Proceedings of the 30th Conference
on Decision and Control
Brighton, England + December 1891

T2-4-1:30

CONTROL OF DISCRETE EVENT SYSTEMS MODELED AS
HIERARCHICAL STATE MACHINES

Y. BraveT
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000 , Israel.

Abstract Discrete event systems (DESs) are systems in which
state changes take place in response to events that occur
discretely, asynchronously and often nondeterministically. In
this paper we consider a class of DESs modeled as hierarchical
state machines (HSMs), a special case of the statecharts
formalism introduced recently. We provide an efficient
algorithm for solving reachability problems in the HSM
framework that utilizes the hierarchical structure of HSMs.
This efficient solution is used extensively in control
applications, where controllers achieving a desired behavior are
synthesized on-line.

1. Introduction

In most modeling frameworks for discrete event systems,
state-transitions and their associated events constitute the basic
structural fragments of the model. (Finite) state-machines and
state transition diagrams are the simplest formal mechanism for
collecting such fragments into a whole. Theses models are
conceptually appealing because of their inherent simplicity and
the fact that they can be formally described by finite automata
and their behavior by formal languages.

In many practical control problems, the discrete event
system consists of a large number components that operate
concurrently. Thus, the number of states in the state-machine
representation of the composite system grows exponentially
with the number of parallel components. This exponential
explosion in the number of states constitutes a severe
shortcoming of the state-machine modeling framework in view
of the fact that most computational algorithms for such systems

are of complexity that grows at least linearly in the number of
states.

To alleviate the modeling complexity of the state-
machine formalism while preserving many of its appealing
features, Harel [H87] introduced the statechart modeling
framework which extends ordinary (sequential) state-machines
by endowing them with natural constructs of orthogonality
(parallelism), hierarchy (depth), broadcast synchronization and
many other sophisticated features that strengthen their modeling
power. Hierarchical State Machines (HSMs) are a simplified
version of statecharts that extend state machines by adding only
the hierarchy and orthogonality features. Specifically,

Current address: EPFL Institut d'Automatique, 1015 Lausanne,
Switzerland. E-mail: brave@eliscpfi.ch . Supported in part by the
Wolf Foundation and the Fonds National Suisse de la Recherche
Scientifique.

Completed in part while the author was on leave as a NRC-
Senior Research Associate at NASA-Ames Rescarch Center, Moffett
Field, CA 94035. Also supported in part by the Technion fund for pro-
motion of research.

CH3076-7/91/OOOQ-1499$01 .00 © 1991 IEEE 1499

M. Heymann¢

Department of Computer Science
Technion - Israel Institute of Technology

Haifa 32000 , Israel.

1. States are organized in a hierarchy of superstates and
substates thereby achieving depth.

2. States are composed orthogonally (in parallel), thereby
achieving concurrency.

3. Transitions are allowed to take place at all levels of the
hierarchical structure, thereby achieving descriptive
economy.

In [D88]) Drusinsky showed that statecharts exhibit
substantial descriptive economy when compared with the
equivalent state-machine description of the process. In
particular, he showed that the descriptive complexity is
exponentially lower then that of the equivalent state-machine
model. The present paper deals with computational aspects of
HSMs and focuses on asynchronous HSMs (AHSMs) where it
is assumed that no interaction exists between parallel
components. (All interaction and synchronization is assumed to
be modeled in the control constraints.) It is shown that such
pivotal issues as computation of reachability can be executed in
the AHSM framework in exponential reduction of complexity
as compared with the equivalent ordinary state machine
representation of the process. We develop an efficient
algorithm for testing reachability that makes fundamental use of
the hierarchical structure of the process thereby demonstrating
the inherent advantage of the AHSM representation. This
reachability algorithm is then used for solving the forbidden
configuration control problem and an efficient algorithm for
on-line control execution is developed. In the remainder of this
section we shall give an informal description of HSMs. The
formal structure of HSMs is presented in section 2, whereas
section 3 provides an efficient algorithm for testing reachability
in the HSM framework. An application of this algorithm is
presented in section 4. A summary of sections 1-3 of the
present paper appeared in [BH91].

States are represented by boxes. Hierarchy is
represented by the insideness of boxes, as illustrated in
Figure 1(a): where states a and e are substates of the state f
and the states b, ¢ and d are substates of a. Figure 1(b)
represents the equivalent state machine of the HSM in Figure
1(a). The symbols om stand for events associated with the
various edges (transition-paths). The state a is called an OR-
state which means that being in a is equivalent to being in
either b or ¢ or d (but not in more than one state at a time).
The edge ¥, which leaves the contour of a, applies to b,c and
d (just as in Figure 1(b)). Default-arrows indicate default
states. In Figure 1(b), state e is selected as the initial state,
and not a (a fact represented in la by the default arrow
attached to e). The arrow attached to state ¢ is the default
among b,c and d if we are already in a, and alleviates the
need for continuing the B-arrow beyond a s boundary.

Orthogonality or concurrency is the dual of the OR-
decomposition of states. In Figure 2(a), state & consists of two
orthogonal components, f and g, related by AND; to be in h is
equivalent to being in both f and g, and hence the two default
arrows. Edges internal to f, such as the transition labeled a,
do not affect the g component. Thus, if a occurs at
<a,d >, it affects only the f-component, resulting in
<b,d >. An event A at j causes entrance to combination
<a,d>,and p at <b,e > causes transfer to i. The event
© from d states that the AND -state h(= f xg) is left and j
entered, depending only on the fact that the g-component is
actually at d. The n-arrow, on the other hand, leaves k
unconditionally. By default arrows, event A at i means
entering <b,e >, whereas p means entering <b,d >.
States that have no substates, such as a, b, d and e, are called
basic. The tuple <a,d>, as well as' <b,e> and <i>, is a
(basic) configuration of the HSM of Figure 2(a) and represents
a set of orthogonal states which the HSM can occupy
simultancously. The set of all configurations of the HSM of
Figure 2(a) is the set of all states in its equivalent 'flat’ version
of Figure 2(b). Example 1.1: A hierarchical processing of
jobs. Consider the HSM H of Figure 3. The transition-paths of
H represent the following actions.

n, - take a job for processing.

a; - partition job for further (hierarchical) processing.
¢ - start hierarchical processing.

b; - perform ‘direct’ (non-hierarchical) processing.
d; - store job. :

e; - continue processing.

fi - test product.

ki - combine products of higher level of processing.
h; - test combined product.

8 i m; - processing failures.

ko - processing ended successfully.

Some of the events are uncontrolled in the sense that
they cannot be prevented from occurring by external control.
In Figure 3, bars are attached to controlled events. A
supervisor (or a controller) S for an HSM H is a device that
specifies at each instant a set of controlled events that must be
disabled, and thereby restricts the ‘behavior’ of H. The
concurrent run of § and H is denoted S/H. In this example
our objective may be to synthesize a supervisor S for H such
that S/H never performs the operations Partition and Combine
at the same time. In other words, it may be required that states
PARTi and COMB;j are never occupied simultaneously. A
synthesis problem of the type described above will be called the
forbidden configuration problem (FCP), namely the problem of
synthesizing a supervisor S for an HSM H such that forbidden
configurations are never reached in S/H. In fact, we shall be
interested in a supervisor that solves PCP by minimally
restricting H's ‘behavior’. One possible approach to solving
FCP is to construct M (H), the equivalent (flat) state machine of
H, and then to synthesize the required supervisor using an
algorithm for computing supremal controllable languages. The
complexity of this approach is O (IQ 1), where Q is the state set
of M(H). Since Q grows exponentially as the number of
AND components increases, this approach for solving FCP can
be computationally prohibitive for nontrivial examples. In
sections 3 and 4 we propose an alternative approach for solving
FCP in the framework of AHSMs, based on efficient
reachability computations and on-line synthesis of minimally
restrictive supervisors. Other works related to the FCP problem
are [R89] that considered a mutual exclusion problem in
product systems, and [HK89] that proposed control policies for
discrete event systems modeled as marked graphs.

1500

2. Formal Structure of HSMs

An HSM is a structure H = (A, +~ +Z,T,p) where: A is
a set of states, +~ is the hierarchy relation on A, £ is a set of
event symbols, T is a set of transition-paths (or edges) and p is
a default function. Next we give a detailed description of these
elements, as well as some related notions (part of the
terminology is adopted from [D88]). First, we shall need the
following notations. Let x, y and z be three tuples. We shall
write x Cy HY every element of x is an element of y, e.g.,
<a,b>g<a,c,b,d> We shall write z = x-y iff z consists of
all elements of x that do not appear in y, eg.,
<a,c,b,d>-<a,b,e>=<c,d>.

2.1 states

A is the (finite) set of states of H, consisting of A*, the
subset of OR-states, A, the subset of AND-states and Ab%«
the subset of basic states. The hierarchical structure of H's
states is represented by the binary relation - on A, called the
hierarchy relation and satisfies the following conditions:

1. There exists a unique state, called the root state of H
and denoted r = (r(H)), such that for no state @ € A,
ae+r.

2. For every state a € A, a #r, there exists a unique
state b € A such that b +~ a. The state b is called the
immediate superstate of a, whereas a is an immediate
substate of a.

3 A state a € A has no immediate substates if and only if
a is basic.

4. If b+a then
beAandae A*,

Assumption 4, the alternating structure assumption, means that
the immediate substates of OR -states are either AND -states of
basic states, whereas the immediate substates of AND -states are
OR -states. The reflexive and transitive closure of + is
denoted + °. Thus, @ + "b means that b is a (not necessarily
immediate) substate of a.

efther b € A*anda ¢A* , or

2.2. Configurations

Let ¢ be a tuple of (disjoint) states. (The examples
throughout this subsection relate to Figure 2(a)).
. The restriction of q to a state a, denoted gq|,, is
obtained from q by deleting all elements that are not
substates of a. E.g., <b,¢>|, =,

° A state a is a superstate of q if every element of ¢ is a
substate of a. E.g., & and k are superstates of <b,e>.

. The lowest superstate of q denoted LS(q), is the
superstate a of ¢ that satisfies the condition that for each
superstate b of ¢, b + *a. Eg., LS(<b,e>) = h.

. Two states g, and g, are orthogonal, denoted g,q,, if
either ¢, = g, or, altematively, if neither is a superstate
of the other and LS(<q1,42>) € A. A tuple of states ¢
is orthogonal if every pair of states in ¢ is orthogonal.
B.g.. <b,e> is orthogonal, whereas <b k> and <b,i>
are not orthogonal. An orthogonal tuple is also called a
configuration. Intuitively, a configuration is a tuple of
states all of whose eclements can be occupied
simultaneously when running H .

. Let ¢ be a configuration and let a be a superstate of q.
Then q is a full configuration of a if it cannot be
extended through augmentation with further orthogonal
substates of a, ie., if g satisfies the condition that

beA, ar'b = <g,b> isnot orthogonal .

If g is a configuration that does not satisfy (2.1) then it
is a partial configuration of a. Bg., and <b,g>
are, respectively, a partial and a full configuration of 4.
The configuration g is basic if all its elements are basic
states. The set of all basic full configurations of a is
denoted Q, .

. Let g be a configuration of a state a and let be p be a
full configuration of a such that ggp. The
configuration p is called an a -completion of q. Ana-
completion p of q is maximal if for every state b such
that gp-g, d +b implies that <g,d> is not
orthogonal. E.g., <b,g> is a maximal k-completion of
, whereas the k-completion <b,e> of is not
maximal. It can be shown that each configuration g of a
state a has a unique maximal a -completion, denoted
c.(q).

. For a basic configuration ¢ of a state a, the a-span of
q. denoted C,(q) is defined as the set of all basic full
configurations p of a such that qgp. Bg,
Ci() = | <b,e>,<h,d>). For a subset P of basic
configurations of a, C,(P) = u' C.(p).

re

2.3 Transition-paths

Associated with each OR-state a is a set T* of
transition-paths. A transition-path of a is formally represented
by a triple # = (1,0,v),, where u and v are configuration of
a, called, respectively, the source and destination configurations
of t, and c€ I is an event symbol that labels ¢. The
association of ¢+ with T* implies that in the associated HSM
graph, a is the lowest OR-state containing f's source and
destination configurations, as well as its entire arc. Thus, in
Figure 2(a), the transition-path labeled & belongs to state f,
whereas the O-transition-path belongs to state k. A transition-
path (u,0,v), is canonical if its sousce configuration is a basic
configuration of a and its destination configuration is basic and
full. The set of transition-paths T of the entire HSM is defined
asT = {) T°. Foreach OR-state a,let S, (D,) denote the

aeAt
sct of all source (respectively, destination) configurations of
transition-paths of a. It was shown in [D88] that it is possible
to transfoom an HSM to one in which every source
configuration of a transition-path is basic. Henceforth, we shall
assume that all HSMs have been thus transformed.

2.4 Default configurations

. The default function p : A*—A specifies for each OR-
state an immediate substate, called its defaulr.

. The default configuration function P specifies inductively
for each state a a unique basic full configuration, called
its default configuration, as follows:

1. For an AND -state a with immediate substates

ay,...,a,
Pa)= <May),....PMa)>
2. For an OR-state a with immediate substates
[RN '
pa)=pPa;) I a =pa) .
3 For a basic state @, fP(a) = <a>.

In Figure 2(a), p(k) = p(h) = <p(f), p(g)> = <b ,e>.

1501

) Let ¢ be a configuration of a state a, and2lb)
Ca(q) = m<cy, ..., c> be its maximal a-completion.
The default a-completion of q, denoted d,(q), is then
defined as the basic full configuration
<p(cy), ..., Pc))> of a (where P(c;) is the default
configuration of ¢; as defined above).

2.5 Transition functions

In the remainder of the paper we shall consider only
asynchronous HSMs (AHSMs), that is, HSMs in which no two
distinct states have transition-paths labeled by identical event
symbols. That is, for every pair of distinct states a.b € A*

(#,0,v)&€ T* and (u’,0’,v)eT* = ocro’ .

We interpret the transition-paths of an AHSM H as follows.
Suppose H is at configuration ¢ € Q (=Q,). Then a transition
labeled ¢ € I is defined at ¢ Iff there exists a transition-path
t =(u,0,v), such that wgcq. PFurthermore, the ‘next’
configuration of H will be p, where p is the configuration
obtained from q by replacing (in ¢) the restriction of ¢ to a
with the destination configuration v. Thus, in Figure 2(a), the
transition-path ¢ = (<d>,0,<j>) € T* is defined at
configuration ¢ = <b,d>, and if the AHSM H executes 0 at ¢
it enters configuration p =<g- Qs J>=<j> (since
4| =q). Formally, we associate with cach state a € A the
transition function 5, :Q,xE—)Za' satisfying the condition
that for all g,p € Q, and ce £, p € 8,(q,0) MY there
exists a transition-path (#,0,v) of a substate b of a such that

uCq and p5<4-q|..d.(V)>-

where d,(v) is the default b-completion of v. The transition
function of H is defined as § = §,.

We interpret an AHSM H = (A, + ,L,T,p) as a device
that starts at configuration g, = p(r) and executes configuration
transitions according to its transition function 8. That is, H can
be represented by its equivalent (ordinary) state machine
M(H)=(Q,L,8,9q,) whose states consist of all full
configurations of H and whose transition function is the
transition function § of (the root of) H. For clarity we shall
assume that transition-paths are given in their canonical form
(see subsection 2.3); thus, henceforth, unless stated otherwise,
all configurations are assumed to be basic.

3. Reachability

In this section we discuss the problem of testing
reachability of a set of (full or partial) configurations from a
given full configuration. Let a € A. A path in a is a finite
sequence s = g,,01,41, . - ., Oy, 4y, Where the g, are full
configurations of a and the o, are symbols in Z, such that
@ € 8,(qu1,0/) forall i =1,2,...,n. In this case we say
that ¢, is a-reachable from gq,. For a subset P of full
configurations of a, define R, (H,P) to be the set of all full
configurations of a that are a-reachable from P. Similardly,
define R;'(H,P) to be the set of all full configurations of a
from which P can be a-reached.

Given a full configuration ¢ of H and a subset P of
configurations of H, our objective is to verify whether there
exists a full configuration w of H such that for some p € P,

p &w, and w is r-reachable from g, i.e., to verify whether

q € R7YH,C,(P)) , @0

where C,(P) is the r-span of P. Next, we shall present an
algorithm for testing (3.1) that does not require the construction
of the equivalent state machine M(H) whose state set is
exponential in the number of orthogonal components in H. Let

us begin with a simple example.

Example 3.1: Consider the AHSM H depicted in Figure 4.
Let ¢ = <a,,b,> and p = <a,,b;>, and suppose we wish to
verify whether p is c-reachable from ¢. That is, we wish to
find out whether there exists a path s that starts at ¢ and ends
at p, such that s consists only of transition-paths that belong to
substates of c, i.., transition-paths labeled by vy, 4,0 and p.
By the asynchrony assumption, this question can be resolved by
independent reachability tests in states @ and b. Thus we
check whether <a,> is a-reachable from <a,> , and whether
<by> is b-reachable from <b;> . Since the answer to the latter
question is negative, we conclude that <a, b,> is not c-
reachable from <a,,b,>.

Next we examine the effect of the transition-paths
labeled by o, B,y and 8 of state f. Specifically, we wish to
discover whether p = <ay,by> is f-reachable from
q = <a,,b,>. Since p is not c -reachable from g, we search for
a configuration s € Sy (i.e., a source of a transition-path of f)
that is c-reachable from q. Since the source <b;> of 8 is not
c-reachable from ¢ =<a;,b;>, we proceed with B whose
source <a,> is c-reachable from g. Our final destination is
p = <ay,by> (which is a configuration of c¢), and thus we
continue with o, thereby entering configuration <a, b,>. Now
we check whether p = <ajy,b3> is c-reachable from <a, b>.
Since this is not the case, we continue with 8, the only
transition-path of f whose source <b,> is c-reachable from
<a,byp, and retum to state ¢ through Y. This search
terminates successfully since p = <ay, b3> is c -reachable from
the destination <as,b;> of ¥. In summary, p = <a4,b4> is f -
reachable from ¢ = <ay,b,> via the following path: <a,,b,>,
Y, <apb>, B, <d>, o, <a,bp, p, <aiby>, 8, <e>, y
,<ﬂg.bg>, P «!-b!>'

We tum to our main goal of testing (3.1), but first
consider again Figure 4. Recall that during the search
performed in the paragraph preceding Lemma 3.3 for deciding
whether the configuration p = <a3,bs> is f-reachable from
q = <a;,b>, we checked whether p is c-reachable from ¢,
from <a,byo> and from <asb,>, where the latter are
configurations of ¢ that are in D,, the set of all destinations of
transition-paths of f. In fact, a reachability test from
q,<a, b and <as, by> has been carried out also w.rt. <a>
and <by> that are configurations of ¢ and belong to S;, the set
of all sources of transition-paths of f. Thus we conclude that
the only information regarding reachability within state ¢, that
may be required for reachability computations within state f, is
the c-reachability of configurations in S,U{p } from
configurations in Dy { g |} . This observation is a key point in
the development of the algorithm below for reachability
computations associated with (3.1).

Fix a full configuration ¢ of H, and a set P of
configurations of H. For each state a € A we define a set
X,(q) (called the input set of a) of full configurations of a,
and a set Y, (P) (called the output set of a) of configurations of
a, as follows. A configuration x of @ is an element in X,(q)
T ecither x =q|,, or x =d|, where d is a destination
configuration in D, for some strict superstate b of a. That is,

X.(@) =g,)V ld, | deD, and b +'a }(32)

Thus, in Figure 4,
X (<ay,b>) = { <ay,by> U <anbo,<ay by }.
Analogously, a configuration y of state a is an element in
Y,(P) T eithery =p|, for some p € P,ory =s|, where s
is a source configuration in S, for some strict superstate b of
a. Thatis

1502

Y,(P)-P|,U{:|. ls€S, and b+*a) (3.3

Thus, in Figure 4,
Y.({ <as,by>)) = { <a3,b3> | U <ar>,<byp> }.

It should be clear from the examples above that for each
state a € A at a given level in the hierarchy, all the
information about reachability that may be required for higher
level computations concemns only a-reachability tests between
input configurations in X,(¢) and output configurations in
Y.(P). If a is an AND-state, these a-reachability tests are
camried out separately and independently in each substate of a.
If, however, a is an OR-state, we test g-reachability in the
digraph G,(q,P) whose edge set consists of all transition-
paths of a, and edges representing reachability within the
substates of a. Figure 5 shows the digraph G,(q,p), where f
is the root state of the AHSM in Figure 4, ¢ = <a,,b,> and
p = <a3 by>. The results of these tests are represented by a
subset W,(q,P)cX.(q)xY.(P), where for a pair
(x.y) € X,(q)xY,(P), (x,y)e€ W,(q,P) means that y is
a-reachable from x. The computation proceeds inductively (up
the hierarchy), and since for the root state », X,(¢q)= { q }
and Y,(P) = P, the verification of (3.1) can be accomplished
by testing whether W,(q,P)= & . Fommally, we have the
following algorithm for testing reachability.

Algorithm 1: Given ¢ and P as above, compute
W.(q.P)cX.(q)xY,(P) inductively (up the hierarchy) as
follows:

(1) For a basic statea , W,(q,P)= & .

(2) Por an OR-state a with immediate
ay,...,a;,and for all (x,y) € X, (q)xY,.(P):
(x,y) e W,o(q,P) iff y is reachable from x in the
digraph G.(q,P), whose node set is

Ve(q.P) =X, (g0 Y. (P)UD, LS, ,
and whose edge set is

substates

E,(q.P)= [‘L:JIW,I(q,P)}U((u,v)! 3 o, st (u,0,v)e T*

(3) For an AND-state a with immediate substates
ay,...,a, and for all (x,y) € X,(q)xY.(P) :
(x,y)e W,(q.P) iff for each substate a; either
(x|g Y| o) € Wolq,P) or x|, =<>

]
(4) Upon termination (at the root state r),
g € RVH,S.(P) ff W (q.P)= @

Example 3.2: Consider the AHSM H of Figure 4, and
suppose we wish to test whether p = <a3,b3> is reachable from
q =<a,,b>. FPor applying the Algorithm above, we first
compute the input and output setss Xe(¢)={gq },
Y/(P)- 'P)' X¢(4)= (4-<ﬂ4~1’4>-<ﬂ3'bz>)'
Y. (p)= { p,<ay> <bs> |, X, (@)= { cap>,<aypy,<ap),
Yup)={ <ap,<a>), Xp(q)= | <bp<bp>. | and
Y, (p) = (<b;>, <b3>) The digraphs G,(q.p) and Gy(q.p) (see
step (2) in the algorithm) consist of the transition-paths of states
a and b, respectively. Thus

Wo(q.p) = | (<a>,<az>),(<as>, <ad),(<as>,<az>) |

and

Wi(q.p) = { (<by>,), (, <b), (<b 2>, <bs>), (<>, <by>) |

The digraph G,(q.P) is given in Figure 5, where the set
W,.(q.p) is the set of all dashed arrows. Since p is reachable

from ¢ in Gy(q,p), and therefore, Wi(q.p)e O, we
conclude that p is reachable from ¢ in H.

4. Controlled AHSMs

In this section we consider controlled AHSMs, thereby
illustrating an important application of the reachability
algorithm proposed in the previous section. In a controlled
AHSM, the set of events L is partitioned into two disjoint
subsets . and Z, of controlled and uncontrolled event sets,
respectively. A configuration feedback supervisor (or in short
supervisor) for an AHSM H is a map § :Q-—)Zz‘ that specifies
for each full configuration of H a set of controlled events that
must be disabled. The equivalent state machine of the
supervised AHSM, denoted S/H , is given by

M(S/H)=(Q.%.8.q,)

where the controlled transition function &:Q xZ—22 s
defined as follows: Forall¢,p € Q andc e I

p e kgq.0 ifr P € ¥q,0)andceS(g) (A1)

We now pose the following control synthesis problem.

Forbidden Configuration Problem (FCP): Let F be a set
of configurations of H. Synthesize a supervisor S such that

R(S/H,q,)2Q ~C(F) , (4.2)

where C(F) is the set of all (forbidden) full configurations of
H spanned by F (see section 2.2).

Thus, the problem FCP consists of synthesizing (if
possible) a supervisor S such that S/H, initialized at the default
configuration g,, never reaches a forbidden configuration
PpE€C() with f € F. It is clear that if 4 is at some
configuration ¢ and a forbidden full configuration f € C(F) is
reachable from ¢ via an uncontrolled path (i.e., a path
consisting only of uncontrolled events) then no supervisor can
prevent H from reaching f. Thus, in fact, the set F of
forbidden configurations induces a larger set of forbidden
configurations, denoted &(F) and called the extended forbidden
set, consisting of all full configurations of H from which a full
configuration in C(F) can be reached via an uncontrolled path.
It is clear that FCP is solvable iff g, ¢ &(F) . An efficient
test of the latter condition is obtained by modifying Algorithm
1 as follows. In analogy to S, and D,, define S, and D, to be
the set of all source, respectively destination, configurations of
uncontrolled transition-paths of a. We then have:

Definition 4.1 Ler W’(q,P) be defined as the result of
Algorithm 1 modified as follows:

(1) The sets 15. and .§,, replace the sets D, and S,,
respectively in (3.2), (3.3) and step (2) of Algorithm 1.

(2) The set T (the subset of uncontrolled transition-paths of
state a) replaces T* in step (2) of Algorithm 1.

. The consequence of modifications (1) and (2) is that
W(q.P) represents uncontrolled reachability just as W(q,P)
represents reachability (with respect to H). Thus, following
Algorithm 1, we conclude that PCP is solvable iff
W(q,,F Y= D,

Clearly, whenever FCP is solvable, it can be solved by
Sy, the supervisor that disables all controlled events. However,
Sz may be too restrictive in the sense that it eliminates
controlled transitions whose deletion is not necessary for
natisfying (4.2). Thus, we shall say that a supervisor S is a

1503

minimally restrictive solution of FCP if for every supervisor S’
solving BCP, R(S/H,q,)SR(S/H,q,) . Since the size of
Q grows exponentially with the npumber of orthogonal
components in M, an apror (‘off-line’) synthesis of a
minimally restrictive supervisor may be intractable. Thus we
proceed according to the following on-line approach. Whenever
H performs a configuration transition, and thereby enters a new
configuration ¢, all controlled events are immediately disabled.
Then only controlled events that do not take H to
configurations from which a forbidden configuration is
reachable via an uncontrolled path, are enabled. These
reachability tests are carried out using the modified version of
Algorithm 1.

5. Conclusion

In this paper we examined a class of discrete event
systems (DESs) modeled as asynchronous hierarchical state
machines (AHSMs). For this class of DESs, we have provided
an efficient method (Algorithm 1) for testing reachability which
is an essential step in many control synthesis procedures. This
method utilizes the asynchronous nature and hierarchical
structure of AHSMs thereby illustrating the advantage of the
AHSM representation as compared with its equivalent (flat)
state machine representation. An application of the method has
been presented in section 4 where we proposed an ‘on-line’
minimally restrictive solution for the problem of maintaining a
controlled AHSM within prescribed legal bounds. The ‘on-
line’ nature of this solution is similar in spirit to the feedback
control logic suggested in [HK90].

This work opens several directions for further research.
The first one is extensions to synchronized HSMs, namely
HSMs that allow interaction between transition-paths of
orthogonal components (e.g., broadcast synchronization [H87)
or prioritized synchronization [He89]). Stabilization (in the
sense of [BH90a, BH90b]) of HSMs is another research topic
and it is currently under investigation.

References

[BH90a] Y. Brave and M. Heymann, stabilization of discrete
event processes, Int. J. Control, vol. 51, no. S, pp.
1101-1117, 1990.

[BH90b] Y. Brave and M. Heymann, On optimal attraction in
discrete event processes, Proc. European Control
Conference, July 1991,

Y. Brave and M. Heymann, Reachability in discrete
event systems modeled as hierarchical state
machines, Proc. 17th Convention of IEEE in Israel,
March 1991.

D., Drusinsky, On synchronized statecharts, Ph. D.
Dissertation, Weizmann Institute of Science,
Rehovot, April 1988.

D., Harel, Statecharts: A visual formalism for
complex systems, Science of Computer
Programming , 8 , pp. 231-274,1987.

M. Heymann, Concumency and discrete event
control, /[EEE Control Systems Magazine, vol. 10,
no. 4, pp. 103-112, 1989.

LE. Holloway and B.H. Krogh, Synthesis of
feedback control logic for a class of controlled petri
nets JEEE Trans. on Automatic Control, vol. 35, no.
5, May 1990.

PJ. Ramadge and W. M. Wonham, Supervisory
control of a class of discrete event processes, SIAM
J. on Control and Optimization, 25(1), pp. 206-230,
January 1987.

[BH91]

[D8sg)

[H87]

[He89)

[HK90]

(RW87]

@)

®)

Figure 1: (a) An HSM H consisting of OR-states. (b) The
equivalent state machine of H.

)

Figure 2: (a) An HSM H consisting of AND- and OR-states.

®)

(b) The equivalent state machine of H.

Al

Figure 4. The HSM of Example 3.1.

Figure 3: The full HSM of Example 1.1.

Figure S: The digraph G, (¢ »p) of state f in Figure 4.

1504

