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Abstract. In this paper, we study the control of Composite Hybrid Ma-
chines (CHMs) subject to safety specifications. CHMs are a fairly general
class of hybrid systems modeled in modular fashion as the concurrent op-
eration of Elementary Hybrid Machines (EHMs). The formalism has a
well-defined synchronous-composition operation that permits the intro-
duction of the controller as a component of the system. The task of a
legal controller is to ensure that the system never exits a set of specified
legal configurations. Among the legal controllers, we are particularly in-
terested in designing a minimally-restrictive (or minimally-interventive)
one, which interferes in the system’s operation only when constraint vi-
olation is otherwise inevitable. Thus, when composed to operate concur-
rently with another legal controller, our controller will never interfere
with the operation of the other. Therefore, a minimally-restrictive con-
troller provides maximum flexibility in embedding additional controllers
designed for other control objectives to operate concurrently, while elimi-
nating the need to re-investigate or re-verify the legality of the composite
controller. We describe in detail an algorithm for controller synthesis and
examine through several examples questions associated with algorithm
termination and controller existence.

1 Introduction

Various definitions have been proposed in the literature to capture the intuitive
idea that hybrid systems are dynamic systems in which discrete and continuous
behaviors coexist and interact [3] [4] [7] [8] [19] [22]. Broadly speaking, they
are systems in which changes occur both in response to events that take place
discretely, asynchronously and sometimes nondeterministically, and in response
to dynamics that represents (causal) evolution as described by differential or
difference equations of time. Thus, most physical systems that can be represented
by formal behavior models are hybrid in nature.
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In recent years there has been a rapidly growing interest in the computer-
science community in modeling, analysis, formal specification and verification of
hybrid systems (see, e.g. [4] [24]). This interest evolved progressively from logical
systems, through “logically-timed” temporal systems [2] to real-time systems
modeled as timed automata [20] and, most recently, to a restricted class of hybrid
systems called hybrid automata [3] [19]. Thus, the computer-science viewpoint
of hybrid systems can be characterized as one of discrete programs embedded in
an “analog” environment.

In parallel, there has been growing interest in hybrid systems in the control-
theory community, where traditionally systems have been viewed as “purely”
dynamic systems that are modeled by differential or difference equations [5] [7]
[8]. More recently, control of purely discrete systems, modeled as discrete-event
systems, also received attention in the literature [25] [26] [16]. The growing real-
1zation that neither the purely discrete nor the purely continuous frameworks are
adequate for describing many physical systems, has been an increasing driving
force to focus attention on hybrid systems. Contrary to the computer-science
viewpoint that focuses interest in hybrid systems on issues of analysis and ver-
ification [21] [23], the control-theory viewpoint is to focus its interest on issues
of design.

Typical hybrid systems interact with the environment both by sharing sig-
nals (i.e., by transmission of input/output data), and by event synchronization
(through which the system is reconfigured and its structure modified). Control of
hybrid systems can therefore be achieved by employing both interaction mecha-
nisms simultaneously. Yet, while this flexibility adds significantly to the potential
control capabilities, it clearly makes the problem of design much more difficult.
Indeed, in view of the obvious complexity of hybrid control, even the question of
what are tractable and achievable design objectives, is far from easy to resolve
[10].

In the present paper we examine the control problem for a class of hybrid
systems called composite hybrid machines (CHMs). These constitute hybrid sys-
tems consist of the concurrent operation of elementary hybrid machines (EHMs)
using a well-defined synchronous composition formalism that allows both signal
sharing and event synchronization. A controller can then be coupled with the
plant by means of synchronous composition.

The goal of a legal controller considered in the present paper, is to ensure the
safety of the system in the sense that it will never violate its legal specification
given by a set of (illegal) configurations that must be avoided. In other words,
a legal controller must prevent the system from ever entering the illegal config-
urations. Among all legal controllers, we are interested in minimally restrictive
ones.

A legal controller is minimally restrictive if, when composed to operate con-
currently with any other legal controller, it will remain inactive except at the
boundary of legal region where controller inaction would lead to inevitable safety
violation, therefore, can be composed to operate concurrently with any other
controller that may be designed to achieve other requirements such as liveness



specifications or optimality. There is no need to re-investigate or re-verify legality
of the composite controller.

We confine our attention to a special class of CHMs where system dynamics is
rate-limited and legal guards are conjunctions or digjunctions of atomic formulas
in the dynamic variables (of the type S < €, S > C, S < C,or S > C). We
present an algorithm for synthesis of the minimally restrictive legal controller.

2 Design Philosophy

Intuitively, a controller for legal behavior of a hybrid system is minimally re-
strictive if it never takes action unless constraint violation becomes imminent.
When the latter happens, the controller is expected do no more than prevent the
system from becoming “illegal”. This is a familiar setting in the discrete-event
control literature since, there, the role of the controller has traditionally been
viewed as that of a supervisor that can only intervene in the system’s activ-
ity by event disablement [25] [26]. Thus, a minimally restrictive supervisor of a
discrete-event system is one that disables events only whenever their enablement
would permit the system to violate the specification.

It is not difficult to see that a natural candidate for a “template” of a mini-
mally restrictive supervisor is a system whose range of possible behaviors coin-
cides with the set of behaviors permitted by the specification. The concurrent
execution of the controlled system and such a supervisor, in the sense that events
are permitted to occur in the controlled system whenever they are possible in
the controller template, would then constrain the system to satisfy the specifi-
cation exactly. We shall then say that we have employed the specification as a
candidate implementation. If all the events that are possible in the system but
not permitted by the candidate supervisor can actually be disabled, we say that
the specification is implementable or (when the specification is given as a legal
language) controllable [25]. Generally, a specification may not be implementable
because not all the events can be disabled.

The standard approach to supervisory controller synthesis can then be in-
terpreted as an iterative procedure where, starting with the specification as a
candidate implementation, at each stage of the iteration the specification is tight-
ened so as to exclude behaviors that cannot be prevented from becoming illegal
by instantaneous disablement of events [12] [13]. The sub-specification thus ob-
tained, is then used as a new candidate implementation. When the procedure
converges in a finite number of steps (a fact guaranteed in case the system is a
finite automaton and the specification a regular language), the result is either
an empty specification (meaning that a legal supervisor does not exist) or a
minimally restrictive implementable sub-specification.

In the present paper we shall employ the same design philosophy for the
synthesis of minimally restrictive controllers of hybrid systems. However, due to
the addition of continuous dynamics and dynamic transitions caused by contin-
uous dynamics, the synthesis problem for hybrid systems becomes much more
complex. In particular, it 1s often necessary to “split” configurations into legal



and 1llegal sub-configurations by considering some weakest preconditions, safe-
exit conditions, and preemptive conditions that depend explicitly on continuous
dynamics.

3 Comparison with Other Work

As state before, the basic approach employed in our synthesis method is stan-
dard in the supervisory control theory of discrete-event systems, where a similar
(least) fixed-point algorithm is usually employed (see, e.g., some of our own
work on discrete-event systems [11] [12] [13] [14] [16] [17] [18] [9]). Needless to
say, however, that there are significant differences between this work and that
of supervisory control.

Our hybrid-machine formalism, while similar in spirit to the well-known hy-
brid automata model, (see, for example, [3]), differs from the latter in some sub-
tle (but important) detail. Most importantly, we insist that vertices (and hence
configurations) be always completely guarded, thereby insuring that CHMs are
always well-defined (and every run is physically realizable). This prevents the
possibility of ill-defined behaviors (that are possible in hybrid automata and are
frequently referred to as the “prevention of time from progressing”). Further-
more, our model provides an explicit mechanism for interaction between EHMs
by introducing input/output events and shared variables. Such an explicit mech-
anism 1s critical to controller specification and design as proposed in this paper.

Finally, there are other recent works on control synthesis; in particular, the
works reported in [6] [20] where attention is confined to timed automata, and
where a similar fixed-point approach to control-synthesis is proposed. There are,
however, significant differences between our work and the latter. First, we extend
our attention to hybrid machines rather than confine it to timed automata.
This allows, for example, dynamics of bounded-rate without resetting rather
than constant rate with resetting. Our model also allows dynamic transitions in
addition to event transitions. Secondly, contrary to that of [6] [20], our plant is
autonomous in the sense that it can run by itself without the intervention of
a controller. Because of this property, our control is “supervisory”. It gives the
plant freedom to do what it wants as long as there is no safety violation. Finally,
and most importantly, we develop an explicit synthesis algorithm for design of a
minimally restrictive controller, while in [6] [20] the fixed-point algorithm is only
abstractly outlined (in the discrete-event control spirit) but no explicit algorithm
is given.

Another noteworthy difference between the control problem for timed au-
tomata and hybrid automata is the decidability issue. While in the timed au-
tomata case the control synthesis problem is always decidable (a fact proved in
[20]), this is not the case in hybrid automata (see [10]) and in fact our synthesis
algorithm may not terminate as is demonstrated in a simple example in Section

6.



4 Hybrid Machines

We first introduce a modeling formalism for a class of hybrid systems which we
call hybrid machines and which are a special case of hierarchical hybrid machines
to be discussed elsewhere. We begin by an informal example.

4.1 Illustrative example

Figure 1 describes schematically a hybrid system that consists of a water-tank
with water supplied by a pump and with outflow controlled by a two-position
valve.
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Fig. 1. Water Tank System

The system is described graphically in Figure 2 as a composite hybrid machine
(CHM) that consists of three elementary hybrid machines (EHMs) running in
parallel:

PUMP||TANK||VALVE.

The EHM Tank has three vertices <high>, <normal> and <low>, rep-
resenting the tank’s “high” | “normal” and “low” levels , respectively. The
dynamic behavior of the tank’s water level L is described by the equations
&t =V —F L = #, where z is the (internal) state of the vertex, and V' and
I are the rates of water inflow and outflow, respectively. In this example, the
(continuous) dynamic equations are same at all three vertices. In general, how-
ever, they may be different. The quantities V' and F constitute input-signals
to the EHM Tank and output-signals of the EHMs Pump and Valve, respec-
tively. Tank may reside at a given vertex provided the vertex invariant [.] is
true. Thus, it may reside at the vertex <normal> so long as the invariant
[L1<LAL<LL,] is satisfied, and similarly for the other vertex invariants. The
transitions between the three vertices are dynamic in the sense that they are
triggered, respectively, by the guards [L > L], [L<Ls], [L>L4] and [L < L4]
becoming true. The self-loop dynamic transition of the vertex <normal> labeled
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Fig. 2. Water Tank System CHM

by [L<L; + Al—=pump — on is guarded by the predicate [L<L; 4+ A] (where
A > 0 is some small constant), and upon occurrence triggers the output-event
pump — on. (Throughout, underlined event labels denote input-events and over-
lined event labels denote output-events.) Similarly, the other self-loop transition
of the vertex <normal> is guarded by [L>Ls — A] and triggers the output-event
pump — of f. The EHM Tank is initialized at the vertex <normal> with initial
water level Ly (that lies between the lower bound L; and the upper bound Ls).

The EHM Pump has two vertices: < offp > and < onp >. At the vertex
< offp >, the pump is off, reflected by the vertex output V' = 0. Similarly,
at the vertex < onp >, the pump is running and the vertex output V is the
pump’s (constant) flow rate P. The transitions between the two vertices are
labeled by the input-event labels pump — on and pump — of f. These transitions
are triggered by and take place concurrently and synchronously with the output-
events pump — on and pump — of [, respectively.

Finally, the EHM Valve can be at either of the vertices < openy > or
< closedy >. Transition between the two vertices are labeled by input-events

valve — open and wvalve — closed, respectively. These transition labels do not
appear as output-events in any of the other parallel EHMs but can be received
from the (unmodeled) environment. When Valve is closed, the rate of outflow
is F' = 0 and when it is open, the rate is proportional to the water level in the
tank F' = K L.

Notice that in general there are two mechanisms for communication between
parallel EHMs: (1) Input/output-event synchronization; by which transitions
are synchronized. Transitions labeled by input-events can take place only in
synchrony with a corresponding output-event that is being transmitted either
by a parallel EHM or by the environment. (However, an output-event can be
triggered without participation of any input-event, if no corresponding input-
event is feasible.) (2) Signal sharing; by which outputs (output signals) of a
vertex are available as vertex inputs to any other parallel EHM.



4.2 Elementary hybrid machines

With the above illustrative example in mind, we can now formally define hybrid
machines as follows. An elementary hybrid machine is denoted by

EHM = (QaEaDaIaEa (QO,l‘o)).
The elements of EHM are as follows.

— () 18 a finite set of vertices.

— X is a finite set of event labels. An event 1s an input event, denoted by
o (underline), if it is received by the EHM from its environment; and an
output event, denoted by & (overline), if it is generated by the EHM and
transmitted to the environment.

— D ={dy = (24,Yq, uq, fg, hq) : ¢ € Q} is the dynamics of the EHM, where
dg, the dynamics at the vertex ¢, is given by:

2g = fqlzg, uq),

Yg = hqlzg, uq),

with x4, ug, and y,, respectively, the state, input, and output variables of
appropriate dimensions. f; is a Lipschitz continuous function and h4 a con-
tinuous function. (A vertex need not have dynamics associated with it, that
is dy = 0, in which case we say that the vertex is static.)

— I={I,:q € @} is aset of invariants. I, represents conditions under which
the EHM is permitted to reside at ¢. A formal definition of I, will be given
in the next subsection.

- E={(¢,Ghe— o, ¢, xg,) 2q,¢ € @} is a set of edges (transition-paths),
where ¢ is the exiting vertex, ¢’ the entering vertex, ¢ the input-event, o’
the output-event, GG the guard to be formally defined in the next subsection,
and xg, the initialization value for 4, upon entry to ¢'.

(¢,Gha — ', ¢, xg,) is interpreted as follows: If G is true and the event o is
received as an input, then the transition to ¢’ takes place with the assignment
of the initial condition z (¢g) = xg, (here tg denotes the time at which the
vertex ¢’ is entered). The output-event ¢/ is transmitted at the same time.
If o/ is absent, then no output-event is transmitted. If xg, 1s absent, then
the initial condition is inherited from #, (assuming x4 and s represent the
same physical object and hence are of the same dimension). If ¢ is absent,
then the transition takes place immediately upon G become true. (Such a
transition is called a dynamic transition and is sometimes abbreviated as
(q,G,q") when ¢/ and xg, are absent or understood.) If GG is absent, the
guard is always true and the transition will be triggered by the input-event
o. (Such a transition is called an event transition and sometimes abbreviated
as (¢,0,q") when o and xg, are absent or understood.)
— (qo, #0) denote the initialization condition: ¢¢ is the initial vertex and z4, (t0) =

xXo.



For the EHM to be well-defined, we require that all vertices be completely
guarded. That is, every invariant violation (possible under the dynamics) im-
plies that some guard associated with a dynamic transition becomes true. (It
is, 1in principle; permitted that more than one guard become true at the same
instant. In such a case the transition that will actually take place is resolved
nondeterministically.) Note that we do not require the converse to be true. That
1s, a transition can be triggered even if the invariant is not violated. We further
require that, upon entry to a vertex ¢', the invariant Is be true. It is however
possible that, upon entry to ¢’, one of the guards at ¢’ is already true. In such
a case, the EHM will immediately exit ¢’ and go to a vertex specified by (one
of) the true guards. Such a transition is considered instantaneous. Naturally, we
only allow finite chains of such instantaneous transitions to be possible, other-
wise we say that the EHM is divergent. That is, for the EHM to be nondivergent,
the guards must be such that no sequence of instantaneous transitions can form
a loop.

In this paper we will study a restricted class of hybrid machines called
bounded-rate hybrid machines, characterized by the following assumption.

Assumption 1 The dynamics described by f, and h, has the following proper-
ties: (1) hq(zq, ug) is a linear function; and (2) f, (x4, ug) is bounded by a lower
limit k’é and an upper limit k’g, that is, fy(zq, uq) € [k’é, k’g]

An execution of the EHM is a sequence
qo 0 g 2 g L
where ¢e; 1s the ¢th transition and ¢; 1s the time when the ith transition takes
place. For each execution, we define its trajectory, path and trace as follows.
— The trajectory of the execution is the sequence of the vector time functions
of the state variables:

Lgos Xgys Laa -

where g, = {24,(t) 1t € [ti,tig1) }.
— The path of the execution is the sequence of the vertices.
— The input trace of the execution is the sequence of the input-events.
— The output trace of the execution is the sequence of the output-events.

Remark. Tt is easily seen that discrete-event systems and continuous-variable
systems are special cases of the hybrid systems as described above. Indeed, we
notice that if there is no dynamics in an EHM (and hence no D and T), then

EHM = (QaEaano)

where edges E are labeled only by events: a typical discrete-event system. Simi-
larly, if there is no event and only one vertex in an EHM (and hence no need to
introduce @, X, I and F), then

EHM = (D,l‘o) = (xayauafaha$0)a

which is a typical continuous-variable system.



4.3 Composite hybrid machine

A composite hybrid machine consists of several elementary hybrid machines
running in parallel:

CHM = EHMY||EHM?||...||EHM™.

Interaction between EHMs is achieved by means of signal transmission (shared
variables) and input/output-event synchronization (message passing) as described
below.

Shared variables consist of output signals from all EHMs as well as signals
received from the environment. They are shared by all EHMs in the sense that
they are accessible to all EHMs. A shared variable S; can be the output of at
most one EHM. If the EHM of the output variable does not update the variable,
its value will remain unchanged. The set of shared variables defines a signal space
S =151, 59, ..., Sm]-

Transitions are synchronized by an input/output synchronization formalism.
That 1s, if an output-event 7 is either generated by one of the EHMs or received
from the environment, then all EHMs for which o is an active transition label
(i.e., ¢ is defined at the current vertex with a true guard) will execute ¢ (and
its associated transition) concurrently with the occurrence of @. An output-
event can be generated by at most one EHM. Notice that input-events do not
synchronize among themselves. Notice further that this formalism is a special
case of the prioritized synchronous composition formalism [11], where each event
is in the priority set of at most one parallel component.

By introducing the shared variables S, we can now define invariants and
guards formally as boolean combinations of inequalities of the form (called
atomic formulas)

Si > C; or S; <,
where S; is a shared variable and C; is a real constant.

Remark. For consistency of the computations, we should mainly deal with closed
invariants as well as closed guards (that is, the sets in which the invariants or
guards are true are closed). Since the complement of a closed set is not closed, we
should distinguish, for 5; > C}, its strict negation S; < C; and its negation S; <
C;. To ensure the closedness, we will maily consider negation (unless otherwise
stated) and, with some abuse of notation, write =(5; > C;) = (S; < C;). Thus,
it is possible that a boolean expression and its negation are both true at a point
or on a hyperplane. If this matters, as in the case that several guards become
true simultaneously, we will introduce suitable prioritization, as will be discussed
below.

To describe the behavior of

CHM = EHMY||EHM?||...||EHM™,



we define a configuration of the CHM to be

q =< qZ'llaqz'ZQa annn > Ql X Q2 X ... X Qn

where ()7 is the set of vertices of FH M/ (components of the EHMs are super-
scripted).

When all the elements of ¢ are specified, we call ¢ a full configuration. When
only some of the elements of ¢ are specified, we call ¢ a partial configuration and
we mean that an unspecified element can be any possible vertex of the respective
EHM. For example, < ,qi, -, qi. > 1s interpreted as the set

<an'22a aqzln >= {< Qillaqu aqzln > qgl € Ql}

of full configurations. Thus, a partial configuration is a compact description of
a set of (full) configurations.
A transition

12 ! 1 2
<Qi1aqi2a"'aqznn> <qi’1an"2a"'ann >

of a CHM is a triple, where ¢ =< ql»ll, qi, ., qi. > Is the source configuration,
g =< ql»lll,qiz,Q, -, qp > the target configuration, and [ the label that triggers
the transition. [ can be either an event or a guard (becoming true). Thus, if
| = o is an event (generated by the environment), then either q‘g,j = q‘gj if o is
0
i

not active at ¢! , or ¢/, is such that (¢/ ,c — o/, ¢/, ,2° ) is a transition in
7 7 7 7

1.
7

EJ. On the other hand, if [ = G is a guard, then there must exists a transition
(¢, G = o, qir xglnf ) in some EHM™ and for j # m, either q‘gg = q‘gj if o is
not defined at q‘gj, or q‘Z; is such that (q‘gj,g’ — o', q‘g;, J:Sjl ) is a transition in FY.
i

For brevity we shall sometimes denote the transition simply by (¢, ¢'). Note
that for simplicity, we do not specify the output events and initial conditions,
since they are defined in the EHMs.

The transitions are assumed to occur instantaneously and concurrent vertex

changes in parallel components are assumed to occur exactly at the same instant
(even when constituting a logically triggered finite chain of transitions).

Remark. Based on the above definition, a CHM can be viewed as the same object
as an EHM:

CHM =(Q,¥,D,I,E,(qo,x0))
where
Q=0Q'"xQ*x ..xQ",
Yy=xtux?u..ux,
D ={(2q,Yq, ug, f3, hq) : ¢ =< qz'llaqizy i, >€ Q' x Q% x .. xQ"}

combines all the dynamics of q‘gj,j =1,2,...,n,



I = {Iqll1 /\Iql22 A "'/\I‘L"n < q}l,qi, i >€ Q' x Q% x ... x Q"},
E  is defined as above, and
(QOaxO) = (< Qéana aQBL >a ($éa$g’ ,l‘g))

Therefore, we can define an execution of a CHM in the same way as that of an

EHM.

Recall that our model also allows guarded event transitions of the form

Gro
qg—>q.
However, since for the transition to take place the guard must be true when the
event is triggered, a guarded event transition can be decomposed into

G
—_— o ,

N gq2—4q,
F

where ¢ has been partitioned into ¢; and ¢», with I, = I;A=G and Iy, = [;AG.
It follows that a guarded event transition can be treated as a combination of a
dynamic and an event transition.

Thus, transitions in CHMs can be classified into two types: (1) dynamic
transitions, that are labeled by guards only, and (2) event transitions, that are
labeled by events.

5 Control

5.1 Specifications

As stated in the previous section, a CHM can interact with its environment in
two ways: (1) by signal transmission (shared variables), and (2) by input/output-
event synchronization. Formally, a Controller of a CHM is a hybrid machine '
that runs in parallel with the CHM. The resultant system

CHM||C

is called the controlled or closed-loop system. The objective of control is to force
the controlled system to satisfy a prescribed set of behavioral specifications.

For conventional (continuous) dynamical systems, control specification might
consist of the requirement of stability, robustness, disturbance rejection, optimal-
ity and the like. For discrete-event systems, specifications of required behavior
are typically given as safety specifications, where a prescribed set of unwanted
behaviors or configurations is to be avoided, or liveness specifications, where a
prescribed set of termination conditions is to be met, or both.

For general hybrid systems, specifications can, in principle, be of a very com-
plex nature incorporating both dynamic requirements and the logical (discrete)
aspects.



In the present paper we consider only safety specifications given as a set of
llegal configurations

Qv ={0=<a,qh . € Q" x @ x ... x Q" : ¢ is illegal}

that the system is not permitted to visit.

Our goal is to synthesize a controller that guarantees satisfaction of the above
stated configuration-based safety requirement. A controller that achieves the
specification is then said to be legal.

In this paper, we shall consider only restricted interaction between the con-
troller and the CHM by permitting the controller to communicate with the CHM
only through input/output-event synchronization. Thus, we make the following
assumption.

Assumption 2 C can only control the CHM by means of input/output-event
synchronization. That is, C' can only control event transitions in the CHM.

Thus, the controller is assumed not to generate any (dynamic) output signals
that may affect the CHM.

We shall assume further that C' can control all the event transitions in the
CHM. That is, all the (externally triggered) event transitions are available to
the controller. This leads to no essential loss of generality because, when some
of the events are uncontrollable, we can use the methods developed in supervi-
sory control of discrete-event systems [25] [26] to deal with uncontrollable event
transitions. We shall elaborate on this issue elsewhere.

A legal controller C'is said to be less restrictive than another legal controller
C" if every execution permitted by C’ is also permitted by C' (a formal definition
will be given in the next subsection). A legal controller is said to be minimally
restrictive if 1t 1s less restrictive than any legal controller.

With a slight modification of the formalism that we shall present in the next
subsection, two or more controllers can be combined by parallel composition to
form a composite controller. An important characteristic of a minimally restric-
tive controller i1s the fact that when 1t is combined with any other controller
(legal or not), that is possibly designed for satisfying some other specifications,
such as liveness or optimality, the combined controller is guaranteed to be safe
(i.e., legal). Hence, no further verification of safety will be needed. Furthermore,
the minimally restrictive controller will intervene with the action of the other
controller only minimally; that is, when it is absolutely necessary to do so in
order to guarantee the safety of the system.

5.2 Control synthesis

As stated, our control objective is to ensure that the system CHM never enter
the set of illegal configurations Q). Such entry can occur either via an event
transition or via a dynamic transition. Since all event transitions are at the dis-
posal of the controller; prevention of entry to the illegal set via event transitions
is a trivial matter (they simply must not be triggered). Therefore, in our control



synthesis we shall focus our attention on dynamic transitions. Intuitively, the
minimally restrictive legal controller must take action, by forcing the CHM from
the current configuration to some other legal configuration, just in time (but
as late as possible) to prevent a dynamic transition from leading the system to
an illegal configuration. Clearly, entry to a configuration which is legal but at
which an inescapable (unpreventable) dynamic transition to an illegal configu-
ration is possible, must itself be deemed technically illegal and avoided by the
controller. Thus the controller synthesis algorithm that we present below, will
iterate through the (still) legal configurations and examine whether it is possible
to prevent a dynamic transition from leading to an illegal configuration. In doing
so0, it will frequently be necessary to “split” configurations by partitioning their
invariants into their legal and illegal parts.

In order to do this, we will need to consider first the time at which a predicate
will become true. We begin by considering an atomic formula

P:(SZ' > CZ)

Suppose that at a given instant ¢ at which S;(¢) = S;, P is false; that is, S;<C;
(or actually S; < Cj). Then the interval of time that will elapse before P can
become true is bounded by the minimum value

(CZ' — SZ')/TZ'U if 7°Z'U >0

o0 otherwise,

Toin (true(P)) = {

and the maximum value

(CZ' — SZ')/TZ'L if 7°Z'L >0

o0 otherwise,

Tinaz (true(P)) = {

where, r;* and ;¥ are the lower and upper bounds of §, respectively (recall
that, by our assumption, the shared variables S; are rate-bounded; that is,
Si€lrit, ).

If, at the instant ¢, P is true, then clearly Tpin (true(P)) = Thmaz (true(P)) =
0. Similarly, if P is given by

then if, at the instant ¢, P is true, Tin(true(P)) = Tmag (true(P)) = 0, and
otherwise, the minimum interval is

(CZ' — SZ')/TZ'L if 7°Z'L <0

o0 otherwise,

Tnin (true(P)) = {

and the maximum interval is

(CZ' — SZ')/TZ'U if 7°Z'U <0

00 otherwise.

Timaz (true(P)) = {

For conjunction of two predicates, P = P;AP», it is clear that

Tnin (true(P)) = max{Tmin (true(P1)), Tmin (true(P2))}



Tinaz (true(P)) = max{Thnays (true(Pr)), Timaz (true(Pa))},
and for disjunction of two predicates, P = P;V P,

Tnin (true(P)) = min{Tnin (true(Pr)), Tmin (true(P2))}

Tinaz (true(P)) = min{Tpap (true(Pyr)), Tmas (true(P2))}.
Also, if a predicate is always false: P = false, then

Tnin (true(P)) = Tiag (true(P)) = .

To streamline the ensuing analysis, we shall assume that the invariants of all
legal configurations are expressed in conjunctive normal form

I= IV NI )A AT Ve N, ),

where I;;=(S;; > Cj;), Iij=(S5;; < Cj;). Similarly, all the guards are in conjunc-
tive normal form

G = (Gll\/m\/Glll)/\~~~/\(Gm1\/~~~\/Gmlm)~

When competing guards become true simultaneously, we shall give priority
to a legal guard (i.e., one that leads to a legal configuration) over an illegal one,
and we shall resolve nondeterministically between competing legal guards.

Without loss of generality, we shall assume that the invariant is violated if
and only if one or more of the guards is true - recall the difference between
negation and strict negation as discussed in the previous remark. (Otherwise,
we can conjoin with the invariant the negation of the guards.)

The role of the least restrictive controller is to force event transitions (to
other legal configurations) at “the boundary of the legal region”. To specify the
forcing condition formally, we need to introduce, for a predicate P, critical(P)
that captures the fact that P is about to be violated. Thus, for P = (5; < C}),
we define (5> it ¥ > 0

., - i = Ci)1iLrys >
critical(P) = {false otherwise,
Similarly, for P = (S; > C5),

(SZ < Cz) if 7°Z'L <0

critical(P) = {false otherwise.
For conjunction of two predicates P = P; A Ps,
eritical(P) = eritical(Py) V eritical (Ps).
and for digjunction of two predicates P = P, V Ps,
eritical(P) = eritical (Py) A eritical (Ps).

For the CHM to move from one configuration ¢ to another configuration ¢,
the invariant [,; must be satisfied upon entry to ¢’. (Notice that if ¢’ is the legal



subconfiguration of a configuration whose invariant has been split to a legal part
and an illegal part, satisfaction of the invariant Is is not automatically satisfied.)
Thus, let us define wp(q,!, ¢') to be the weakest precondition under which the
transition (q,!, ¢’) will not violate the invariant /o, upon entry to ¢'. Since some of
the shared variables that appear in I are possibly (re-)initialized upon entering
¢', the condition wp(q, g, ¢’) can be computed from I, by substituting into I,
the appropriate initial (entry) values of all the shared variables that are also
output variables of ¢’. That is, if y; is the jth output variable of ¢’ and S; = y;
is a shared variable that appears in I/, then the value of S; must be set to

SZ' = hj(l‘gl,uq/).

With these preliminaries, we can now discuss our synthesis algorithm. Let us
consider a legal configuration ¢. As discussed earlier, we assume that transitions
leaving ¢ are either dynamic transitions or event transitions, and can lead to
either legal or illegal configurations. Therefore, we classify the transitions into
four types:

1. Legal event transitions that lead to legal configurations:

ETy(q,Q) = {(4,0,¢") ¢ = ¢' Ad' & Qs}.

2. llegal event transitions that lead to illegal configurations:

ETy(q,Q0) = {(¢,0,4') 1 ¢ = ¢ N¢' € Q).

3. Legal dynamic transitions that lead to legal configurations:

DTy(q, Q) = {(0.G,¢) 1 ¢ -5 d' A g & Qu).

4. Tllegal dynamic transitions that lead to illegal configurations:

DTy(q, Q) ={(0,G,¢) ¢4 ¢ Ng' € Qu}.

Since transitions in ET,(g, Q) can be prevented by simply not being trig-
gered, we need not discuss them further. If D7}(q, Q) = @, then no dynamic
transition from ¢ leads to an illegal configuration and hence there is no need to
split ¢. Otherwise, if DTy(q, Q) # 0, we may need to split ¢ as discussed below.
Let us consider the different cases.

Case 1. DT,(q,Qp) =0

Since DTy(q,Qs) = 0, the only way to prevent transitions in DT3(q, Q)
from taking place, is for the controller to trigger an event transition (¢, o, q’) €
ET,(q,Qs), provided this set is nonempty, thereby forcing the CHM from ¢ to
q'.

To find under what condition we can count on such a (g, ¢, ¢’) to take the
CHM to another legal state ¢’, we define the following safe-exit condition

5¢(¢,0,4") = (Tnas (true(wp(q, @, ¢'))) < Tnin(false(1y))),



where

Tinaz (true(wp(q, o, q’))) is the latest time wp(q, o, ¢') will be true, and

Tnin (false(ly)) is the earliest time I, will become false.

Therefore, se(q, o, ¢') is true if wp(q, o, ¢') is guaranteed to be satisfied before
1, is violated. Under this condition, the CHM can always be forced to safely exit
q. Notice that wp(g,o,q¢’) = sc(q,0,¢'), that is, we can always safely exit to ¢’
when wp(q, o, ¢') is satisfied.

If I, # sc(q,0,q'), then we will split the configuration ¢ into two sub-
configurations ¢; and ¢» by partitioning the invariant I, (and associating with
each of the sub-configurations the corresponding invariant) as

I‘h = Iq A SC(Qaga (]/)
I, = I, A—se(q,a,q).

Clearly, the dynamics of ¢; and ¢; and the transitions leaving and entering
these configurations are the same as for ¢, except that the transition (¢2,0,¢')
is not permitted or is impossible (because of the invariant violation). Also the
transition from ¢; to ¢s is dynamic with the guard —sc(q, o, ¢') (strict negation),
and from ¢; to ¢; with guard se(q, o, ¢').

Clearly, g1 1s legal in the sense that from it the transition to the legal configu-
ration ¢’ can be forced, while ¢ is not legal. From ¢;, the dynamic transitions in
DTy (q1, Qs) and the dynamic transition (¢1, —se(q, o, ¢'), ¢2) are illegal and must
not be permitted. To prevent these transitions from taking place in a minimally
restrictive manner, ¢ must be forced just before any one of them can actually
take place. In other words, ¢ must be forced just before I,, becomes false.

The condition under which the transition (¢, o, ¢") will be forced is then

critical(Iy,) = eritical (I, A sc(q, ¢, q')).

If there are more than one legal event transition in ET,(q, (Js), then we will
split ¢ into ¢; and ¢ as follows.

Iy = 1o A (Vig0,0)€ETy(4,0)5¢(¢, 2, 4'))
Iy = 1o A= (V(g,0,9)€ET,(4,Q0)5¢(¢, 2, ')

The condition under which a legal event transition (¢, ¢, ¢’) needs to be forced
is given by

critical (I, ) ANwp(q,a,q').

Case 2. ET,(q,Qs) =0

Since ET,(q,Qp) = 0, the transitions in DT} (q, Qs) will be prevented from
taking place, only if they are either preempted by some dynamic transitions in
DT, (b, Qs) or will never take place due to the dynamics at g.

Note that because of configuration splitting, the target configuration of a
dynamic transition guarded by a guard (G, may depend on the dynamic condition
at the source configuration at the instant when G becomes true. Thus, if the
configuration ¢’ is split into ¢ and ¢4, then we may have either (¢,G,¢}) €



DTy(q,Qp) or (¢,G, ¢5) € DI(q,Qp) depending on the dynamic conditions. To
deal with such cases effectively, it will be convenient to modify (¢, G, ¢') by the
following equivalent dynamic transition

(q,GANwp(q,G,q'),q").

Clearly, the dynamic transition (¢, G, ¢') € DTy(q, Q») will be preempted by
another dynamic transition, provided I, the invariant of ¢, becomes false before
G A wp(q, G, q') becomes true. The earliest time G' A wp(q, G, ¢') will become
true is Thin (G A wp(q, G, ¢')) and the latest time I, will become false is given
by Tmae (false(Ily)) = Tmaw (true(—1,)). Therefore, to ensure that the transition
(¢,G, ¢') will not take place, it must be required that the following preemptive
condition

pe(q, G, q") = (Trin (true(G Awp(q, G, ¢'))) > Thae (false(1y)))

be satisfied®. Therefore, we will split the configuration ¢ into two sub-configurations
q1 and g2, by partitioning the invariant [, as

I‘h = Iq /\pC(Qa Ga q/)
I, = I, A—pe(q, G, ).

As in Case 1, the dynamics of ¢; and g2 and the transitions leaving and entering
these configurations are the same as for ¢, except that the transition (¢1, G, ¢’)
1s now impossible.

If there are more than one illegal dynamic transition at ¢, then we will split
¢ into ¢q1 and ¢- as follows.

Iq1 = Iq A (/\(q,G,q’)EDTb(q,Qb)pc(Qa Ga q/))
Iy, = Ig A=A q,6,9)eDTy (0,00 Pe(0, G, 1))

General case.

That is, we require neither ET,(¢,Qs) = 0 nor DTy(q,Qs) = @. In this
general case, we can either rely on legal dynamic transitions to preempt the
illegal dynamic transitions, or if this does not happen, force some legal event
transitions. Therefore, we shall split ¢ into ¢; and ¢» as follows.®

Iy, = Iy AN (Aq,G,9)e DTy (0,Q0)PE(0, G, )V (Vig,o.a)eET,(4,05)5¢(4, T, 7))
Iy, = 1o A=A (q,6,9)eDT0(4,00) P4 G, 4)) A =(V(g0.a)eETy(0,Q0)5¢(¢, T, ¢)))-

5 We take the convention that if Tmin(true(GAwp(q, G,q'))) = oo, then pe(q, G, q') =
true even if Tnas(false(ly)) = oco.

51f (g,G,q") € DTy(q, Qs) cannot be prevented from occurring, then we must consider
q as illegal. In that case I, = false and I, = I,.



The condition under which a legal event transition (¢, ¢, ¢’) needs to be forced
is now given by’

eritical (I, ) Awp(q, @, ') N (2(A(g.6.91eDT1(0,Q0)PC(e, G 1))
Notice that if we adopt the convention that

N, G q")eDTo(q,00)PC(¢, G, q') = true if DTy(q,Qp) =0
Vi(g.0,q") BTy (0,05)5¢(¢, 0, ¢") = false if ETy(q, Q) =0,

then this general case covers both Case 1 and Case 2.
From the above discussions, we can now formally describe our synthesis al-
gorithm.

Algorithm 1 (Control Synthesis)
Input

— The model of the system
CHM = (Q,%,D,1,E,(qo,z0)).
— The set of illegal configurations @, C Q.
Output
— The controller
C=(Q°, XD I° E°, (q5,%7)).
Initialization
1. Set of bad configurations
BC = Qy;
2. Set of pending configurations
PC:=Q - Qs
3. New set of pending configurations
NPC =
4. For each qe PC set its configuration origin as
CO(q) = ¢;
Iteration

" There is a possible complication if the newly defined guards form an instantaneous
configuration-cluster (formed by simultaneously true guards) that may force an un-
bounded instantaneous sequence of consecutive transitions. If this occurs, further
analysis will be required.



5. For all ¢ € PC' do

Iqy = Iy ANM(Ng,6,9neDT(q,BC)PC(q, G, )
V(Vigaanert,ane)selt, 2,4));

Ig, = Ig A (=(Ag,c,¢enT0(q,BC)PC(q, G, q'))
N (Vg.0a)eET, (0,801 50,0, 4)));

If I, # false, then

NPC :=NPCU{qu};
COlq1) = COg);

If 1,, # false, then
BC := BCU{¢2};

6. If PC = NPC, go to 8.
7. Set

PC .= NPC,
NPC =

Go to b;

Construction of C

8. Define vertices, events and dynamics:

Q° := PC;
Yo=Xulg:oe X}
D¢ = {;

9. Define transitions:
E¢ = {(q, critical(I;) ANwp(q,a,q")
N(Ag.comenty(q.80ype(e, G, ")) = 7,¢) :
4,4 €Q°NCO(q),2,CO(¢"))EEY;
EC:=E°U{(q,wp(q,0,¢) NG —7T,q):
4,4 €Q°NCO(q),2,CO(¢"))EEY;

10. End.

Therefore, the controller C' has no dynamics. Its vertices are copies of the
legal configurations of CHM that survive after the partition. Its events include
the output-events & and the input-events & from the environment or other con-
trollers. Its transitions are of two types: (1) dynamic transitions that are trig-
gered when the CHM is about to become potentially illegal; and (2) guarded
event transitions that are triggered by input-events.



Another controller D can be embedded into C' as follows. First, all the output-
events @ in ) are replaced by & to obtain D. Then the embedded control system
is given by

CHM]||C||D.
We can now prove the following

Theorem 1. If Algorithm 1 terminates in a finite number of steps and if there
is no instantaneous configuration-cluster (that may force an unbounded instan-
taneous sequence of consecutive transitions), then the controller synthesized is
a minimally restrictive legal controller in the following sense.

1. For any controller D, an execution in C'HM||C||D will never visit illegal
configurations (.

2. For any legal controller D, an execution is possible in CH M]||D if and only
if its corresponding execution is possible in CHM||C||D.

Proof

Since Algorithm 1 terminates in a finite number of steps and no sequence of
instantaneous transitions form a loop, the controller is well defined. In particular,
time progresses as execution continues and during any finite interval of time only
a finite number of transitions take place.

To prove part 1, it is sufficient to show that an execution in C HM |[|C||D will
only visit configurations in

Q°CQ— Q.
If this is not the case, then there exists an execution

e1,t1 €n,tn
qo —> q1 — ...—>qpn—-1 — qn
such that 90,91, -5 9n-1 € Qc but dn ¢ Qc.

Let us consider the transition from ¢,_1 to ¢,. It cannot be an event tran-
sition because such illegal event transitions are not permitted by C. If it is
a dynamic transition, then since it is not preempted at ¢,_1, it implies that
qn-1 & Q°, a contradiction.

To prove part 2, let us assume that

e1,t1 €n,tn

qo —> q1 — ...—>qpn—-1 — qn
is a possible execution of C'H M||D but the last transition from ¢,_1 to ¢, is
impossible in CHM||C||D, that is, ¢, € Q°. Then by our construction of ¢,
there exists a continuation of the execution in CHM ||D

€ndtistn €ntm,butm

G ST g — T

that will lead to an illegal configuration ¢,4+m € Qs. This execution cannot be
prevented by D, a contradiction to the hypothesis that D is legal.



On the other hand, if

e1,t1 €n,tan
qo —> q1 — ...—>qn—-1 — qn

is a possible execution of C'HM||C||D but the last transition from g,_ to ¢, is
impossible in C'H M || D, then this last transition must be triggered by a dynamic
transition in C' when the following guard becomes true:

G = critical (I, ) A wp(gn-1, 0, ¢n)
AN Go1,6,0) DTy (g, BOYPEIn—1, G, "))

Since the transition (¢n—1, Ge, ¢n) does not take place in CHM||D, by our con-
struction of (., the next transition

1oyl
€t '
qn—l : qn

could lead to ¢}, € Q°. By the same argument as above, we conclude that D is
illegal, a contradiction.
]
Examples will be given in the next section to illustrate the algorithm.

6 Discussion and Examples

Our algorithm works for most examples we encounted in practice. An example
to show how our algorithm solves a steam boiler control problem [1] has been
given in [15].

There are, however, situations in which our algorithm does not resolve the
controller design problem. In the first type of situations, the algorithm terminates
finitely, but the closed loop system includes instantaneous configuration-cluster
and possibly inescapable instantaneous unbounded sequences of transitions. In
this case, a minimally restrictive legal controller may or may not exist as is
shown in Examples 1 and 2 below, and further analysis beyond the algorithm is
necessary. In the second type of situations, the algorithm does not terminate as
shown in Example 3.

Ezample 1. In this example, we will see that although the algorithm terminates,
it does so with instantaneous loops (a special case of instantaneous configuration-
cluster), and the controller obtained is not legal (since a legal controller does not
exist).

Consider the hybrid system shown in Figure 3. It models a two-tank system,
where both tanks are leaking with rate 2. A pump with rate 3 can be switched
between the two tanks (event o1 and o3). The system starts with both tanks
non-empty (z1(0) > 0,25(0) > 0). The system becomes illegal when one of the
tanks becomes empty, which is represented by illegal configuration ¢ that has no
dynamics and true invariant. Since 24+ 2 > 3, no legal controller exists that can
prevent the system from becoming illegal eventually. However, as we will show
below, the algorithm terminates.



. ) :
X,= -2 X,=1
[x,>0]" o [x,>0]"
[X,>0] -1 [X,>0]
[x,< 0]\ [[X,< 0] [x,< 0l [[X,< 0]

C
Illegdl

Fig. 3. CHM of Example 1

Initialization

BC = {c},
PC ={a,b},
IaIIbI[l‘QZO]/\[l‘l ZO]

1st Iteration

Therefore,
I, = I A (pe(a, [z < 0]V [22 <0],¢) Vse(a,01,b)) = I,
Similarly,
Iy, = I,

Since there is no change to I, and I, the algorithm terminates after just one
step.



The controller C' generated by the algorithm is shown in Figure 4. The guard
(G1 trigging the event transition oy is calculated as follows.

eritical(I,) = [#1 < 0]V [x2 < 0],

wp(a, 01,b) = [21 > 0] A2z > 0],

G = critical(I,) AN wp(a,o1,b).
Similarly, G'» can be calculated, which is the same as (1. Clearly, the controller
in Figure 4 is not a legal controller and, in fact, a minimally restrictive legal

controller does not exist. This however does not contradict Theorem 1 because
there exists an instantaneous loop in ' that occurs when x; = x5 = 0.

[x,>01" [%,> 0" G —~ G,

SO0/ [%,> 0/ 0,— 0,

Fig. 4. Controller of Example 1

Ezample 2. Although the controller designed by the algorithm is not guaranteed
to be legal when there exist instantaneous loops, such instantaneous loops do not
necessarily invalidate the resulting controller. This can be shown by changing
the pumping rate from 3 to 5. This change will not affect the synthesis procedure
and the resulting controller is the same. Under this rate, however, the controller
is legal and minimally restrictive.

Ezrample 3. This example shows that our algorithm may not terminate. In this
example there exists no minimally restrictive legal controller.

Let us modify Example 1 by assuming that there i1s a one second delay in
switching the pump. That is, it takes one second for the switching command to
be actually executed. The modified two-tank system is shown in Figure 5. As in
Example 1, no legal controller exists because 2 + 2 > 3.

Table 1 illustrates the computation of the algorithm and shows that the
algorithm does not terminate.

Ezrample 4. Consider the same system as in Example 3, but change the pumping
rate from 3 to 5. Under this rate, the algorithm terminates and generates the
following legal and minimally restrictive controller: Switching the pump to tank
t when z; = 2,1 =1, 2.

Examples 3 and 4 show that whether the algorithm terminates may depend
on the (continuous) dynamics of the system.



Fig. 5. CHM of Example 3

a b C d

initid | [x1=0]0[x2=0] [x120]00x220]0 [x1=20]0x2=0] [x1=0]x2=0]0
[t<1] [t<1]

1st [x120]00x220] [x120]x2>2-2t]0 | [x1=20]0x220] [x1>2-2t] (O0x5=0]0
[t<1] [t<1]

2nd [x120]00x2>2] [x120]x2>2-2t]0 | [x1>2]Ox220] [x1>2-2t] Ox2=010
[t<1] [t<1]

3rd [x1=20]Ox2>2] [x1>t+1]Ox2>2-2t] | [x1>2]0Ox2=0] [x1>2-2t] Oxo>t+1]
t<1] t<1j

4th [x1>1]Ox2>2] [x1>t+1]Ox2>2-2t] | [x1>2]0x2>1] [x1>2-2t] Oxo>t+1]

t<1]

t<1]

Table 1. Controller synthesis of Example 3
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