�nition ���� For a process P � the process Pn� is given as follows�

�i� �X�� ��n� � Pn� � either ��� �X� � f	g� �� � P � or ��� �X�� �� � P and for every

�	stabilizing execution string v such that �X�� v� � P � �X�� v
�� is valid�

�ii� �X� � f	g� ��n� � Pn� � either ��� �X� � f	g� �� � P � or ��� � a �	divergent

sequence of execution strings fwig such that �X�� w
i� � P for all i�

�iii� If en� � Pn�� where e � �X�� w� � P � and if f � �X�� w b ��k���Xk���� � P � Then

fn� � Pn� � either ��� f� �� �X�� w b��k���Xk�� � f	g�� � P � or ��� fn� is valid�

and �X�� w b ��k���Xk���bv�� is valid for every �	stabilizing execution string v such

that �X�� wb��k���Xk���bv� � P �

�iv� If en� � Pn�� where e � �X�� w� � P � and if f � �X�� w b ��k���Xk���� � P � Then

f�n� � Pn� � either ��� f� � P � or ��� � a �	divergent sequence of execution strings

fwig such that �X�� wb��k���Xk���bwi� � P for all i�

Example ���� Let � � fa� b� c� dg� let � � fag and let P be the following process�

P � genf�fc� dg� �b� fa� b� c� dg���

�fc� dg� �a� fb� dg��c� fa� b� c� dg��

�fc� dg� �a� fb� dg��a� fa� b� cg��d� fa� b� c� dg��g�

Then

Pnfag � genf��� �b� fb� c� dg��

�fbg� �c� fb� c� dg��

�fb� cg� �d� fb� c� dg���

Example ���	 Let � � fa� b� c� dg� let � � fag and let P be the following process�

P � genf�fc� dg� �b� fa� b� c� dg���

�fc� dg� �a� fb� dg��c� fa� b� c� dg��

�fc� dg� �a� fb� dg��a� fa� b� cg��d� fa� b� c� dg�� ����

�fc� dg� �a� fb� dg��a� fb� cg���g�

Then

Pnfag � r �����

We have the following

�




observed process� denoted Pn��� P��� where � �� ���� we de�ne below a internalization

operator

�� � P� � P� � P ��� Pn� �����

that deletes from P all events of P that belong to ��

To de�ne the operator �� we proceed as follows� �We shall use here right representations

of trajectories��

For a trajectory

e � �X�� w� � �X�� ����X�� � � � ��k�Xk�� �����

let en� denote the trajectory obtained from e as follows�

�i� Delete from e all occurrences of event symbols that belong to � �both as executed

events and refused events�� Thus� each refusal set Xi becomes Xin��

�ii� Replace all consecutive refusal sets whose associated execution event symbols have

been deleted� by their union� That is� if �in e� �i�� � � �� and �i� �i��� � � � � �l � ��

then replace Xi��n� by �Xi��n�� � �Xin�� � � � � � �Xln���

Example ���� Let � � fa� b� c� dg� � � fa� bg and

e � �fa� dg� �b� fc� dg��a� fb� cg��d� fa� b� dg��c� fa� b� c� dg���

Then

en� � �fc� dg� �d� fdg��c� fc� dg��

Let w � ��j���Xj��� � � � ��l�Xl� be an execution string� We say that w is �	stabilizing

provided �l � ��� and �i � � for i � j��� � � � � l��� If w is �	stabilizing� we de�ne w� ��

��l�Xl�� The execution string w is called �
nonstabilizing if �i � � for all i � j��� � � � � l� A

sequence of execution strings fwig�i	� is called �
divergent if for each i� wi is a proper pre�x

of wi�� and all wi are �	nonstabilizing�

Recall that a trajectory is valid if �i �� Xi�� for all i� We can now de�ne the operator

�� inductively�

��



Proof� First note that

RBjjBQ � �PAjjBQ�BjjBQ �by de�nition�

� PAjjB�QBjjBQ� �by �����

� PAjjBQ �by ������

� R� �by de�nition�

Thus� in view of Proposition ����� we have

L�R� � L�RBjjBQ� � L�RAjjBQ��

To complete the proof we need to show that the reverse inclusion holds� i�e�� that

L�RAjjBQ� � L�R�� ����

First observe that

R � PAjjBQ �by de�nition�

� PAjjB�QAjBQ� �by ������ ��
�

� �PAjjAQ�AjjBQ� �by �����

Also� by de�nition of R�

RAjjBQ � �PAjjBQ�AjjBQ� �����

In view of Proposition ������ we have

L�PAjjBQ� � L�PAjjAQ�� �����

which� with the aid of ���� yields

�PAjjBQ�AjjBQ � �PAjjAQ�AjjBQ� �����

Upon combining ��
�� ����� and ����� we obtain ����� concluding the proof�

���� Internalization Operator

Let P � P� be a process and suppose that the external observer can observe only those

events of P that are in a proper subset � � �� To obtain a suitable model for this partially

��



�i� There exists e � E�w� and f � F �e� such that eb��� �� � P and f b��� �� � Q� Then

��� wb��� ��� � �eb��� ��A� jjBf b��� ��� � �PA� jjBQ��

�ii� For all e � E�w� there exists no f � F �e� such that f b��� �� � Q� Then ���� implies

that � �� B� whence

��� wb��� ��� � �eb��� ��A�jjBf� � �PA� jjBQ��

�iii� There is no e � E�w� such that eb��� ��� � P � In this case ���� implies that � �� A�

and since A� � A�� it follows that � �� A�� Thus

��� wb��� ��� � �eA�jjBf b��� ��� � �PA� jjBQ��

This completes the proof�

Proposition ����� Let P and Q be processes� If L�P � � L�Q� then� for all A�B � ��

L�P � � L�PAjjBQ�� ���

Proof� Elementary�

Proposition ����� Let A�B � � be any subsets and let P�� P� and Q be processes� Then

L�P�� � L�P�� � L�P�AjjBQ� � L��P�AjjBQ�� ����

An immediate consequence of the above Proposition is the following

Corollary ���� L�P�� � L�P�� � L�P�AjjBQ� � L�P�AjjBQ��

Proposition ����� Let P and Q be processes and let A�B � � satisfy A � B� Let R ��

PAjjBQ� Then

L�RAjjBQ� � L�R�� ����

��



participation of the other process whenever possible� At the same time a process

cannot execute events in the other process� priority set without the other process�

participation�

� B � A� Events in � � A can be executed by each process without interference by

the other process but with synchronous participation of the other process whenever

possible� Events in A�B require participation of process P for execution while events

in B require participation of both processes� otherwise deadlock will occur�

There is one additional special case that is not explicitly parametrized by A and B that

deserves attention� Let � � �P � �Q where �P includes all events that process P can ever

execute and similarly for �Q� Then each event in � �� � � �P � �Q can be executed by

at most one of the two processes� Thus for events in � the parallel composition operator

models event interleaving�

The following results will be useful in discussing certain control problems�

Theorem ���
 If P and Q are deterministic processes then for any A�B � �� the process

PAjjBQ is deterministic as well�

Proposition ����� Let A�� A�� B � � be any subsets and consider processes P and Q� If

A� � A�� then

L�PA� jjBQ� � L�PA� jjBQ� ����

Proof� Since for a process P we can identify L�P � with PT � its set of free trajectories �see

Section ������ we need to consider only the free trajectories of P and Q� We will proceed

by induction on trajectory length� The trajectory ��� �� is in every process� so assume that

the proposition holds for all free trajectories of length up to and including k� We shall show

that it holds also for trajectories of length k � �� Let

��� wb��� ��� � �PA� jjBQ�� ����

where ��� w� � �PA� jjBQ� is a �free� trajectory of length k� Let E�w� denote the set of all

free trajectories e � P for which there exist f � Q such that

��� w� � �eA�jjBf�� ����

For each e � E�w� let F �e� denote the set of all trajectories f satisfying ����� To show that

��� wb��� ��� � �PA� jjBQ�� we must consider three cases�

�



The operational behavior of the operator AjjB is exhibited in a transparent way by the

following transition formulas �we use the right representation��

Let ���X� be an execution� Then

P
���X�
�� P � � Q

���X�
�� Q� � PAjjBQ

���X�
�� P �

AjjBQ
� ���
�

P
���X�
�� P � � Q

���X�
�� n � PAjjBQ

���X�
��

��
�

P �
AjjBQ if � �� B

n if � � B
����

Q
���X�
�� Q� � P

���X�
�� n � PAjjBQ

���X�
��

��
�

PAjjBQ
� if � �� A

n if � � A�
����

where the notation P
���X�
�� n means that the execution ���X� is not possible for P �

Equation ���
� states that if a given execution ���X� is possible for both processes P

and Q� then it will be executed simultaneously �i�e�� in synchronization� in both processes�

When an execution is initiated by one of the processes �and hence is of course possible in

it� but is not possible in the other� the initiating process will execute the event on its own

unless the event symbol is in the blocking� or priority� set of the other process� in which case

the execution will be blocked leading to a deadlock�

The above de�nition of concurrency� being parametrized by the two priority sets� models

a wide range of behaviors depending on the chosen values of the parameters� Let us consider

a number of interesting special cases�

� A � B � �� Strict synchronization is obtained� events are executed if and only if they

are possible in both processes� and deadlock occurs otherwise�

� A � B � �� This is the� so called� broadcast synchronization in which case each process

can o�er� at will� events for execution� If the other process can execute the o�ered event

as well� they will execute it together in synchronization� otherwise the initiating process

will execute the o�ered event by itself� Obviously� broadcast synchronization can never

lead to deadlock�

� A � B � S �� �� This parametrization models strict synchronization for events in S

and broadcast synchronization for events in � � S�

� A � B � � and A � B � �� In this case each process can execute events in its own

priority set without interference of the other process with assurance of synchronous

��



Parallel composition distributes over the internal choice operator and we have the following�

Theorem ���� For processes P � Q and R with priority sets A and B

PAjjB�Q�R� � �PAjjBQ�� �PAjjBR�� �����

In fact� the above theorem generalizes to arbitrary sets of processes as follows

Theorem ���	 Let D ba an arbitrary set of processes� Then

�
P��D

�P�AjjBQ� � �
�

P��D

P��AjjBQ� �����

The fact that parallel composition does not� in general� distribute over the external

choice operator is exhibited by the following simple

Example ���� Let � � fa� b� cg� let

P � genf�fbg� �a� fa� b� cg��� �fbg� �c� fa� b� cg��g�

Q � genf�fb� cg� �a� fa� b� cg���

R � genf�fa� cg� �b� fa� b� cg���

�����

and A � fa� cg� B � fa� bg�

Then

S �� PAjjB�Q�R� � gen

����
���

�f�g� �a� fa� b� cg���

�f�g� �b� fa� bg��c� fa� b� cg���

�f�g� �c� fa� cg��b� fa� b� cg���

T �� PAjjBQ� PAjjBR � gen

�������
������

�f�g� �a� fa� b� cg���

�f�g� �c� fa� b� cg���

�f�g� �b� fa� bg��c� fa� b� cg���

�f�g� �c� fa� cg��b� fa� b� cg���

Thus� the process T can deadlock after an initial execution of c while the process S

cannot�

��



 From condition C� we know that

bg � �Z�� ���� Z�� � � � ��m� Zm�� � �beAjjB bf � � PAjjBQ

for suitable pre�xes

be � �X�� ����X�� � � � ��i�Xi�� � �X�� bw�
bf � �Y�� �	�� Y�� � � � �	j � Yj�� � �Y�� bv�

of e and f � respectively� We must consider three cases in which ����� can hold�

�i� �X�� bwb��� ��� � P � �Y�� bvb��� ��� �� Q� and � � B� By applying condition C� to Q� it

follows that

f � � �Y�� �	�� Y�� � � � �	j � Yj � f�g�� � � � �	l� Yl�� � Q�

Furthermore� � � B implies that S�Xi� Yj �f�g� � S�Xi� Yj��f�g� and it follows that

Zm � f�g � S�Xi� Yj � f�g�� It now easily follows that

g� � �eAjjBf
�� �� PAjjBQ�� �����

�ii� �X�� bwb��� ��� �� P � �Y�� bvb��� ��� � Q� and � � A� This case is similar to case �i��

�iii� �X�� bw b ��� ��� �� P � �Y�� bv b ��� ��� �� Q� By applying condition C� to P and to Q it

follows that

e� � �X�� ����X�� � � � ��i�Xi � f�g� � � � ��k�Xk�� � P

f � � �Y�� �	�� Y�� � � � �	j � Yj � f�g� � � � �	l� Yl�� � Q�

Also� S�Xi � f�g� Yj � f�g� � S�Xi� Yj� � f�g� It is now not di!cult to show that

g� � �e�AjjBf
�� �� PAjjBQ��

This completes the proof�

The following properties of the parallel composition operator are not hard to prove�

Theorem ���� For processes P � Q and R with priority sets A� B and C� respectively�

PAjjBP � P �����

PAjjBQ � QBjjAP �����

�PAjjBQ�A�BjjCR � PAjjB�C�QBjjCR�� ����

��



then by application of �iic� above it follows immediately �since 	� �td� that

prefj���f� � �eAjjBprefj���f
����

We now have the following Theorem�

Theorem ���� The process PAjjBQ is well de�ned�

Proof� We need to show that the conditions of De�nition ���� are satis�ed� First note that

S��� �� � �� whence ��� �� � PAjjBQ and C� holds� To prove C�� we proceed inductively�

The condition holds trivially for �eAjjBf�� where e � �X� �� and f � �Y� ��� So assume that

it holds for �eAjjBf� where e and f are given by ����� and ����� respectively� If for some

i � �  i  k

�X�� ����X�� � � � ��i�Xi � f	g�� � P� ���
�

or if for some j � �  j  l

�Y�� �	�� Y�� � � � �	j � Yj � f	g�� � Q� �����

then there is nothing more to show in view of condition C� of De�nition ���� �see also

Proposition ���
�� So assume that ���
� and ����� are false for all i and j� respectively� and

let e� � P and f � � Q be given� respectively� by ����� and ������ Then � �� Xk and 	 �� Yl and

we need to consider three cases� First� if � � 	� then � �� Xk �Yl and it follows immediately

that � �� S�Xk� Yl�� Thus� C� holds for �e�AjjBf ��� Next� if � �� B it again follows that

� �� S�Xk� Yl� and C� holds for �e�AjjBf�� Finally� if 	 �� A� then 	 �� S�Xk� Yl� and C� holds

for �eAjjBf ��� This proves condition C�� Conditions C�� C� and C are straightforward and

condition C� is proved in a manner similar to the proof of Proposition ���
� We turn to

condition C�� Assume that

g � �Z�� ���� Z�� � � � ��n� Zn�� � �eAjjBf� � PAjjBQ

for trajectories e � P and f � Q where e and f are given� respectively� by ����� and �����

and assume further that for some m � �  m  n and some � � �� Zm� the trajectory

�Z�� ���� Z�� � � � ��m� Zm���� ��� �� PAjjBQ� �����

We need to show that the above implies that

g� � �Z�� ���� Z�� � � � ��m� Zm � f�g� � � � ��n� Zn�� � PAjjBQ�

��



and let

e� � eb���Xk��� � P� �����

f � � f b�	� Yl��� � Q� �����

Then

�a� �e�AjjBf �� ��
��
�
fg � hb���Z� j h � �eAjjBf� � Z � S�Xk��� Yl���g if � � 	

unde�ned otherwise

�b� �e�AjjBf� ��

�������
������

fg � hb���Z� j h � �eAjjBf� � Z � S�Xk��� Yl�g if f b��� �� �� Q and � �� B� or

if 	� Xk

unde�ned otherwise

�c� �eAjjBf �� ��

�������
������

fg � hb�	�Z� j h � �eAjjBf� � Z � S�Xk� Yl����g if eb�	� �� �� P and 	 �� A� or

if 	� Yl

unde�ned otherwise

Before proceeding with our discussion� let us note the following

Proposition ���� For any process P and subsets A�B � �

PAjjBr � r �����

Proof� Since� obviously� PAjjBr � r� we only need to show that the reverse inclusion holds

for an arbitrary process P � Let f � �X�� ����X�� � � � ��k�Xk�� � r be any trajectory� Then

f � comp�f�� where f� � ��td� �����td� � � � ��k��td�� � r� We will be done by showing that

f � �eAjjBf��� where e � ��� �� � P �arbitrary P �� Indeed� by employing �i� above we obtain

that

pref ��f� � �X�� �� � �eAjjBpref��f
��� � f�Z� �� � Z � �tdg�

Proceeding inductively� it is not di!cult to see that if we assume that

prefj�f� � �X�� ����X�� � � � ��j�Xj�� � �eAjjBprefj�f
����

��



Corollary ����

P �Q � �P �Q�� P � �P �Q� � P � P �Q�

P �Q � �P �Q��Q � �P �Q� �Q � P �Q�

���� Parallel Composition

In this section we introduce the operation of parallel composition� The operator that we

present here extends signi�cantly the scope of synchronization operators previously proposed

in the literature� Speci�cally� our operator can model synchronizations ranging from rigid

concurrency �with deadlock� to broadcast synchronization ���� that is deadlock free� It is this

operation that requires the extended modeling framework developed in the present paper�

Let P and Q be processes in P� and let A and B be subsets of �� that we call the

blocking or priority sets of P and Q� respectively� We de�ne now the prioritized synchronous

composition of P and Q with priority sets A and B� denoted PAjjBQ� as follows�

PAjjBQ �� fg j �e � P� f � Q � g � �eAjjBf�g� �����

where �eAjjBf� denotes the set of all successful synchronized interleavings of e and f as

de�ned below� We shall also need the following notation� For subsets X�Y � � de�ne

S�X�Y � � SA�B�X�Y � ��

��
�

�X � Y � � �X �A� � �Y �B� if 	�� X � Y

�td otherwise
�����

The set S�X�Y � is a composite refusal set and represents the idea that an event is refused if

it is either refused by both processes or if it is refused by one process that can block it �i�e��

the event is in the refusing process� priority set��

The de�nition of �eAjjBf� is given inductively as follows� �It will be convenient here to

use the right representation of trajectories��

De�nition ���� �i� For e � �X�� �� � P and f � �Y�� �� � Q�

�eAjjBf� �� f�Z� ��jZ � S�X�� Y��g�

�ii� Assume that �eAjjBf� is de�ned for trajectories

e � �X�� ����X�� � � � ��k�Xk�� � P� �����

f � �Y�� �	�� Y�� � � � �	l� Yl�� � Q� ����






where

R�c� � P �c� if c � A�B

� Q�c� if c � B �A

� P �c��Q�c� if c � A � B�

Also�

�a � A� P �a��� �a � A� Q�a�� � �a � A� P �c��Q�a��� �����

As a further illustration of how the operators � and � di�er from each other� consider

the following example�

Example ���� Lel � � fa� bg and de�ne the processes P � �a� �� � gen��fbg� a�� fa� bg�

and Q � �b � �� � gen��fag� b�� fa� bg�� We can obtain a variety of composite porocesss

from P and Q by using the external and internal choice operators as follows�

P �Q � genf���� a�� fa� bg�� ���� b�� fa� bg�g�

P �Q � genf��fbg� a�� fa� bg�� ��fag� b�� fa� bg�g�

�P �Q�� P � genf���� a�� fa� bg�� ���� b�� fa� bg�� ��fbg� a�� fa� bg�g�

�P �Q��Q � genf���� a�� fa� bg�� ���� b�� fa� bg�� ��fag� b�� fa� bg�g�

The above example is a special case of the following summary of the possible ways choice

between two processes can be exercised� We express the di�erent choice operators in a

symmetric fashion to emphasize the distinctions�

Proposition ����

P �Q �

��
�
fe � �P �Q� j pref��e� � P �Qg if P �Q �� r

r otherwise

�P �Q�� P � �P �Q� � P �

��
�
fe � �P �Q� j pref��e� � Pg if P � Q �� r

r otherwise

�P �Q��Q � �P �Q� �Q �

��
�
fe � �P �Q� j pref��e� � Qg if P �Q �� r

r otherwise

P �Q �

��
�
fe � �P �Q� j pref��e� � P �Qg if P �Q �� r

r otherwise

An immediate consequence of the above proposition is the following

�



Corollary ���� Let P�Q � P�td
be processes� Then

�a� P � � �a� Q� � �a� P �� �a� Q��

�a� P � � �a� Q� � �a� P �Q��

We also have the following distributivity laws for � and ��

Proposition ���
 Let P � Q and R be processes in P�td
� Then

�P �Q��R � �P �R� � �Q�R�� �����

�P �Q� �R � �P �R�� �Q�R��

Proof� We shall prove the �rst distributivity law� The second one follows similarly�

�P �Q��R �

� �P �Q� � R

�

��
�
fe � P �Q �R j pref��e� � ��P �Q� �R�g if P �Q �� r

r�R otherwise

�

��
�
fe � �P �R� � �Q �R� j pref��e� � ��P �R� � �Q �R��g if P �Q �� r

r otherwise

�

��
�
fe � �P �R� � �Q �R� j pref��e� � ��P �R� � �Q �R��g if �P �R� � �Q � R� �� r

r otherwise

� �P �R� � �Q�R��

The third equality above follows from the fact that if R � r� the condition pref��e� �

��P �R� � �Q �R��g is obviously always satis�ed�

An immediate consequence of the above discussion is the following� Let A�B � �� Then

�a � A� P �a�� � �b � B � Q�b�� � �c � A � B � R�c��

�



Proposition ���� The external choice operator is well de�ned and continuous�

The external choice operator is easily seen to be idempotent� commutative and associative�

with the process � serving as unit and the process r serving as a zero� that is� for processes

P � Q and R we have�

P �� � P

P �r � r �����

P � P � P

P �Q � Q� P �����

�P �Q� �R � P � �Q�R��

By Theorem ����� the union R of two processes P and Q is a process� The process R

can initially either refuse events that can be refused by P or events that can be refused by Q

but the choice cannot be in�uenced by the environment� We interpret this choice as being

determined internally in the process by a completely nondeterministic mechanism� We call

this choice the internal choice operator� denoted �� Thus� for processes P and Q� we de�ne

P �Q �� P � Q� �����

Obviously� just as the operator �� the operator � is also idempotent� associative and com	

mutative� and has r as the zero� However� it does not have � as its unity� It is interesting

to observe that� in view of Equation ����� R � P � Q implies that R
�
� P and R

�
� Q�

namely� both P and Q are �	postprocesses of R� Indeed� operationally� R is precisely the

process that either makes a silent transition to become P or it makes a silent transition to

become Q� As a special case of the above� we have

P � P �Q � P
�
� Q � P v Q ���
�

Proposition ���� The internal choice operator is continuous�

Consider now the case when we have two pre�x processes P � �a � P �� and Q �

�a� Q� and let R � P �Q� The �rst event of the process R is the event a� after which it

evolves either to P or to Q but the choice of whether� after the execution of a� the process

R behaves like P or like Q is not speci�ed by the process and� thus� cannot be in�uenced

by the environment� The above is a special case of the following proposition which is an

immediate consequence of the de�nitions of the operators � and ��

Proposition ���	 Let P�Q � P�td
be processes such that �X� �� � P if and only if �X� �� �

Q� Then P �Q � P �Q�

�



�Notice that the event a is a bound variable in the above expression�� As before� if Q�a�

makes silent transitions� so does the process ������ that is�

Q�a�
�
� Q��a� � �a � A� Q�a��

�
� �a � A� Q��a��� �����

In the process ������ the selection of the �rst event a � A is deterministic� that is�

completely controlled by the environment� Furthermore� upon selection of the event a � A�

the speci�c process �a � Q�a�� is completely determined� This leads us to an important

interpretation of the parameterization of the pre�x construction� Consider� for simplicity�

the case where A � f��� ��g� For each �i� the process ��i � Q��i�� is given by ����� and

the parameterized pre�x construction is given by ������ It is then easy to check that the

following holds

��i � f��� ��g � Q��i�� �

fe � ��� � Q����� � ��� � Q����� j

pref��e� � ��� � Q����� � ��� � Q�����g� �����

Thus� the parameterization of the pre�x construction can be interpreted as an operator

on processes that deterministically selects a process from a speci�ed class of processes through

the execution of the �rst event� We call this operator the external choice operator and denote

it by the addition symbol �� Thus for two processes ��� � Q����� and ��� � Q������ we

can write

��� � Q����� � ��� � Q����� �� ��i � f��� ��g � Q��i��� �����

The external choice operator can be extended to processes that do not necessarily have

disjoint initial events� For two arbitrary processes P and Q� the external choice operator is

de�ned as�

P �Q ��

��
�
fe � P �Q j pref��e� � �P �Q�g if P �Q �� r

r otherwise
����

Thus� the process P �Q can initially refuse only events that can be refused by both P and

Q and afterwards evolves either to P or to Q� unless one �or both� of the processes diverges

from the start� in which case so does also the process P � Q� The important point is that

at the start� the composite process has externally available all events that are externally

available to either of the individual components unless one or the other diverges� The choice

of initial event can thus be decided by the environment whenever it can be decided by the

environment in the component processes�





We interpret the process �� � Q� as the process that �rst executes the event � and then

proceeds like Q� Thus� we can de�ne the process P as

P � �� � P��� �����

and for an execution string w � Q we can write

Q�w � �� � Q���bw� �����

where �bw � ��� ��bw� If the process Q makes silent transitions� then so does also the process

��� Q� and it follows that

Q
�
� Q� � ��� Q�

�
� �� � Q��� ���
�

By Theorem ����� the pre�x operator is continuous if it is monotonic and pre	image �nite�

Both of these properties are obvious from the de�nition� whence we have

Proposition ���� The pre�x operator ��� �� is continuous�

An example of a process built with the pre�x construction is

Example ���� The process �� � ��� � This process is �see Example ���� and the de�n	

ing expression ���� above�

�� � �� � f���X� jX � �� f�gg � f��Y� ��b��X� j Y � � � f�g � X � �g

� gen���� f�g� ������

The pre�x construction can be parameterized as follows� Let A � � be a subset of

event symbols and for each a � A� let Q�a� be a process� Then we de�ne the parameterized

pre�x process

�a � A� Q�a�� �����

as the process that for any event a � A �rst executes the event a and then proceeds to

execute Q�a�� It is given by

�a � A� Q�a�� � f���X� jX � � �Ag �

f��Y� a�bw�X� j a � A� Y � ��A� �w�X� � Q�a�g� �����

�



Finally� we remark that a construction similar to the above can be applied to processes

de�ned by mutually recursive equations such as

Pi � fi�P�� � � � � PN � i � �� � � � � N� �����

���� Pre�x Construction and Choice Operators

Let Q � P�td
be a process and let � � � be an event symbol� We de�ne the process

P �� �� � Q� �����

by

P � �� � Q� � f���X� jX � �� f�gg

� f��Y� ��bw�X� j Y � �� f�g� �w�X� � Qg� ����

To see that P as given by ���� is a well de�ned process� we must verify that it satis�es

all the conditions of De�nition ����� Let us focus attention on conditions C� and C� �the

other conditions are straightforward�� To see C�� note that if

e � ��X�� ��� � � � �Xk��� �k��Xk� � P�

then by ����� �� � � and X� � � � � whence �� �� X�� For j 
 � condition C� holds by

virtue of the fact that it holds for Q� To see that condition C� holds� it is again enough

to consider the case j � �� �We shall use here right representation of trajectories�� Let

�X�� w� � P and let e � �X�� �	� ���� 	 �� X�� Then e �� P implies that that 	 �� � and

hence� by ����� �X� � f	g� w� � P � Thus the process P is indeed well de�ned as claimed�

The construction ����� is called the pre�x construction or the pre�x operator and we

have the following

Proposition ���� The pre�x operator is well de�ned�

For any Y � � � f�g� it then follows that Q � P��Y� ��� If we choose Y � �� we can� in

particular� write Q � P���� ��� which� upon identi�cation of the execution ��� �� with the

event symbol �� becomes

Q � P��� �����

�



The above proposition provides us with a fairly manageable de�nition of continuity� A

condition which is frequently even easier to verify is provided next� A function f on processes

is said to be pre
image �nite if for every trajectory e� f���e� is �nite �i�e�� consists of a �nite

number of trajectories�� We then have the following

Theorem ���� The function f is continuous if it is monotonic and pre
image �nite�

Proof� Since by monotonicity f�tD� � tf�D�� we must show that the pre	image �niteness

property implies that for every directed set D�

tf�D� � f�tD�

holds� Consider some e �� f�tD�� Then f���e� � �tD� � �� Since f���e� is �nite and D is

directed� there exists a process P � D such that f���e� � P � �� whence e �� f�P �� But

then� since tf�P � � f�P �� it follows that e �� tf�P �� concluding the proof�

We turn now to the main purpose of the present discussion� namely to the existence of

�xed points and their computation� Let f � P�td
� P�td

be a function� A �xed point of f is

then a process P such that f�P � � P � The following Theorem establishes the existence of

�xed points�

Theorem ���� �Knaster	Tarski�� Let f � P�td
� P�td

be a monotonic function� Then f

has a least �xed
point 	f �or 	�p��f�p�� in P�td
� If f is also continuous� then 	�p��f�p� can

be represented as

	�p��f�p� � tffn�r� j n � �g� �����

where r is the divergence process �the least element of �P�td
�v���

Theorem ���� allows us to de�ne recursive processes� that is� processes de�ned as least �xed	

point solutions to recursive equations of the form

P � f�P �� �����

where f is a continuous function on processes� The process P is then given by 	f of ������

If Q is any other solution of ������ then P v Q� that is� P is the most nondeterministic

solution of ������ �It follows of course immediately that if P is deterministic it is also uniqe��

�



�� Operators on Processes

���� Continuity and Fixed Points

In this section we summarize some standard results on continuity and �xed	points of func	

tions on cpo�s that are necessary for establishing the soundness of recursive processes� Recall

that we are concerned here with the partial order �P�td
�v�� A function f � P�td

� P�td
is

said to be monotonic if it respects the partial order relation� that is� f is monotonic if and

only if for all P�Q � P�td

P v Q � f�P � v f�Q�� ���
�

A function f is said to be continuous if it preserves least upper bounds� that is� if for every

directed set of processes D�

tf�D� � f�tD�� �����

A function f � Pn
�td

� P�td
in n arguments is monotonic �respectively� continuous� if it is

monotonic �respectively� continuous� in each argument separately when all other arguments

are held constant� An immediate consequence of the de�nitions is that continuity implies

monotonicity� In fact� the precise connection between monotonicity and continuity is given

by the following

Proposition ���� The function f is continuous if and only if f is monotonic� and for every

directed set of processes D� tf�D� � f�tD��

Proof� Suppose f is continuous� Then the only claim that is not obvious is that f is

monotonic� Let P v Q� Then D � fP�Qg is a directed set and tD � Q� By continuity�

tf�D� � f�tD� � f�Q�� whence f�P � v f�Q�� establishing monotonicity�

Conversely� assume that f is monotonic and that for every directed set D� tf�D� �

f�tD� holds� To prove continuity� it remains to show that monotonicity implies the reverse

inclusion� that is� f�tD� � tf�D�� To this end assume that e �� tf�D�� Then there exists

P � D such that e �� f�P �� Since f�tD� � f�P � by monotonicity of f � it follows that

e �� f�tD�� concluding the proof�

�



t

t t

�
�
�
�
���

J
J
J
J
JJ�

� c

fbg

fa� bg fcg
�
�
�
�
���

J
J
J
J
JJ�

�
�
�
�
���

�

J
J
J
J
JJ�

fb� cgt t

c

fa� b� cg fa� b� cg t

tfa� b� cg

a

b

gr�P �

Figure ���

Algorithm ���� always generates a loop	free state	transition tree as transition graph of

a process� which is generally not �nite unless P is �nite� We turn now to characterization of

regular processes �much in the spirit of regular languages� and will show how to construct

�nite state transition graphs for such processes�

Let P be a process over a �nite alphabet � and consider again the set M�P � of 	

maximal trajectories� A trajectory e � �X�� ����X�� � � � ��k�Xk�� � M�P � is called terminal

if Xk � �� A trajectory e � M�P � is said to be recurrent if there exists a right execution

string v � Er such that

ebvj � M�P � �j � �� �����

where vj � v b � � � b v �j times�� If e is a recurrent trajectory� we call a �right� execution

string v a recurrence of e if it satis�es ����� above� and there is no proper pre�x of v that

does so� Further� we let V �e� denote the set of all recurrences of e� we let V ��e� be the set

of all execution strings w of the form

w � vj�i� b � � � bvjlil � �����

where vi�� � � � � vil � V �e�� and j�� � � � � jl � �� Finally� if e is recurrent� we de�ne rec�e� as

rec�e� �� ebV ��e�� ��
�

w�V ��e�
ebw� �����

�



�v� With each trajectory in M�P �
k�e��

associate a distinct node of gr�P ��

�vi� For every distinct pair of trajectories f and g inM�P �
k�e��

draw an arrow labeled � �to

denote an �	transition� from f to g provided f  g� If the 	minimal set of M�P �
k�e��

consists of a single state� draw an arrow labeled � from e to this state� Otherwise add

one more state� draw an arrow labeled � from e to this new state and an arrow labeled

� from this state to every state in the minimal set�

�vii� Go to step �iii��

�viii� End of algorithm�

Example ���� Let the event set be given by � � fa� b� cg� and let the process P be given

by

P � gen

����
���

�fbg� �c� fcg��b� fa� b� cg���

�fbg� �c� fb� cg��a� fa� b� cg���

�fa� bg� �c� fa� b� cg���

The process transition	graph is obtained as

�




state transition graph gr�P �� We remark at this point that when P is not a �nite set of

trajectories� then the present construction will not yield a �nite state	transition graph �even

when one exists�� We shall deal with the �niteness question later in connection with regular

processes�

Let M�P � �� pref�M�P ��� We identify the state	set of the process P with the set

of all trajectories of M�P � and shall construct its state	transition graph by induction on

trajectory length as described below�

Algorithm ���� Let M�P �� be the set of all trajectories of length zero in M�P � �again

partially ordered by �� and with each trajectory of M�P �� associate a distinct state of P �

i�e�� a node of gr�P �� For every distinct pair of trajectories e� f � M�P �� draw an arrow

labeled � �to denote an �	transition� from e to f provided e  f � If the minimal set of

M�P ��� i�e�� the set of all 	minimal elements� consists of a single state� it is called initial�

�An element e � M�P �� is minimal if for all f � M�P ��� f  e � e � f �� Otherwise add

one more state which we call initial� and draw an arrow labeled � from the initial state to

every state in the minimal set�

Suppose now that the state transition graph has been constructed for all trajectories of

length �� � � � � k � �� Let M�P �k denote the subset of M�P � consisting of all trajectories of

length k� and proceed as follows�

�i� Choose a new trajectory e � M�P �
k��� If no new trajectory exists go to step �viii�

below�

�ii� Test divergence of e�

��� Let Xe denote the �nal refusal set of e�

��� Choose a new symbol � � Xe� If no new symbol exists� go to step �iii��

��� Let M�P �k�e�� denote the subset of M�P �k consisting of all trajectories of the

form eb���Xk��

��� If M�P �
k�e��

� �� go to step ���� Otherwise label the state e with a 	 symbol to

denote divergence and go to step �i��

�iii� Choose a new symbol � � � �Xe� If for the given trajectory e no new symbol exists

go to step �i��

�iv� If M�P �k�e�� � � go to step �iii��

��



Corollary ���� det�S�
�
� R � det�S� � R

Proof� Since� by ����� R � det�S�� we must show that det�S� � R� By Theorem �����

det�L�R�� � R� whence the proof will be complete if we show that det�S� � det�L�R�� or�

equivalently� that S � RT �

We proceed by induction on trace length� For � this is obvious and assume the inclusion

holds for all traces of length up to and including n� Let s � �� � � � �n�n�� � S� Then�

by hypothesis� t � �� � � � �n � L�R� and the trajectory ���� ��� � � � ��� �n�� �� � R� If s ��

L�R�� so that the trajectory ���� ��� � � � ��� �n���� �n���� �� �� R� then from condition C� of

De�nition ���� we conclude that the trajectory ���� ��� � � � ��� �n�� f�n��� is in R and hence

also in det�S�� But this is impossible because it contradicts Equation �
�� de�ning det�S��

It follows that s � L�R��

The following corollary tells us that deterministic processes always remains determinis	

tic�

Corollary ���� det�S�
w
� R � R � det�L�R���

Finally� we have the following

Corollary ���� det�S�
w
� R � R

�
� S � R � S�

���� State Transition Graphs

In this section we shall show how we can construct for a given process P an associated

state	space �or state	set� and a corresponding state	transition graph gr�P ��

Let P be a process� We de�ne a relation  on P as follows� For trajectories e� f � P

we shall say that f  e if f � comp�e�� �Recall that if e � �X�� ����X�� � � � ��k�Xk�� and

f � �Y�� �	�� Y�� � � � �	l� Yl�� are trajectories of P � then f � comp�e� provided k � l� 	i � �i

for all i � �� � � � � k� and Yi � Xi for all i � �� � � � � k�� It is readily noted that the relation

 is a partial order� Let M�P � be the set of all maximal elements of P with respect to �

�An element e � P is maximal ���� if for all f � P � e  f � e � f �� It is clear that

M�P � is a generating set of P and we shall next see how we can construct from M�P � a

��



���� ������ ��� � � � ��� �k�� �� � P �

Let j� �  j  k� be the �rst index such that

��X�� ��� � � � �Xj� �j������ �j��� � � � ��� �k�� �� �� P� �����

Then there exists a proper subset Y � Xj such that

��X�� ��� � � � �Xj��� �j��Y� �j������ �j��� � � � ��� �k�� �� � P �����

and an event symbol x � Xj � Y such that

��X�� ��� � � � �Xj��� �j��Y � fxg� �j������ �j��� � � � ��� �k�� �� �� P� �����

From condition C� of De�nition ���� it follows that

��X�� ��� � � � �Xj��� �j��Y� x�� �� � P� �����

This implies that the trace �� � � � �jx � S and we must conclude from �
�� that

��X�� ��� � � � �Xj��� �j�� Y � fxg� �� det�S� �����

contradicting our assumption� This concludes the proof�

An important consequence of the above theorem is that the set of all processes whose

trace set is S is a directed set� Thus we have the following interesting corollaries to Theo	

rem �����

Corollary ���� Let S be a closed subset of ��� The set of processes C�S� such that

P � C�S� � L�P � � S ����

is directed�

Corollary ���� Let S be a pre�x
closed set of traces and let D be a set of processes such

that P � D if and only if L�P � � S� Then �D is a process�

The following corollary tells us that if a process is deterministic it cannot undergo silent

or unobserved changes�

��



it follows from �
�� and �
�� that

��X�� ����X�� ��� � � � �Xj��� �j��Xj � f�g� �j���� �� � det�S�� �
��

It is now not hard to show now with repeated use of �
��� �
�� and �
� that �
�� implies

that

��X�� ��� � � � �Xj��� �j� � � � �Xj � f�g� �j��� � � � �Xk��� �k��Xk� � det�S� �
��

and condition C� is establishd� The other conditions of De�nition ���� are also easily veri�ed�

Next examine conditions �
�� and �
�� and observe that exactly one of their right	hand	

side conditions must always hold� This implies that exactly one of the trajectories in �
��

and �
�� is in det�S� and that condition �
�� is satis�ed� Hence� det�S� is deterministic� In

fact� have shown the following

Proposition ���� Let S be a pre�x
closed set of traces� Then the set of trajectories det�S�

is a deterministic process such that L�det�S�� � S�

An interesting deterministic process is given in the following

Example ���� �The �All� Process A�� This is the deterministic process that at each

instant can execute any event in �

A � det����� �

�

It is not di!cult to verify that A � AT � that is� A consists only of free trajectories�

We also have the following important

Theorem ���� Let S be a pre�x
closed set of traces and let P be any process such that

L�P � � S� Then det�S� � P �

Proof� We must show that if

e � ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � det�S��

then e � P � Now we know that tr�e� � S� whence the trajectory

�



and it is not hard to see that we can identify the set PT with L�P �� the language generated

by P �

We turn now to the inverse question� Let S be a pre�x closed subset of ��� Do there exist

processes P such that L�P � � S" More speci�cally� how can such processes be constructed"

De�nition ���� A process P is called deterministic if for every trajectory �w�X� � P and

any � � �

�wb�X���� �� �� P � �w�X � f�g� � P� �
��

Thus� a process is deterministic whenever events are refused if and only if they are impossible�

It is worthwhile to compare �
�� with condition C� of De�nition ���� where it was only

required that impossible events are refused�

Now let S be a pre�x	closed set of traces and de�ne det�S� to be the set of trajectories

obtained by the following inductive procedure�

��� �� � det�S� �
��

and if e � �w�X� � det�S� and � � �� then

�w�X � f�g� � det�S� � tr�e�b� �� S �
��

�wb�X���� �� � det�S� � tr�e�b� � S� �
��

It is readily veri�ed that det�S� is a process� To this end it is necessary to show that the

conditions of De�nition ���� are satis�ed� Again� let us examine condition C�� Consider any

trajectory

��X�� ����X�� ��� � � � �Xk��� �k��Xk� � det�S� �
�

and let j� �  j  k� and � � � �Xj be such that

��X�� ����X�� ��� � � � �Xj��� �j��Xj � ��� �� �� det�S�� �
��

Since by our construction

��X�� ����X�� ��� � � � �Xj��� �j��Xj� � det�S�

��



Note that tD need not be an element of D�

An in�nite sequence of processes fPi j i � �g is called a chain if it satis�es the condition

that

�i � Pi v Pi���

Clearly a chain of processes is a directed set and the least upper bound of the chain tPi is

then called the limit of the chain�

Theorems ���� and ���� imply the following important

Proposition ���� The partial order �P�td
�v� is a complete partial order �cpo��

The following fact is also important�

Theorem ���� Let D be a directed set of processes� Then

tD
w
� R � �Q � D � Q

w
� R

Proof� By ���

tD
w
� R � R � f�v�X�j�wbv�X� � tDg

� f�v�X�j�wbv�X� � �Qg

� �Q � D � R � f�v�X�j�wbv�X� � Qg

� �Q � D � Q
w
� R�

Consider now a process P and let PT denote the subset of P consisting of all free

trajectories of P � that is� all trajectories �w� �� � P for which w has the form

w � ��� ������ ��� � � � ��� �k�� �
��

Thus� each free trajectory of P can be identi�ed with its associated trace s�

s � �� � � � �k �� ����

��



De�nition ���� � A set of processes D is called directed if for each pair Q�� Q� � D there

exists a process R � D such that Q� v R � Q� v R�

Theorem ���� The intersection of any directed set of processes is a process�

Proof� Let D be a directed set of processes and let P �� �D� Then

�w�X� � P � � Q � D � �w�X� � Q

To show that P is a process it is necessary to prove that it satis�es conditions C�	C� of

De�nition ����� Conditions C�	C as well as condition C� hold for the intersection of any

set of processes� We shall prove condition C� which requires also the directedness property�

Suppose

e � ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � P �

and for some j� �  j  k� and some � � ��Xj �

e� � ��X�� ����X�� ��� � � � �Xj��� �j��Xj � ��� �� �� P �

Then e � Q for all Q � D but for some process Q� � D� e� �� Q�� Now condition C� will hold

for P unless there exists some process Q� � D such that

e � ��X�� ��� � � � �Xj��� �j��Xj � f�g� �j��� � � � �Xk��� �k��Xk� �� Q��

However� by the directedness of D� there is a process R � D such that Q�
�
� R and Q�

�
� R

so that R � Q� �Q�� It then follows that e � R� e� �� R and e �� R� contradicting condition

C� for R� This violates the assumption that Q� exists and the proof is complete�

Let D be a directed set of processes�Then for each process P � D� P v �D� Thus� the

process �D is the least upper bound of D and is denoted tD� By de�nition of tD we then

have that

�Q � D � Q v D� ��
�

��



such that �j � �� it follows that

e � ��X�� ��� � � � �Xj��� �j��Xj��� �j�
k � � � �Xk��� �k��Xk� � P

for all k � ��

The following Proposition is an easy consequence of the above de�nition�

Proposition ���� Let P be a �
stuttering process and let w be a left execution string of P �

If for �in�� w widehat �X��� is also a left execution string of P � then for all k � �

P�wb�X���k � P�w�

���	 Nondeterminism

Intuitively� process nondeterminism occurs when a process undergoes �silent� or unobservable

transitions and its behavior cannot be completely determined from its trace history� Thus�

if P is a process� we are interested in the possibility of the process undergoing changes along

the empty execution string�

Let Q be an �	postprocess of a given process P � Then

Q � P�� � f�w�X�j�w�X� � Pg � P� ����

and it follows that Q is an �	postprocess of P if and only if Q � P � that is� if and only if Q

is a subprocess of P � We can then write

P
�
� Q � P � Q� ����

It then follows immediately that
�
� induces a partial order on processes� that is�

P
�
� P

P
�
� Q � Q

�
� P � P � Q

P
�
� Q � Q

�
� R � P

�
� R�

We shall denote the partial order
�
� by the more conventional notation v� Thus�

P v Q � P
�
� Q � P � Q� ����

and we say that P is more nondeterministic than Q�

��



Proposition ���� P
u
� Q � Q

v
� R � P

ubv
� R

Proof� By ����

P
u
� Q � Q � f�v�X�j�ubv�X� � Pg�

Q
v
� R � R � f�w� Y �j�vbw� Y � � Pg�

Hence

�w� Y � � R � �vbw� Y � � Q � �ubvbw� Y � � P �

Upon applying ���� again we obtain P
ubv
� R as claimed�

Proposition ���� P
ubv
� R � �Q � P

u
� Q � Q

v
� R�

Proof� By ���� we have

P
ubv
� R � R � f�w�X�j�ubvbw�X� � Pg�

De�ning Q �� f�y�X�j�uby�X� � Pg � it follows directly from ���� that Q � P�u so that

P
u
� Q� To conclude the proof� we need to show that Q

v
� R� This is equivalent to showing

that

R � f�w�X�j�vbw�X� � Qg�

Indeed� let �w�X� � R� Then� by hypothesis� we have �ubvbw�X� � P or� alternatively� we

have �ub�vbw��X� � P � But Q � P�u so that �vbw��X� � Q and the proof is complete�

De�nition ���� A process P is called �	stuttering for a subset � � � if for any trajectory

e � ��X�� ��� � � � �Xj��� �j� � � � �Xk��� �k��Xk� � P

��



Example ���� The Deadlock Process ��� This is the process that has no nonempty

trajactories by virtue of its initial deadlock� It is given by

� � gen�������� ����

Example ���� The Divergence Process r�� This is the chaotic process that diverges

from the start� It is given by

r � Otd� ����

Thus� the process r includes every process in Ptd�

���� Postprocesses and Transitions

Let P be a process and let w be a left execution string of P � that is� e � �w� �� � P � A

process Q is called a w	postprocess of P if

Q � f�v�X�j�wbv�X� � Pg� ����

It is easily veri�ed by checking the conditions of De�nition ���� that the right hand side of

���� is itself a process�The process Q for which ���� holds with equality is called the supremal

w
postprocess of P � We denote this process by P�w� that is�

P�w � f�v�X�j�wbv�X� � Pg� ����

For two �left� execution strings v and w� we then have

�P�v��w � P�vbw� ����

The above discussion allows us to interpret condition C� of De�nition ���� as a postprocess

condition� Speci�cally� the condition states that if �w�X� � P and 	� X� then P�w � r�

that is� the postprocess after occurrence of divergence is the divergence process�

A process transition for an execution string w� denoted
w
�� is a relation on P�td

� the set

of �	processes� de�ned as

P
w
� Q � Q � P�w ���

We say that process P undergoes transition to process Q along the execution string w if Q

is a w	postprocess of P �

The following properties of postprocesses and transitions follow easily�

�




Theorem ���� The union of a nonempty set of processes in is a process�

Proof� Let D be a nonempty set of processes and let P � �D� Then

�w�X� � P � �Q � D s�t� �w�X� � Q�

It must be shown that P satis�es conditions C� to C� of De�nition ����� We shall prove

condition C�� Thus� let

e �� ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � P

and assume that for some j� �  j  k� and some � � ��Xj �

e� �� ��X�� ����X�� ��� � � � �Xj��� �j��Xj � ��� �� �� P �

By de�nition of P it follows that �Q � D such that e � Q and e� �� Q� Since Q is a process�

it must satisfy condition C� so that

e �� ��X�� ��� � � � �Xj��� �j��Xj � f�g� �j��� � � � �Xk��� �k��Xk� � Q�

Thus it follows that e � P and condition C� follows� The remaining conditions are quite

straightforward�

Let P be a process and let G be a set of trajectories of P � We shall call G a generating set

or generator of P and write P � gen�G� if

P �
�
e�G

cl�e�� ����

Below are a number of interesting and useful process examples�

Example ���� The Null Process N �� This is the process that has no nonempty trajec	

tories by virtue of the fact that it is initially successfully terminating� It is given by

N � gen���� f
g��� ��
�

��



De�nition ���� A �discrete event� process P is a subset P � Otd �� ���td ����� ��td ��

��td � ��� ��td��� satisfying the following conditions�

�C�� ��� �� � P �

�C�� ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � P � �j � �  j  k � � ��j�� � Xj �

��X�� ��� � � � �Xj��� �j��Xj � f	g� � P�

�C�� e � �w�X� � P � cl�e� � P �

�C	� �w�X� � P � f
g �� X �
�� X�

�C�� ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � P � �j � ��  j  k � �� �
� Xj �

��X�� ��� � � � �Xj��� �j��Xj � f	g� � P�

�C
� ��X�� ����X�� ��� � � � �Xk��� �k��Xk� � P � � � � �Xj � �  j  k� �

��X�� ����X�� ��� � � � �Xj��� �j��Xj � ��� �� �� P �

��X�� ��� � � � �Xj��� �j��Xj � f�g� �j��� � � � �Xk��� �k��Xk� � P �

�C�� e � �w�X� � P � 	� X � �wbv� Y � � P� ��v� Y � � Otd�

Condition C� states that the null trajectory is in every process� Condition C� states that all

trajectories of a non	divergent process must be valid� Condition C� states that a process is

a closed family of trajectories� Condition C� states that the termination symbol is a stand	

alone symbol� Condition C states that a proper pre�x of a trajectory in a non	divergent

process is always nonterminating� implying that once the termination symbol appears� no

further events can be executed �unless the process diverges and becomes chaotic�� Condition

C� states that if an event is impossible it will be refused� �It is worth remarking here that in

nondeterministic processes events need not be impossible to be refused�� Finally� condition

C� states that once a process diverges it becomes chaotic forever� or in other words� if e � P

then div�e� � P �

We shall denote the class of all processes �in Otd� by P�td
� Similarly� we shall denote the

class of all divergence	free processes �i�e�� processes inOt� by P�t
� the class of nonterminating

processes �in Od� by P�d
� and the class of divergence	free and nonterminating processes �in

O�� by P��

The set of all traces s � �� such that s � tr�e� for some e � P � where P � P�td
is a

process� is called the language generated by P and is denoted L�P �� By condition C� of the

above de�nition it follows immediately that L�P � is �pre�x� closed�
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successfully terminating execution string� we de�ne the associated trajectory to be �w� f
g��

where 
 indicates the successful termination� Thus� the set f
g assumes the role of the

refusal set in the trajectory� and we apply to it the convention that it is a stand	alone symbol�

that is� either f
g � X or 
�� X� We denote the alphabet extended by the termination

symbol � � f
g by �t� and the set of observations that include the possibility of successful

termination by Ot �� ���t ���� � ��t �� ��t � ��� ��t���� We shall also use the notation

E lt and Ert for ���t � ��� and ��� ��t���� respectively�

���� Divergence

One further form of process behavior that we want to model is a catastrophic form of ter	

mination that is called divergence� By divergence we intuitively mean that the process has

become completely chaotic and unpredictable in its behavior� This can occur as a conse	

quence of inadequate observability� for example when the process can undergo an unbounded

sequence of unobservable state transitions� Alternatively� it might conceivably occur as a

result of process failure� Since divergence cannot be �nitely observed� i�e�� there does not

exist a �nite experiment that can determine divergence� a special divergence symbol 	 is

introduced into the process alphabet to indicate that divergence has occurred� We denote

the alphabet extended by the divergence symbol � � f	g by �d� and the set of observations

that include the possibility of divergence by Od �� ���d � ��� � ��d �� ��d � �� � ��d����

We shall also use the notation E ld and Erd for ���d � ��� and �� � ��d���� respectively� A

trajectory

�X�� ����X�� � � � ��k�Xk��

will then be called chaotic �non
chaotic� if there exists �respectively� does not exist� j � � 

j  k such that 	� Xj � A chaotic trajectory is called divergent if it has no proper pre�x

which is also chaotic� If e is a divergent trajectory� we de�ne the divergence of e by

div�e� �� febv j v � calEr
dg�

���� Speci�cation Models

We shall now turn to formalize the concept of a process� Intuitively we identify a process

with its behavioral speci�cation� that is� with the set of all its possible trajectories� This

leads us to the de�nition of an abstract object called a process as follows� Let � denote the

process alphabet and let �td denote its extended alphabet� that is� �td � � � f
�	g�

��



�so that e is a pre�x of f� we say that f is an extension of e and that v is a post execution


string of e� Sometimes� with some abuse of notation� we shall also write the above simply as

f � ebv�
Similarly we may consider a trajectory in left representation

f � �vbw�Xk� � ��X�� ��� � � � �Xk��� �k��Xk�� ���

where

v � �X�� ��� � � � �Xl��� �l� ����

and

w � �Xl� �l��� � � � �Xk��� �k�� ����

and consider the trajectory e � �w�Xk�� We shall say that the trajectory e is a su�x of

f � that v is a pre
execution string of e and that e is a post
trajectory of v� We shall also

sometimes use the notation f � vbe�
Finally� it is also clear from the earlier discussion that if s � �� is a trace of some

trajectory e of a process� then every pre�x t of s is also a trace of a trajectory of the process�

�A string t � �� is a pre�x of s if there exists r � �� such that tbr � s� where as before� �b�
denotes concatenation� The empty string � is a pre�x of every string��

���� Termination

We turn now to a discussion of various aspects of process termination� The simplest way

in which a process can terminate is if it can undergo no further state changes� Speci�cally�

suppose that a process possesses a trajectory �w�X� with X � �� That is� after executing

the string w� the process refuses every event in its alphabet� The process then terminates

by necessity� since no further event executions are physically possible� If this is the case we

say that the process has reached deadlock�

However� processes can terminate in another way as well� Suppose we assign our process

tasks to be completed� We can then say that the process terminates successfully whenever

it completes a task� Successful termination is� of course� a legislated property �rather than

a physical one� and is� in general� not accompanied by deadlock� We identify successful

termination with the execution of a prescribed set of execution strings� Speci�cally� we

introduce a special termination symbol 
 into our process alphabet as follows� If w is a

�



Then it must clearly include also every pre�x of e� that is� every trajectory of the form

prefj�e� �� �X�� ����X�� � � � ��j�Xj��� ����

with j � �� � � � � k� �where pref��e� �� �X�� �� and prefk�e� � e�� We shall denote the set of

all pre�xes of e by pref�e�� that is

pref�e� �
�

j	������k

prefj�e�� ����

We shall sometimes use the notation f � e to denote the fact that f � pref�e�� and f � e

to denote the fact that e �� f � pref �e�� If E is a set of trajectories� we shall denote by

pref�E� the set of all pre�xes of trajectories in E� that is�

pref�E� �
�
e�E

pref�e�� ��
�

Next� it is clear that the order in which we press the various buttons is arbitrary� Thus� if

instead of ��j�Xj�� the j	th �right� execution had been ��j� Yj� where Yj � Xj is any subset�

it would have been just as successful� Consequently� we may add to our set of observed

trajectories also the set of all the trajectories of the form

�Y�� ���� Y�� � � � ��k� Yk��� ����

where Yj � Xj for j � �� � � � � k� We call this set of trajectories the completion of e� and

denote it comp�e�� It is clear� in view of our discussion� that the set of trajectories of our

process must also include the set of all pre�xes for each trajectory in comp�e�� The union of

all trajectories thus obtained is called the closure of e and is denoted cl�e�� that is�

cl�e� ��
�

v�comp�e�

pref�v�� ����

It thus follows �without necessarily having to make this observation experimentally� that if

e is a trajectory of a process so is every trajectory in cl�e��

We proceed now with some extension of our terminology� Let

e � �X�� w� � �X�� ����X�� � � � ��k�Xk��� ����

be a trajectory in right representation� If

v � ��k���Xk��� � � � ��l�Xl� ����

�l 
 k� is a �right� execution string such that f �� �X�� wbv� is also a trajectory� where wbv
is the concatenation of w and v given by

����X�� � � � ��k�Xk���k���Xk��� � � � ��l�Xl�� ����

��



successful event� and for i 
 �� Xi�� �� is the set of refused event symbols after the i	th

success� The refusal set Xk of e is called its �nal refusal� Thus� a trajectory is an element of

the set of observations O �� ��� ���� � ��� It will be assumed that under normal behavior

�see further discussion below regarding the possibility of divergence� all process trajectories

are valid� that is� they satisfy the condition that �i �� Xi�� for all i 
 �� This assumption is

consistent with our interpretation of refusals as persistent� that is� events cannot be executed

if they have just been refused� It is convenient to denote each pair �Xi��� �i� by wi and the

string w�w� � � � wk by w� The number of elements in the string w is called the length of w and

is denoted jwj� We call wi the i	th left execution of e� with refusal Xi�� and event �i� The

string w �� E l �� ��� � ���� is called the left execution string of e� We call the trajectory

representation of Equation ����� which can also be expressed as

e �� �w�X�� ����

the left representation of e� In the above equation it is clearly understood that X � Xk� If

we terminate our experiment before we ever reach a successful event� the trajectory will be

given by the pair ���X�� where � denotes the empty execution string� The trajectory ��� �� is

called the null trajectory� The length of a trajectory e � �w�Xk� is de�ned as jej � jwj � k�

The trajectory of Equation ���� can also be written in the form

e � �X�� ����X�� � � � ��k�Xk��� ����

which we call the right representation� Thus� we think of e as an element of O represented as

O �� �� � ��� ����� Here we refer to each pair vi � ��i�Xi� as the i	th right execution and

to the string v � v� � � � vk �� Er �� ��� ����� as the right execution string of the trajectory�

The trajectory can� thus� also be written as

e � �X� v� ����

where it is clearly understood that X � X�� Obviously� jvj � jej � k� In the sequel we shall

use both representations and it will always be clearly understood whether we refer to left

or right trajectory representations� Finally� we associate with a trajectory e its trace tr�e��

that is� its associated string of events

tr�e� � s � �� � � � �k� ���

Suppose now that� for a given process� our set of observed trajectories includes a tra	

jectory

e � �X�� ����X�� � � � ��k�Xk��� ����

��



�� Models and Speci�cations

���� Experimentation and Trajectories

In order to get an intuition about the model that we shall later formalize� we introduce it

here intuitively through the idea of experimentation on processes�

We think of a discrete event process as a device that can undergo state changes at

discrete points in time in response to certain isolated events� In general these events occur

asynchronously �i�e� without reference to a clock� and sometimes also nondeterministically�

Some of the events �and associated transitions� are observable �or accessible� from the ex	

ternal environment but some may be internal and unobservable� With each observable event

is associated an event symbol �� The set of all observable events� called the process alphbet�

is denoted ��

Let us assume for the sake of the current discussion� that all events in � are available

for �external experimentation�� that is� we imagine that there is a pannel of buttons� each

marked with a symbol � � �� When a button is pressed� the corresponding event symbol

can either be accepted by the process� resulting in a state transition� or it can be refused

and nothing happens� We regard a refusal as persistent in that repeated experimentation

with the same button will not change the outcome� The unobservable events are assumed

to occur spontaneously �and at unknown times� and the associated transitions are assumed

to be undetectable�

Now� at any time we may press any button� If the corresponding event is possible at

that time and a state transition occurs� we record this fact� Otherwise� if the process refuses

the event� we record the refusal and we can choose another event button for experimentation�

This can be repeated until �if it ever happens� we hit a successful button and an event is

accepted� We can now move on to the execution of the next observable event by pressing

buttons until another successful event is encountered and so on� The experiment can be

terminated at any time� Of course� internal unobservable transitions can occur at any time

without our knowledge� thereby introducing an element of nondeterminism into the process

that will play a major role in the theory�

Now� our experimental record� or trajectory is given by

e � ��X�� ����X�� ��� � � � �Xk��� �k��Xk�� ����

where k is the number of successful event transitions in the experiment� �i is the i	th suc	

cessful event� X� �called the initial refusal of e�� is the set of refused events prior to the �rst

��



Part II

Algebra of Discrete Event Processes
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�� Concluding Remarks�

TIn this article we surveyed aspects of the theory of concurrency and process	algebra and

showed how the theory can be adapted to deal with issues of DEP modeling and control� The

proposed framework is suitable for modeling a wide range of process	interaction formalisms

and is capable of dealing adequately with aspects of nondeterminism�

We believe that the algebraic approach to DEP modeling and control proposed here can

alleviate some of the computational di!culties caused by high dimensionality of practical

DEPs�

��



is then clear that if S is a supervisor for a process P � then

L�S�P � � L�P�jj�c
S� � L�P �� ���

We can now introduce within our framework the concept of controllable languages�

De�nition ���� Let K be a closed
 sublanguage of L�P �� K is said to be controllable if

and only if there exists a supervisor S such that

K � L�P�jj�c
S�� ���

A characterization of controllability� is the following easily proved theorem�

Theorem ���� A closed sublanguage K � L�P � is controllable if and only if for all strings

t� � L�P � such that t � K and � � ��

t� �� K � � � �c� ���

An immediate consequence of ���� �which is actually valid also for an arbitrary �not necessary

�nite� number of Processes�is the following

Proposition ���� Let P be a process� The class of controllable sublanguages of L�P � is

closed under set union�

Consider now a process P � and let �� the deadlock process� serve as supervisor� The con	

trolled process is then given as

���P � � P�jj�c
�� �
�

and it is clear from � that if S is any supervisor for P � then

L���P � � L�S�P �� ����

Thus� the language L���P � is the smallest controllable sublanguage of P � We denote this

sublanguage by UP and call it the uncontrollable or spontaneous language of P �

Theorem ���� Let P be a process� Let K � L�P � be a nonempty closed sublanguale� If

UP � K� then K contains a unique �nonempty� supremal controllable sublanguage�

�A language is closed if it includes all its pre�xes �����
�This characterization was used as de�nition of controllability by Wonham and Ramadge in �����

�




Notice that the trajectory sets for the processes P and P � �both of which have the same

failures set� are distinct� This distinction accounts for their di�erent behavior under parallel

composition that was evidenced in Example 
���

It has been shown �see part � of this report� that the algebraic identities ����	���� as

well as the identities ����	��� also hold for the trajectory model with respect to At� For

parallel composition the following identities can be shown to be true�

PAjjBP � P ���

PAjjBQ � QBjjAP ����

�PAjjBQ�A�BjjCR � PAjjB�C�QBjjCR� ����

PAjjB�Q�R� � �PAjjBQ�� �PAjjBR� ����

We conclude this section with a list of some language relations that hold true for the tra	

jectory model� These relations are useful in deriving certain properties of controlled DEPs

that are discussed brie�y in the following section�

A� � A� � L�PA� jjBQ� � L�PA� jjBQ� ��
�

L�P � � L�Q�� L�P � � L�PAjjBQ� ���

L�P�� � L�P��� L�P�AjjBQ� � L�P�AjjBQ� ���

L�P�� � L�P��� L�P�AjjBQ� � L�P�AjjBQ� ���

A � B � L�PAjjBQ�AjjBQ � L�PAjjBQ� ���

L��PAjjBQ�n��A� � L�Pn��A� ���

�� Aspects of Controllability

We conclude this paper with some remarks about controllability in discrete event control

viewed within the framework of concurrency�

A behavioral speci�cation for a DEP is� typically� a statement about languages� If �s �

� is some event subset� then a local speci�cation consists of a pair of languages Ks� Ks � ��
s

such that L�Pn���s
�� the language of the process localized to �s� satis�es the constraint

Ks � L�Pn���s
� � Ks� ��

Sometimes Ks � �� and the speci�cation consists of the upper	bound constraint only� If

�s � �� we call the corresponding speci�cation global�

We shall assume that � � �u � �c� A �� �u � �c � � and B � �c� In view of ���� it

��



To see that they do not behave the same way under prioritized synchronous composition�

let them have priority set A � fa� b� dg and run them in parallel with the process Q with

priority set B � fa� b� cg� where

Q � a� c� b� ��

We obtain distinct results�

R � PAjjBQ � �a� c� ��� �a� c� b� d� ���

R� � P �
AjjBQ � �a� c� ��� �a� c� b� ���

In view of the above� it is clear that the failures model is not a language congruence with

respect to At � A��� ������ ��� n �� �AjjB�� recursion��

We turn now to a brief discussion of a model� called the trajectory
model� that is a

language	congruence with respect to At� and which has been examinded in detail in part

� of this report in the framework of a complete axiomatic theory� In the trajectory	model

the process is speci�ed by its set of trajectories� A process trajectory is a record of an

�experiment� that describes an execution of a string of events� and records in addition to the

executed events� also the events that the process can reject �or refuse� after each successful

event� A typical trajectory is then an object of the form

�X�� ���X�� � � � �Xk��� �k�Xk�

where �i denotes the ith successful event� where Xi denotes the set of events that can be

refused after the ith executed event and where X� denotes the set of events that can be

refused initially� The following is an example of the trajectory set of a process �listing only

the trajectories of maximal length with maximal refusal sets��

Example ��� The set of trajectories of maximal length with maximal refusals of the process

P of Example 
�� is given by

T �P � � f�fb� c� dg� a� fa� dg� c� fa� b� c� dg��

�fb� c� dg� a� fa� dg� b� fa� b� c� dg��

�fb� c� dg� a� fa� c� dg� b� fa� b� c� g� d� fa� b� c� dg�g�

The set of trajectories of maximal length �with maximal refusals� of the process P � of Ex	

ample 
�� is given by

T �P �� � f�fb� c� dg� a� fa� dg� c� fa� b� c� dg��

�fb� c� dg� a� fa� c� dg� b� fa� b� c� dg��

�fb� c� dg� a� fa� dg� b� fa� b� c� g� d� fa� b� c� dg�g�

��
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Finally� as was stated earlier� we identify process behavior with the language that it

generates� Thus� we must guarantee that we have a behavioral model for DEPs that consti	

tutes a language	congruence with respect to an algebraic framework that includes prioritized

synchronous composition� We turn to this topic in the next section�

� The Trajectory Model and Associated Algebra

We have seen in the previous section how the prioritized synchronous composition operator

�AjjB� can be used to model a wide range of parallel composition formalisms and is� in par	

ticular� suitable for modeling dynamics and discrete	event control� We have also mentioned

that the failures model captures adequately deadlock phenomena in nondeterministic behav	

ior� It turns out� however� that in general� the failures model cannot adequately account for

the range of possible interleavings that can occur in the framework of the operator �AjjB�

when nondeterminism is also present� This is illustrated in the following simple example�

Example ��� Consider the two processes

P � �a� ��c� �� � �b� ����� �a� b� d� ��

P � � �a� ��c� ��� �b� d� ����� �a� b� ���

It is easily seen that P and P � have the same failures set which is given by�

F � f��� fb� c� dg�� �a� fa� dg���a� fa� c� dg�� �ac�fa� b� c� dg��

�ab� fa� b� cg�� �ab� fa� b� c� dg�� �abd� fa� b� c� dg�g�

�again we list just the failures with maximal refusals�

��



Next� we consider an example of control with driven events�

Example ��� A Let �� P and S be de�ned as in Example ��� but suppose that the events

consist of uncontrollable events and driven events� Thus� the set of uncontrollable events is

�u � fd� eg as before� and the set of driven events is �d � fa� b� cg� Clearly� the priority set

A must include �u in view of the physical nature of the uncontrollable events� However� the

events of �d may or may not be included in A� depending on the speci�c control mechanism

employed �rather than on the physical character of the events�� Thus� we shall say that

driven events are synchronized in closed
loop� if they are included in the priority set A� In

this case the supervisor S� that initiates the the driven events� waits for an acknowledgement

that the triggered event is actually possible �and executed� before it proceeds with further

state transitions of its own� Driven events that are not included in A are said to be executed

in open
loop� In open	loop mode� the forcing process does not wait for acknowledgement�

Thus� if we assume in our example closed	loop control with driven events� we have

A � � and B � fa� b� cg� It is easy to see that the controlled process R is again obtained

as in Figure ��� and in fact there is no sharp distinction between closed	loop control with

driven events and the enablement mechanism of controllable events� except for the physical

interpretation�

Assume now� on the other hand� that the control of driven events is performed in

open	loop� Then A � fd� eg and B � fa� b� cg� Thus� the driven events will occur in the

concurrent process whenever they triggered by� and hence occur in� S regardless of their

actual occurrence in P � The controlled process in this case is obtained as in Figure �� where

r� � �p�� s��� r� � �p�� s��� r� � �p�� s��� r� � �p�� s�� and r � �p� s��� Notice that the

event c is executed without the participation of P while the event d is executed without

participation of S�

We can summarize the discussion of this Section with a formal classi�cation of the events

with respect to the priority sets A and B as follows� First� we have the requirement that

�� A � �u � �c�

�� B � �c � �d�

The subset �dc �� �d � A is then the set of closed	loop driven events and the set �do ��

�d ��dc is the set of open	loop driven events�

�
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state transitions in response to their occurrence in P � The controllable events� however� will

not occur in the process unless they are enabled by the supervisor� Thus� the controllable

events must be in the supervisor�s priority set B� and we have B � fa� b� cg� Notice that in

this case � �A �B � �� A �B � �c� A�A �B � �u� and B �A �B � ��

In our example the controlled process R �� PAjjBS � P�jj�c
S is then obtained as
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where r� � �p�� s��� r� � �p�� s��� r� � �p�� s�� and r� � �p� s��� Notice that the controllable

events a and c are both enabled by S while the event b is not� Hence in the controlled process

R� the event a is present and will occur if it occurs in P � The events b and c do not appear

in R� the �rst because it is not enabled by S and the second because it is not possible in

P � The events d and e appear in R and occur whenever they occur in P regardless of their

possibility �or lack of it� in S� Thus� if e happens in P � then S participates synchronously

while if d happens in P � then S remains in its initial state s��

��



respect to a given event� depends not just on the event� but also on the context and event

availability�

We turn now to an examination of how our prioritized synchronous composition can

model control of DEPs� First we remark that DEPs frequently have other mechanisms for

interaction with the environment than the one investigated by Ramadge and Wonham� For

example� the process may possess also driven events that must be forced or triggered by the

environment in order to take place� Driven events are then distinguished from controllable

events in that when they are possible in the process and triggered by the controller� they are

guaranteed to take place immediately and instantaneously�

We shall let P denote the process under consideration� and let S denote the supervisor�

The controlled� or closed
loop� process is then given by

R � �S�P � �� PAjjBS� ����

where the priority sets A and B are suitably chosen so as to correctly model the physical

environment� The event set � will be partitioned into three disjoint subsets

� � �u � �c � �d� ����

where �u is the subset of uncontrollable events� �c is the set of controllable events� and �d

is the set of driven events� We turn now to two examples� First we consider an example in

the Ramadge	Wonham framework� that is� �d � ��

Example ��� Let the event set be � � fa� b� c� d� eg� and consider the simple processes P

and S of Figure ���

Suppose P is the controlled process and let the subset of controllable events be �c �

fa� b� cg� and the subset of uncontrollable events be �u � fd� eg� Thus� the events in �c

can be disabled while the events in �u cannot� Let us now see how we can model control

of process P by supervisor S through prioritized synchronous composition of P and S�

Since all events are assumed to be spontaneous events of the process P � its priority set A

must include them all� that is� A � �� The uncontrollable events cannot be in�uenced

by the environment� Thus� the priority set B �of the supervisor S� must not include any

uncontrollable event of P � This means that uncontrollable events of P cannot be blocked

by the supervisor� but the supervisor may �if the designer so wishes� execute �concurrently�

��



�ii�� The set � � A � B of broadcast synchronization events� Each process can o�er these

events for execution and the other process will participate in their execution syn	

chronously if it can� But if it cannot �i�e�� if the event is impossible in its current

state�� the initiating process will execute the event by itself�

�iii�� The set A�A � B of priority events of process P � The execution of these events will

take place if and only if the process P participates� The participation of the process Q

in these events will take place whenever possible� i�e�� whenever Q can in its respective

state� But lack of participation by Q cannot block execution by P �

�iv�� The set B �A � B of priority events of process Q� �Similar to �iii� above��

To illustrate the prioritized synchronous composition� consider the following simple ex	

ample�

Example ��� Let � � fa� b� cg and consider the parallel composition of processes P and Q

as described in Figure 
� where A � fa� cg and B � fa� bg�

P Q R � PAjjBQ

Figure 
�

Observe that the event a occurs only when both processes P and Q participate in the

execution taking R from state r � �p�� q�� to r� � �p�� q��� However the event c occurs in

R either by participation of both processes� for example in transition from r� � �p�� q�� to

r� � �p�� q��� or by execution of P alone� in case the event is not available in Q� as for example

in transition from r� � �p�� q�� to r� � �p�� q��� Notice also that the transition of process P

from p� to p� never takes place when it runs concurrently with Q because the event b is in

the priority set of Q� but Q is never at state q� when P is at p�� The important property

that is demonstrated above and that distinguishes prioritized synchronous composition from

other concurrency operators� is the fact that the behavior of the concurrent process with

��



	 Concurrency by Prioritized Synchronization

In the present section we introduce a new concurrency operator� called prioritized syn


chronous composition that is suitable for modeling a wide range of practical control for	

malisms�

Let the event set be denoted by � and consider two processes P and Q with events in ��

With each process we associate a subset of special events� called its set of priority �or blocking�

events� These are events in whose execution the given process must participate� otherwise

they cannot take place� Thus� let A�B � � be the priority sets of P and Q� respectively�

and de�ne the prioritized synchronous composition of P and Q� denoted PAjjBQ� as follows�

P � p
�
� p� � Q � q

�
� q� � PAjjBQ � �p� q�

�
� �p�� q�� ����

P � p
�
� p� � Q � q

�
� n � PAjjBQ � �p� q�

�
�

��
�

�p�� q� if � �� B

n if � � B
����

Q � q
�
� q� � P � p

�
� n � PAjjBQ � �p� q�

�
�

��
�

�p� q�� if � �� A

n if � � A�
����

Expression ���� states that if� at their respective states� both processes P and Q can

execute a given event �� then it will be executed concurrently �i�e�� in synchronization� in both

processes� Both processes will then undergo simultaneosly their respective state transitions�

Notice that� when both processes can execute an event concurrently� the mathematicalmodel

does not distinguish which process initiates the event� Indeed� as we shall see shortly� this is

a matter for the physical interpretation� Expressions ���� and ���� de�ne the concurrency

operator in case that an event is possible in �initiated by� one of the processes but is not

possible in the other� In this case� the initiating process will execute the event without

participation of the other� unless the event is in the priority set of the latter� In this case the

execution of the event is blocked�

It is not di!cult to see that the prioritized synchronous composition operator partitions

the event set � into four distinct �and disjoint� subsets�

�i�� The set A � B of strict
synchronization events� These events are either executed by

both processes concurrently or by none�

��



As it turns out� this is not quite as straightforward when we introduce dynamics� or

uncontrollable events� Let us �rst try to clarify the synchronization status of the various

events� Clearly� the controllable events must belong to the synchronization set as before�

because it takes the supervisor to enable an event and the process to execute it� But what

about the uncontrollable events" If an uncontrollable event is possible both in P and in S �at

their respective states�� its occurrence in the concurrent process must be given the physical

interpretation as having been executed in S in response to its �spontaneous� occurrence in P �

If it is possible only in P � but not in S� it will still occur in P � and hence in the concurrent

process� because of its uncontrollability� But if an uncontrollable event is possible only in S�

it will not occur because S cannot initiate the event�

Let us reconsider the above example� but this time assume that the event d is uncon	

trollable� Thus let ��
c � fa� b� cg and ��

u � fdg� Let us reexamine the process R � P jj�S

of Figure �� The event d appears in R after the occurrence of b but not after a� This is

physically incorrect because once a occurs� the event d cannot be blocked by its absence in

the supervisor� If� on the other hand� we remove the uncontrollable events from the syn	

chronization set� and try to model controlled behavior by R� � P jj�c
S� we would obtain the

process R� as in Figure �� which is unsatisfactory because it permits the occurrence of the

event d without participation of P � which is impossible in the physical process�

R� � P jjfa�b�cgS

Figure ��

Thus� it is clear that concurrency with strict synchronization cannot be used as a sat	

isfactory framework for modeling the interaction of dynamical discrete	event processes with

their environment� More speci�cally� strict concurrency is an inadequate formalism for mod	

eling control of discrete event processes within the Ramadge	Wonham framework �unless we

impose special restrictive conditions on the supervisor��

�such as the condition of supervisor completeness ����

��



Let Lc�G� denote the language generated by G under control� i�e�� in closed loop� Then it is

clear that the domain of the map h can be restricted to Lc�G�� In practice� it is convenient

to use a state machine realization for Lc�G�� Thus one de�nes S � ���X� �� x�� as the

automaton realizing Lc�G�� and the map h is replaced by a feedback map � � X � # such

that for s � Lc�G�

����s� x��� � h�s�� ��
�

where ��s� x�� is the standard extension of the transition map to strings �����


 Strict Concurrency and Discrete Event Control

A key element in the Ramadge	Wonham control problem formulation� is the introduction

of what may be thought of as discrete	event dynamics� where by dynamics we refer to the

presence of spontaneity� that is� the existence of events whose occurrence cannot be in�uenced

by the environment�

Let us next examine the possibility of modeling the control of discrete event processes

using the formalism of strict concurrency as described in Section �� To this end consider

�rst the simple control problem described in Figure ��

P S R � P jj�S

Figure ��

Here all events of the process P are controllable� that is �c � � � fa� b� c� dg and �u � ��

The process S is to be thought of as the supervisor for P � with supervision achieved through

concurrency with full synchronization� Speci�cally� when P is at state pi and S is at state

sj� then the possibility of occurrence of an event� say a� in R � P jj�S at state rk � �pi� sj��

means that the event is enabled by S and possible �subject to enablement� in P � An event

in R is� thus� interpreted as enabled by S and occurring in P � and the participation of both

processes in an event is essential for its occurrence� Thus� when all events are controllable�

we can model control by strict concurrency with full event synchronization�

�




� The Ramadge�Wonham Discrete�Event Control For�

malism

In their pioneering work on the control of DEPs� Ramadge and Wonham �RW� ��� �
� ��

introduced the following formalism� A DEP is modeled as a deterministic state	machine or

automaton� called generator� which is given by a �	tuple�

G � ��� Q� � q�� ����

where Q is a set of states� � is a set of events�  � � � Q � Q is a partial function called

the transition function� and q� is the initial state� The statement that  is a partial function

means that it need not be de�ned for all pairs ��� q� � � �Q�

Control is introduces as follows� It is assumed that all events occur in the process sponta	

neously and asynchronously� but some of the events have a mechanism for their disablement

at any time� Thus the event set � is partitioned into two disjoint subsets

� � �u � �c ����

where �c is the subset of events that can be disabled� called controllable events� and �u is

the subset of events whose occurrence cannot be disabled� called uncontrollable� A control

input for G is now de�ned as a subset # � �c of events that are disabled at any instant of

time� Control of a DEP consists of switching the disablement set # as the process progresses

in its run� With this event	set partition and associated disablement mechanism the DEP is

called a controlled DEP� or CDEP�

The control execution is performed by a supervisor which can abstractly be thought of

as a map

h � L�G� � #� ����

Concretely� this means that after every event that takes place in the process� a new event

set is supplied to the process for disablement� Thus when the CDEP is supervised by a

supervisor h� the generator G must be modi�ed by redi�ning the transition map  as $�

where

b��� q� ��
��
�

��� q� if � � #

undefined otherwise�

�Actually	 Ramadge and Wonham have a somewhat more general setting where a DEP is a �
tuple that

includes also marker states	 but these are inessential to the present exposition�

��



 Process Algebra

By a Process Algebra we refer to a set of algebraic identities between process expressions�

Such an algebra can then be used to manipulate� combine and simplify process expressions

and perform a variety of computations with processes symbolically rather than explicitly�

We have already encountered in the foregoing several algebraic process identities� and a

simple example of their use in computational simpli�cation was seen in Example ���� The

chief utility of a behavioral �or semantic� modeling framework of processes� is in establishing

the algebraic identities� It is for this reason that we must guarantee that the modeling

framework constitutes a behavioral �in our case� a language� congruence� The derivation

of these identities are beyond the scope of the present paper but for illustrational purposes

we give below a partial list of algebraic identities that are valid for the failures model with

respect to Af �see e�g�� ��� for details��

P �Q � Q� P ����

�P �Q� �R � P � �Q�R� ��
�

P � P � P ����

P �� � P ����

P �Q � Q� P ����

�P �Q��R � P � �Q�R� ����

P � P � P ����

�P �Q��R � �P �R� � �Q�R� ���

�P �Q� �R � �P �R�� �Q�R� ����

��� P � � ��� Q� � ��� P �� ��� Q� ����

��� P � � ��� Q� � �� � P �Q� ����

P jjAP � P ��
�

P jjAQ � QjjAP ����

P jjA�Q�R� � �P jjAQ�� �P jjAR� ����

�Pn
a
�n

b
� Pn

a�b ����

�P �Q�na � Pna �Qna ����

�b� P �na �

��
�

Pna if b � a

�b� Pna� if b �� a
����

��a� P � �Q�na � Pna � �P �Q�na ���

��



Example ��� Consider the process R �� $P jj�Q� where Q � �c� ��� Using the de�nition

of parallel composition with full synchronization as given by ����	����� we obtain

R � �c� ���

Next� consider the process R� �� P n ajj�Q� While in this simple example the computation of

R� can be performed directly without di!culty� we shall take the opportunity to demonstrate

the use of process	algebra in computational simpli�cation� First we shall use Equation ��

to obtain

R� � ���b� �� � �c� ���� �b� ���jj��c� ��� ����

Next we use the following identity �see e�g�� �����

�P �Q�jjAR � �P jjAR� � �QjjAR��

which together with ���� gives

R� � ��b� �� � �c� ��jj��c� ���� ��b� ��jj��c� ���

� �c� �����

where the last equality is obtained with the aid of ����	����� Comparing R with R�� we

see that R� can deadlock initially� while R cannot� Indeed� the choice of whether R� will

initially deadlock or not� is completely nondeterministic� This nondeterminism can best be

understood upon noting that P na can undergo a silent transition from p� to p� �see Figure ���

and there is no observable mechanism to guarantee that the event c be o�ered by Q prior to

such transition�

The above example illustrates the fact that the language model is not a language	

congruence when nondeterminism is present� Speci�cally� the language model cannot ade	

quately express the possibility of deadlock� This fact motivated the introduction by ���� �see

also �
� ��� ��� ��� of the more sophisticated failures
model� This model� which is obviously

more detailed than the language model� represents a process by its failures set F � f�s�X�g�

where a failure �s�X� consists of a trace s� i�e�� a string of events that the process can execute�

and a refusal set X that consists of the events that the process can reject �or refuse� after

the execution of s� We shall not elaborate here on the failures model except for giving a

simple illustrative example�

Example ��� The failures set of the process Pna of Example ��� is given by�

F�Pna� � f��� ��� ��� fcg�� �b� fb� cg�� �c�fb� cg�g�

�We give here only the failures with maximal refusals�

��



event	alphabet �� If E�� E� � C are two equivalence relations� we say that E� is coarser than

E�� denoted E� � E�� if for any pair of DEPs P and Q�

PE�Q� PE�Q�

It is easily seen that � constitutes a complete partial order on DEPs ����� We now have the

following

De�nition ��� A DEP modeling framework is called e�cient if it induces the coursest

language	congruence with respect to A�

Thus� a modeling framework is e!cient if it includes in the model of a DEP the least amount

detail necessary to distinguish DEPs that di�er in behavior� but identi�es all processes that

cannot be distinguished behaviorally� It is important to realize that the detail needed in the

model is crucially dependent on the operators that are included inA� As their expressiveness

increases� the complexity of the models must� in general� increase as well�

De�nition ��� A framework A is called deterministically closed if for each f � A� f�P � is

deterministic whenever P id deterministic�

It can be shown that �see e�g� ����� if A is deterministically closed� then L�P � is an

adequate model for P � That is� L itself constitutes a language congruence� Obviously L

is then the coarsest language congruence� The reader can convince himself without too

much di!culty that Al �A��� ���� �jjA�� recursion� is deterministically closed� Thus� the

behavior of deterministic processes that interact only through strict synchronization� can be

adequately modeled by their languages��

We turn now to the caseAf � A��� ������ ���n�� �jjA�� recursion�� That is� Af includes

also the operators of uncontrolled alternative and event internalization� Nondeterminism is

now included in our framework�

It is of interest� at this stage� to return to the question raised in Example ��� of compar	

ing the processes $P � �b� ����c� �� and P na where P � �a� b� ����c� ��� both

of which generate the same languages� To this end� let us consider the following example

that shows that processes $P and P n a are not language congruent�

�This fact has been of key importance in the interesting work of Smedinga ���� on control of discrete

events�

�



� Process Models and Language�Congruence

In the present section we discuss certain questions regarding DEP modeling� The main

purpose of a mathematical model of a DEP is to describe its behavior� We must� therefore�

require of a model to capture enough detail about the DEP�s structure� so as to ensure that

its behavior is fully exhibited in all circumstances� A model can be regarded as e�cient if

it captures just enough detail �for our purposes� but no more detail than necessary� Thus�

an e!cient model must not distinguish between DEPs that� in a given framework� exhibit

identical behavior� Next we proceed to make these ideas somewhat more precise�

As we have already seen earlier� in a DEP modeling environment� DEPs are given by

algebraic expressions whose arguments are also DEPs� The range of such algebraic ex	

pressions is determined by the range of algebraic operators that are de�ned in the given

framework� Let us denote such a framework by A � A�O�� � � � � Ok�� where O�� � � � � Ok are

the operators under consideration� In the context of the framework exhibited thus far� the

operators include the pre�x operator� the alternative operators� the internalization operator�

the recursion and� most importantly� the operator of strict concurrency�

By the behavior of a process P � we refer to the language L�P � � ��� consisting of all

event strings� or traces� that P generates� LetM denote a modeling framework for DEPs� so

thatM�P � denotes a model for a DEP P � ThenM induces an equivalence relation� denoted

EM� on the class of all DEPs under consideration� Speci�cally� we then say that DEPs P and

Q are equivalent� denoted PEMQ� wheneverM�P � �M�Q�� Clearly then for the modeling

frameworkM to be adequate� we must require that if M�P � �M�Q�� then P and Q must

exhibit the same behavior under all circumstances� This leads us to the following

De�nition ��� An equivalence relation EM on the class of DEPs is called a language


congruence �with respect to A� if for every f � A and any two DEPs P and Q�

PEMQ� L�f�P �� � L�f�Q��� ����

In the above de�nition f�P � denotes an expression with P as an argument� �We do not

preclude the possibility that f is an expression in more than a single argument� in which

case our notation implies that the other arguments are held �xed��

Thus� in terms of the above de�nition� an adequate modeling framework must induce a

language	congruence� But this� of course� does not guarantee that the modeling framework

is e!cient� Let C denote the set of all equivalence relations on the class of DEPs over a �xed

��



An example parallel composition with full synchronization is given in Figure �

P Q P jj�Q

Figure �

A generalization of the synchronization convention� that includes parallel composition by

interleaving and parallel composition by intersection as special cases� is given by the operator

P jjAQ� where A � � is an arbitrary subset called the synchronization set� Informally� this

is the process obtained when P and Q run independently in parallel� except that they must

fully synchronize their events in A� This operator is de�ned formally by

P � p
�
� p� � Q � q

�
� q� � P jjAQ � �p� q�

�
�

��
�

�p�� q�� if � � A

�p�� q� or �p� q�� otherwise
����

P � p
�
� p� � Q � q

�
� n � P jjAQ � �p� q�

�
�

��
�

�p�� q� if � �� A

n otherwise
����

Q � q
�
� q� � P � p

�
� n � P jjAQ � �p� q�

�
�

��
�

�p� q�� if � �� A

n otherwise�
���

An example of parallel composition with partial synchronization is given in Figure ��

P Q P jjfagQ

Figure ��

��



without synchronization� which is modeled by the interleaving behavior of the component

processes� We shall denote this parallel composition by �� jj� ��� where the subscript ��� ��

denotes the fact that the set of synchronized events is empty� Thus� if P and Q are DEPs�

then the DEP P jj�Q is the process obtained from operating P and Q in parallel completely

independently� The only assumption that is generally made about this parallel operation

is that events of P and Q never coincide in time� �An exception to this assumption can

be found e�g� in ������ Using our notational convention� we can thus de�ne the operator of

parallel composition without synchronization� formally� by

P � p
�
� p� � P jj�Q � �p� q�

�
� �p�� q� ���

Q � q
�
� q� � P jj�Q � �p� q�

�
� �p� q��� �
�

As an example of process interleaving consider the simple processes P and Q in Figure ��

P Q P jj�Q

Figure ��

At the other extreme of the range of possible synchronizations� is the parallel composition

with full synchronization� denoted �� jj� ��� In this case the synchronization of events is

complete in that all events in the event set � must be synchronized� Thus� if P and Q are

�	processes� i�e�� processes over the event set �� then an event in P jj�Q can take place if and

only if it can take place simultaneously �and synchronously� in both processes� If one of the

processes cannot participate in an event initiated by the other� the event will not take place

in either process� If no common events exist at a given time� the composite process P jj�Q

deadlocks� Parallel composition with full synchronization can thus be de�ned formally by

P � p
�
� p� � Q � q

�
� q� � P jj�Q � �p� q�

�
� �p�� q�� ����

P � p
�
� p� � Q � q

�
� n � P jj�Q � �p� q�

�
� n ����

Q � q
�
� q� � P � p

�
� n � P jj�Q � �p� q�

�
� n ����

The above operator is sometimes also called composition by intersection because the trace

set of P jj�Q is easily seen to be precisely the intersection of the trace sets of P and of Q�

��
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Example ��� The �recursive� solution to the �xed point equation

P � �a� b� P � � �c� P � ���

is the process whose transition graph is given in Figure � below�

Figure ��

� Formalisms of Concurrency

Processes interact with their environment through communication� That is� they operate

in parallel with a speci�ed degree of event synchronization� Thus we speak of parallel com


position or concurrency of DEPs� Various formalisms of concurrency have been studied in

the computer science literature� The simplest form of concurrency is parallel composition
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De�nition ��� A DEP P is called deterministic if it has no silent transitions and for every

state p of P and every event � � � there is at most one state p� such that P � p
�
� p��

An interesting and important question is how the process Pna of Example ��� di�ers

from the deterministic process $P �� �b � �� � �c � �� which generates the same event	

strings �or traces�� We shall return to this and related questions in some more detail later

but in the meantime we shall only note that the following identity holds true�

��a� b� �� � �c� ���na � ��b� �� � �c� ���� �b� ��� ��

Equation  means that the process Pna can be identi�ed in some sense with the process P �

whose state transition graph is depicted in Figure �� In the process P � there is an initial

nondeterministic �unobserved� transition from p�� to either p�� or p�� after which it becomes

deterministic� The identi�cation of two distinct processes like that in Equation  is at the

heart of a process	algebra and we shall return to this issue later�

We shall conclude this section with a brief discussion of recursive equations for process

description�

An equation of the form

P � f�P �� ���

where f is a function of �or an operator on� P � is a �xed
point equation� which� under

suitable conditions �see e�g�� ���� ����� has a recursive solution �for P �� Under appropriate

restrictions this solution is even unique� Fixed point equations are a convenient way for

process formulation� A simple illustration is given by the following example�

��



This allows us to introduce the important pre�x operator �or pre�x construction� by de�ning

the process Q as

Q �� � � P� ���

That is� Q is the process that starts at its initial state �say q�� and� in response to event

�� undergoes transition to P � For example� if P � �� the deadlock
process �that cannot

undergo any state transitions�� then ��� means that Q is the process that can execute �or

respond to� event � and then deadlock�

Another important process	operator is the controlled alternative operator �� which is

de�ned as follows� Let Q� � �� � P� and Q� � �� � P�� Then

Q �� Q� �Q� � ��� � P�� � ��� � P��� ���

is the process that in its initial state can either respond to �� and undergo transition to

P�� or respond to �� and undergo transition to P�� The choice of the initial event is at the

disposal of the environment�

An important element of nondeterministic process behavior is provided by the uncon


trolled alternative operator �� A simple illustration of this operator is provided by the

following situation� If Q� � �� P� and Q� � � � P�� then

Q �� Q� �Q� � �� � P��� ��� P�� � �� � P� � P��� ���

This is the process that� in response to the initial event �� undergoes transition either to P�

or to P�� but the choice is completely nondeterministic� Actually� as we shall see shortly�

this operator is much more subtle than indicated by ���� First we need to introduce the

event
internalization operator�

Let P be a process with event set �� By the internalization of an event � � �� we

refer to the removal of all occurrences of the event � from external view so that all state

transitions associated with � become silent� or unobserved� �denoted by ��� We denote the

resultant process by Pn��

Example ��� Consider the process Pna where P is given by

P � �a� b� �� � �c� ��� ���

Notice that the process Pna possesses nondeterministic behavior in that the internalized

event can occur at any time without the explicit knowledge of the observer� Thus we may

not know whether the process is at state p� or at p��






is modeled by parallel composition with a speci�ed degree of event synchronization� While

various formalisms of parallel composition have been de�ned and investigated in the litera	

ture� they all rely on some framework of strict synchronization� That is� speci�c events of

distinct processes must either strictly synchronize or be completely independent and inter	

leave� These formalisms are inherently inadequate for modeling the interaction of DEPs in

which spontenaity of events is an essential behavioral feature�

The present paper is a tutorial introduction to the theory of concurrency and to the

associated process	algebra and the suitability of such a methodology for modeling and con	

trol of DEPs is examined� It is shown that the existing formalisms of synchronization are

inadequate for modeling the interaction of �dynamic� DEPs with the environment� Accord	

ingly� a new parallel composition operator� called prioritized synchronous composition� that

can model a wide range of interactions among DEPs� is introduced� Aspects of the corre	

sponding process	algebra are examined� Finally� some comments are made about aspects of

controllability within the framework of the new methodology� A more detailed and formal

account of the new algebra of DEPs can be found in part � of this report�

� Process Components and Operators

Following standard notation� let � be a �nite set of event labels and let �� denote the set

of all �nite strings of elements of �� including the empty string �� A process P with events

in � is then a device that undergoes state transitions in response to events in �� A local

description of P can be given in terms of individual state transitions as follows� If p and p�

are states of P � and � is an event in �� then we shall use the notation

P � p
�
� p�

to express the possibility for process P to undergo transition from state p to state p� in

response to the event �� Similarly� we shall use the notation

P � p
�
� n

to express the fact that when the process P is at state p� no state transition is possible in

response to the event �� At this stage we do not concern ourselves with the mechanism of

event generation�

We shall also �nd it convenient to refer formally to P as the global process structure

consisting of its complete state transition tree� or graph� and its designated initial state p��

�



studied in the Ramadge	Wonham framework� Their research had a profound impact on the

control systems research community and generated a growing interest in control of DEPs as

evidenced by the expanding number of research contributions to this subject �e�g� ���� ���

��� ��� �� ��� ��� �� ����

In spite of their inherent simplicity and corresponding attractiveness� state machines

have a weakness as models of complex processes because they su�er from an exponential

explosion in the number of their states� To be e�ective and useful� it is desirable that a

state�event modeling formalism have the capability to somehow relax the requiremwnt that

all states as well as all event sequences be present explicitly in the model at all times� Thus�

one would like to be able to suppress in such a model all aspects of its description that are

irrelevant in a particular context� This can be achieved by event	internalization� or partial

observation� which leads to nondeterminism in process behavior �in the automata	theory

sense� and to inadequacy of formal languages as models of behavior� A further aspect of ef	

fective modeling is the ability to construct a process description from individual components�

thus introducing as an intergral element of the modeling framework modularity and hierar	

chy� Also� to obtain an e�ective description tool� it is important to have the capability of

describing behavior recursively� Finally� since all modules of the process must interact and

correctly synchronize when operating in parallel� asuitable mechanism for communication

and interaction between the various process components must be formulated� that includes

a suitable formalism for DEP control�

The importance of developing a framework for modeling� speci�cation� veri�cation and

synthesis of discrete event processes� with particular emphasis on computer operating sys	

tems� data	base management� concurrent programs� and distributed computing� has been

recognized in the computer science community for well over a decade� and a diverse and ex	

tensive literature has developed on this subject� Notable among the various approaches that

have been developed are Petri	Net Theory ��
�� linear	time and branching	time temporal log	

ics ���� ��� ��� ���� and� of particular interest in the context of the present paper� a number

of �closely related� algebras of concurrent processes that were inspired by Hoare�s Commu	

nicating Sequential Processes �CSP� ���� and Milner�s Calculus of Communicating Systems

�CCS� ����� and became widely known as the theory of concurrency �
� ��� ��� ��� ��� �� ��

�The reader is referred to the two recent volumes ��� and ��� for a broad overview of the

current literature��

In spirit and in general philosophy� the theory of concurrency is well suited for modeling�

analysis� and synthesis of discrete event control systems� A central theme in that theory is

the description of the interaction between DEPs and their environment� Such interaction

�



� Introduction

Traditionally� control theory has dealt with the dynamic behavior of processes whose vari	

ables are numerical and whose evolution can be modeled by di�erential or di�erence equa	

tion� With the widening use of computers as essential components of systems� increasingly

complex systems have emerged that can no longer be adequately described by conventional

models� Indeed� in an increasing number of processes states may have not just numerical

values� but symbolic or logical values as well� State changes may then occur in response to

the occurrence of discrete events that take place at discrete times� frequently asynchronously

and nondeterministically� The control of such systems is of great practical importance and

theoretical interest� and poses a wide range of new and intriguing intellectual challenges�

The simplest processes that exhibit such discrete behavior are discrete event processes�

or DEPs� These are processes whose behavior can be modeled entirely within a state	event

framework� that is� processes whose states are discrete and state changes take place only in

response to events that occur at discrete and irregular intervals� Some of the more common

and familiar examples of such processes are computer operating systems� manufacturing

systems� communication networks� tra!c systems� resource �such as power or water� man	

agement systems� and computer	based supervisory control systems of complex plants�

A state transition and its associated event constitutes the basic fragment of a DEP�

�Finite� state machines and their associated state transition diagrams are the simplest formal

mechanism for collecting such fragments into a whole� State machinemodels are conceptually

appealing because of their inherent simplicitly and the fact that they can be described

adequately by �nite automata and the theory of regular languages�

Recently� Ramadge and Wonham ��� �
� �� initiated a pioneering e�ort of developing

a control theory of DEPs within the framework of state machines and formal languages� In

their framework all events are spontaneous and process	generated� Some of the events� called

controllable events� possess a disablement mechanism accessible to the environment� and the

control problem is to suitably interact with the process� by disabling of controllable evnts� so

as to con�ne its behavior to within speci�ed legal bounds� The mechanism examined in the

work of Ramadge and Wonham for such interaction is called feedback control and consists

of certain mappings between the process under consideration and a suitably formulated

supervisor� Process behavior is modeled by its language� i�e�� the set of event	strings that

the process can generate� Various control	theoretic questions such as controllability ��� �
��

observability ���� ��� ���� decentralized and hierarchical control ��
� �� ��� and stabilition

��� ���� as well as such questions as computational complexity ���� ��� and others were

�



Part I

Concurrency and Discrete Event

Control

Abstract

In recent years there has been a growing interest in the control of discrete�event

processes� These are processes in which state changes take place in response to events

that occur discretely� asynchronously and often nondeterministically� Much of the the�

ory that was developed to date was inspired by the pioneering work of Ramadge and

Wonham ���� ��� ��	� where a discrete� event control theory was presented within the

framework of automata and formal languages� In the present paper an alternate ap�

proach is proposed for discrete�event modeling and control� This approach� inspired by

the theories of Process�Algebra as developed in the computer science literature 
e�g�

���� ��� �� ��	� rests on a framework of concurrency� Accordingly� a new concurrency

formalism is introduced that is suitable for modeling a wide range of interactions be�

tween discrete�event processes and� in particular� is suitable for dealing with various

formalisms of discrete�event control� The new framework can adequately handle non�

determinism and can be used for analysis of a wide range of discrete�event phenomena�

It is particularly e�ective for synthesis of discrete�event controllers from local speci��

cations� In the present paper the approach of Process�Algebra is brie�y reviewed and

the new formalism of concurrency is introduced� The paper is tutorial and is primarily

intended to appeal to the reader�s intuition� A more detailed and formal account can

be found in part � of this report�
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An Algebra of Discrete Event Processes

Michael Heymann� and George Meyery

October ����

Abstract

This report deals with an algebraic framework for modeling and control of discrete

event processes� The report consists of two parts� The �rst part is introductory� and

consists of a tutorial survey of the theory of concurrency in the spirit of Hoare�s CSP�

and an examination of the suitability of such an algebraic framework for dealing with

various aspects of discrete event control� To this end a new concurrency operator is

introduces and it is shown how the resulting framework can be applied� It is further

shown that a suitable theory that deals with the new concurrency operator must be

developed� In the second part of the report the formal algebra of discrete event control

is developed� At the present time the second part of the report is still an incomplete

and ocassionally tentative working paper�
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