Proceedings of the 1999 IEEE
International Conference on Robotics & Automation
Detroit, Michigan » May 1999

Discrete Event Control with Active Events

Michael Heymann? Féng Lin! and George Meyer!

Abstract

The traditional framework for discrete event control
is extended to include the case of control with active
events, in which both the user and the environment
have evnets that they can trigger. A variety of live-
ness and safety specifications can be considered within
this extended framework. A synthesis algorithm of
minimally restrictive controllers is outlined.

1 Introduction

In the traditional paradigm of supervisory control
theory for discrete event systems, all events are as-
sumed to be triggered by the environment. To achieve
the required behavior, the user has the ability to con-
trol the system only by disabling some of the events
(which are called controllable events). The supervi-
sory control problem is then to synthesize a super-
visor which, through suitable disablement of control-
lable events, confines the system’s behavior to within
specified legal requirements (usually in a minimally-
restrictive way) [1] - [7].

Although in the resultant mathematical theory of
discrete event control, the precise nature of the events
is not always crucial, the theory cannot always be
adapted to alternate setups. In particular, when both
the user and the environment can trigger events in the
system, the nature of the control problem can change
substantially, and the traditional supervisory control
framework must be modified.

*Department of Computer Science, Technion, Israel Institute
of Technology, Haifa 32000, Israel

tDepartment of Electrical and Computer Engineering,
Wayne State University, Detroit, MI 48202

INASA Ames Research Center, Moffett Field, CA 94035

0-7803-5180-0-5/99 $10.00 © 1999 IEEE

131

In the present paper we present an extended frame-
work for supervisory control, in which certain events
can be triggered by the user, certain events can be
triggered by the environment, and both the user and
the environment can disable a subset of the other’s
events. An example is provided to illustrate this situ-
ation. While control for safety specifications remains
quite similar to the traditional setup, control for live-
ness is quite different since several versions of liveness
can convincingly be defined. For example, it may be
required that the user be able to complete tasks using
only events that he/she can trigger and the environ-
ment cannot disable. This leads to a new framework
for liveness control and to a suitable modification of
safety control. The theory is developed and a synthe-
sis algorithm is outlined.

2 Illustrative Example
Example 1 Consider the following simple manufac-

turing system. The system consists of five machines,
five buffers and two conveyors, as shown in Figure 1.

Figure 1: Manufacturing System

The system is controlled by two operators. The first
operator O; has exclusive access to machines M1;, and
M2, buffers By; and Bis, and conveyor Cj, and has
shared access with operator Oy to buffer B3 and ma-
chine M3. The second operator O, has exclusive ac-

cess to buffers B>; and Bsz, machines M3, and Mag,
and conveyor Cs. Operator O has the ability to dis-
able the operation of the conveyor C}.

The system is operated in the following way: After
entering a part into the buffer By; (event a;,), op-
erator O, can send it for processing to machine My,
(event B11). Upon completion of processing in My,
the part is deposited in buffer By, (event ay2). Oper-
ator O; has then the choice either to send the part for
further processing to machine M;» (event Bi2) or, if
not disabled, via the conveyor C; (event v;), to buffer
Bj. If the part has been processed on machine M,
then upon completion of processing, the part is ejected
from the machine (event). All the buffers have the
capacity of exactly one part.

Operator Oy can enter a part for processing into
buffer B,; (event as;), and subsequently take the part
to be processed by Ma; (event (21). Thereafter the
part is deposited in buffer B2y (event az22), to be sub-
sequently processed by M, (event fa2). Thereafter,
operator 02 sends the part via conveyor Cy (event 72)
to buffer Bs. At any time, operator Oy can feed a
part from the buffer B; (provided it is not empty)
to machine M3 for processing (event #) which, upon
completion, is ejected from the machine (event). As
stated, operator O, has the ability to disable y; at any
time or to enable it.

Note that the interpretation of controllable and un-
controllable events here is different from that in tra-
ditional supervisory control: From the viewpoint of
operator 01, an event is controllable if it can be exe-
cuted (its occurrence enforced) by the controller (O;
in this case) and cannot be disabled by the environ-
ment (O in this case).

To study liveness properties of the manufacturing
system, we designate the states where all parts are
completely processed as the marked states. That is,
we wish to guarantee that each part be processed suc-
cesstully and completely.

Note that if we consider liveness to be the notion of
nonblocking as in supervisory control, then the man-
ufacturing system as described above is live: that is,
from each state there exists a path to a marked state,
and the system is nonblocking.

Upon a closer look, we find, however, that such live-
ness is at the mercy of the environment. In particular,
there exist states from which, for the system to reach
a marked state, depends on cooperation of the envi-
ronment (i.e., on O2). We shall call such reachability
weak reachability.

To guarantee that a system is live even if its en-
vironment is not cooperative, we need to introduce a
stronger notion of reachability: We require that, from
any state, there exists a path to a marked state such
that the path can be executed by the controller (that
is, consists of only controllable events).

Based on this definition, the manufacturing system
is not strongly reachable. Intuitively, to ensure strong
reachability, O must not be permitted to send the
part to Bjs.

With this illustrative example in mind, we shall de-
velop the theory of active control for discrete event
systems that deals with both weak and strong reach-
ability, among other things.

3 Control With Active Events

In this section, we propose a new framework for
modeling and control of discrete event systems in
which both the user and the environment can trig-
ger some of the events. We call such systems discrete
event systems with active events. The system is mod-
eled by an automaton

G= (21 Qa 67 4o, Qm)7

where the event set ¥, the state set), the transi-
tion function &, and the initial state go have their
usual meaning as in discrete event control [7]. The
system has two participants (players): the user and
the environment!. As discussed earlier, events of the
system are triggered either by the user or by the en-
vironment. Therefore, the event set ¥ is partitioned
as

Y = Zusr UZenw,

IThe environment models everything other than the user,
and may include other users.

132

where Y., is the set of events that can be triggered
by the user, while Z.,,, is the set of events that can be
triggered by the environment. In general the two event
sets need not be disjoint, and there may be events
that can be triggered both by the user and the envi-
ronment. The event set X, consists of two disjoint
subsets

Tusr = L&, UTY

usr usr?

where XS, is the subset of the user-triggered events
that can be disabled by the environment, and X, is
the subset of the user-triggered events that cannot be
disabled by the environment.

Similarly, the event set %, is partitioned into two
disjoint subsets

ZtB'IW = Egnuuzgnv'

In traditional supervisory control of discrete event
systems, it is assumed that all events are triggered by
the environment (that is, Xysr = 0) and that the user
can only disable events (in X¢,,) from taking place.
In this sense the control that the user can exert on
the system is purely supervisory.

In the present setting the user has at his disposal in
addition to the events from X¢,,, that he can disable,
also the events in X,,., which we call active events,
that he can trigger. As we shall see, several new is-
sues must be addressed because of the introduction of
active events.

We are still interested in supervisory control issues,
in that we do not introduce any goal for our con-
troller, other than to guarantee the safety and live-
ness of the system, from the point of view of the user,
as to be further discussed in the next section. This
goal must be achieved by a controller or supervisor
through the disablement, or disallowing the execution
of, certain events in G. Clearly, a controller cannot
disable or disallow events in 3¢, .
controller can only disable or disallow the following
“safety” events.

In other words, the

Y, =X-3¢,, =X

env env

U z:usr - E

U
env”
Formally, a controller is defined as a mapping v

v: L(G) — 2%«

and operates as follows: After the occurrence of a se-
quence of events s, the controller “disables” the set
of events v(s)CX,. Specifically, the subset of events
v(s)NZE,,, is disabled from being triggered by the en-
vironment, and the subset of events vy(s)NTys, (which
can be triggered by the user) is disallowed. On the
other hand, events in ¥ — v(s) can be triggered by the

" user or the environment if they are physically possible.

To specify the behavior of the controlled system
v/G, we study the language L(v/G) generated by the
controlled system, which is given as follows.

e The empty string € belongs to L(y/G)

e After a sequence s € L(y/G), so € L(v/G) for
o € ¥ if and only if ¢ is possible in L(G) and is
not disabled or disallowed by 7:

so € L(v/G) & so € L(G) Ao & v(s).

Although our interpretation of the system G and
controller 7 are very different from those in traditional
supervisory control, we havé managed to keep their
mathematical definition identical to those in tradi-
tional supervisory control, if we view X as the control-
lable events in traditional supervisory control. There-
fore, the existence condition for our controller is char-
acterized by the standard controllability condition [7].

Definition 1 A language K C L(G) is said to be
controllable with respect to ¥ and L(G) if

(Vse K)Vo € £ —%,)s0 € L(G) = so € K
where K is the prefix closure of K.

The following theorem, that characterizes condi-
tions for the existence of a controller, is then the suit-
able restatement of a well known result (Proposition

5.1) of [6]): ‘

Theorem 1 For a nonempty language K C L(G),
there exists a controller v such that L(y/G) = K if
and only if K is closed and controllable.

With this theorem, we can now discuss the specifica-
tion and synthesis of controllers.

133

4 Safety and Liveness

As stated, the objective of our controller is to guar-
antee the safety and liveness of a system. Safety re-
quirements specify what behaviors are not allowed in
the system. One way of specifying safety is by stat-
ing a set (},CQ of illegal states that the system must
never enter. We call such a specification a static safety
specification [2]. A more general safety requirement is
a dynamic specification, given by a closed language
E = E that describes the maximally allowed safe or
legal behavior. (For obvious reasons, we assume that
E C L(G).) The safety requirement is then that the
controlled system never exit E; that is

L(v/G) C E.

It is not difficult to see that static safety specifications
can always be stated as corresponding dynamic ones,
and hence constitute a subset of the dynamic specifi-
cations.

On the other hand, the liveness requirements are
stated as to guarantee that certain specified tasks can
always be completed by the system. To this end, we
specify a non-closed language M, called the marked
language, that specifies the set of completed tasks?.
Given a marked language M, the liveness requirement
implies that every run of the controlled system must
be extendable to a string of the marked language. In
other words, liveness implies that every run can be ex-
tended to a completed task. Now in view of the classi-
fication of events allowed in the present framework, we
can be somewhat more discriminating with respect to
the question of what precisely we mean by the require-
ment of extendability to completed tasks. For exam-
ple, in traditional supervisory control, liveness consists
of the “nonblocking” condition, where task completion
always implies the participation of the environment,
since the user has no capability of triggering events.
Thus, in the present setting, we may also be satisfied
with a corresponding nonblocking condition that con-
sists of the ability of the controlled system to complete

2This kind of specification is more general than specifying
a set of marked states Qm C Q, as is customary in traditional
supervisory control.

tasks through the cooperative participation of the user
and the environment. That is, every run can be com-
pleted to a string in M by concatenating to it suitable
events from ¥. Alternatively, we may insist that the
user be able to complete tasks by executing only the
events that the user can trigger and the environment
cannot disable; that is, events from X}%,.. Another
possibility is, that we may allow task completion by
executing events from %,,; that is, any user triggered
events. Thus, we define a suitable set of liveness events
3; with respect to which task completion to strings in
M must be possible. To state the liveness specifica-
tion formally, we require that the language L(v/G) be
suffiz completable as defined below.

Definition 2 A language K C L(QG) is said to be
suffiz completable with respect to £; and M if

(VseK)3te of)ste KN M.

In words, a language K is suffix completable, if every
string in its prefix closure, can be completed to a string
in the marked language M by concatenating to it some
events from Y;. We define suffix completeness of K
based on the prefix closure of K because L(v/G) is
always closed. Clearly, with this definition, a language
is suffix completable if and only if its prefix closure is
suffix completable.

Note that, unlike in traditional supervisory control,
where liveness or task completion is modeled by a set
of marked states in G, we consider task completion as
specified by M. This gives us more freedom in task
specification, just like specifying E is more general
than specifying a set of illegal states.

From the above discussion, it is now clear that
in order to satisfy both safety and liveness require-
ments, the language generated by a controlled system,
L(y/G), must (1) be contained in E and (2) be suf-
fix completable with respect to ¥; and M. However,
there may exist many controllers that achieve this re-
quirement. In view of the fact that our control objec-
tives are supervisory in nature, in that we only want
to guarantee safety and liveness (rather than some
kind of preferred “optimal” performance), we would
like, just as in traditional supervisory control, to find

134

the minimally restrictive controller that permits the
maximal possible legal behavior to survive. Clearly,
such a minimally restrictive controller will generates a
largest language K such that (1) K is closed and con-
trollable (required by Theorem 1 for the existence of
a controller); (2) K is contained in E (required by the
safety specification); and (3) K is suffix completable
(for liveness). Thus, in order to synthesize a mini-
mally restrictive controller, let us proceed by defining
the set of closed, controllable, and suffix completable
sublanguage of F, as

CL(E)= {K CE:K is closed, controllable and

suffix completable}.

This set has a very nice property.
Theorem 2 CL(E) is closed under (arbitrary) union.

By Theorem 2, we conclude that the supremal el-
ement of CL(E) exists. We denote it by ET. By
Theorem 1, we know that a controller can always be
synthesized such that L(y/G) = ET. Therefore, the
problem of synthesizing the minimally restrictive con-
troller that guarantees safety and liveness is reduced
to the problem of finding ET.

Before showing how to calculate ET in the next sec-
tion, let us first remark about two related issues.

First, if we take ¥; = ¥ and M = L,,(G), then
liveness is equivalent to the nonblocking requirement
in traditional supervisory control, which is defined as

Ln(v/G) = L(v/G).

To see this, note that since L, (v/G) = L(v/G) N
L"l(G)?

Lm(v/G) = L(v/G)
& L(v/G)NLn(G) = L(v/G)
& L(y/G)NLn(G) 2 L(v/G).

On the other hand, liveness is equivalent to

(Vs € L(v/G))(@t € T*)st € L(y/G) N Ln(G)
& L(v/G) € L(y/G) N Lm(G),

which is same as nonblocking.
The second issue is about partial observation. If a
controller can only observe events in some observable

event set X,, then a partial observation controller is
defined as a map

v: PL(G) — 2%

where P : £* — 3% is the natural projection. It is
known from [3] [4], that the condition for existence

_ of a supervisor under partial observation is control-

lability and observability of the supervised language.
Observability is defined as follows.

Definition 3 A language K C L(G) is said to be
observable with respect to ¥, and L(G) if

(Vs,s' € K)Ps = Ps'
= VoeZ)soc e KAs'c € L(G) = s'o € K.

As in the case of full observation, the supervi-
sor synthesis problem is reduced to finding a largest
closed, controllable, observable, and suffix com-
pletable sublanguage of E. In other words, we are
interested in the following set

COL(E)= {K C E:K is closed, controllable,

observable and suffix completable}.

Unfortunately, this set is not closed under union, as
the union of two observable languages may not be ob-
servable. Hence the supremal element of COL(E) may
not exists and we may only find a maximal element of
COL(E). A controller can then be synthesized based
on the maximal element. The algorithm to calculate
a maximal element of COL(FE) is much more compli-
cated and will not be discussed in this paper.

5 Controller Synthesis

In this section, we study the key to controller syn-
thesis: How to find ET. We first consider the case
where specifications are static. As stated earlier, by a
static specification, we mean that the safety and live-
ness requirements are given by two sets of states Q
and @,,. Here Q, C Q is the set of illegal states that
the system must not visit. The corresponding legal
language is then given by

E = {s€ L(G) : (Vt < 5)6(qo,) & Qs},

135

where t < s means ¢ is a prefix of s. Similarly, @, C Q
is the set of marked states representing the completion
of tasks. Hence the corresponding marked language is
given by

M = {s € L(G) : §(¢o,5) € Qm}-

To find ET in the static case, the algorithm proceeds
along the following lines: At each step, there is a set
BS of “bad states” (which initially is, of course, equal
to @p). We “shrink” E, to render it controllable, by
adding to the set BS the set of “uncontrollable states”,
from which there exists an uncontrollable path to BS.
That is, we augment BS with |

Quc(BS) = {q €Q—-BS:
(35 € (% - %,)")6(4,5) € BS).

The states in this set are “uncontrollable” in the sense
that when in any of these states, the system can exe-
cute a sequence of events that cannot be disabled or
disallowed by the controller, that causes the system
to enter a state in B.S. Obviously, any string leading
t0 Quc(BS) cannot be in ET, and hence the states in
Quc(BS) must be added to BS.

Next we shrink E further, to make it suffix com-
pletable, by adding the following “non-completable”
states to BS:

Qne(BS)={q€ Q- BS:
—(3s € 3)(6(q,5) € Qm A (Vt < 5)d(q,t) &€ BS)}.

These are states from which the system cannot reach
a marked state through event sequences that consist
only of events in ¥; without intercepting illegal states
in BS.

Clearly, the addition of the set @n.(BS) to BS can
generate new uncontrollable states from which a string
in (¥ — X,)* will lead to a state in BS. Therefore the
above procedure of enlarging BS must be repeated
until it converges (when no new states are added).

The formal algorithm is presented in the full version
of the paper, available at www.ece.eng.wayne.edu/
flin.

How to handle dynamic specifications is also dis-
cussed in the full paper.

Acknowledgments

This research is supported in part by the National
Science Foundation under grants ECS-9315344, INT-
9602485 and NASA under grant NAG2-1043 and in
part by the Technion Fund for Promotion of Research.
The work by the first author was completed while
he was visiting NASA Ames Research Center, Mof-
fett Field, CA 94035, on a grant with San Jose State
University.

References

[1] M. Heymann and F. Lin, 1994. On-line control
of partially observed discrete event systems. Dis-
crete Event Dynamic Systems: Theory and Ap-
plications, 4(3), pp. 221-236.

[2] M. Heymann and F. Lin, 1998. Discrete event
control of nondeterministic systems. control of
nondeterministic systems, IEEE Transactions on
Automatic Control, 43(1), pp. 3-17.

[3] F. Lin. On controllability and observability of dis-
crete event systems. Ph. D. Thesis, Department
of Electrical Engineering, University of Toronto,
1987.

[4] F. Lin and W. M. Wonham, 1988. On observ-
ability of discrete event systems. Information Sci-
ences, 44(3), pp. 173-198.

[5] F. Lin and W. M. Wonham, 1990. Decentralized
control and coordination of discrete event systems
with partial observation. IEEE Transactions on
Automatic Control, 35(12), pp. 1330-1337.

[6] R. J. Ramadge and W. M. Wonham, 1987. Su-
pervisory control of a class of discrete event pro-
cesses. SIAM J. Control and Optimization, 25(1),
pp. 206-230.

[7] P. J. Ramadge and W. M. Wonham, 1989. The
control of discrete event systems. Proceedings of
IEEE, 77(1), pp. 81-98.

136

