REACHABILITY IN DISCRETE EVENT SYSTEMS MODELED AS
HIERARCHICAL STATE MACHINES

Y. Brave
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000 , Israel.

Abstract

Discrete event systems (DESs) are systems in which state
changes take place in response to events that occur discretely, asyn-
chronously and often nondeterministically. In this paper we consider a
class of DESs modeled as hierarchical state machines (HSMs), a spe-
cial case of the statecharts formalism introduced recently [2]. We pro-
vide an efficient algorithm for solving reachability problems in the
HSM framework that utilizes the hierarchical structure of HSMs. This
efficient solution is used extensively in control applications, where
controllers achieving a desired behavior are synthesized on-line.

1. Introduction

Hierarchical state machines (HSMs), modeled after the State-
Chart formalism of Harel [3], are an extension of ordinary (sequential)
state machines that are endowed with natural constructs of hierarchy
(depth) and orthogonality (parallelism). Two basic structural features
distinguish HSMs from ordinary state machines:

1.  States are organized in a hierarchy of superstates and substates
thereby achieving depth, and states are composed orthogonally
(in parallel), thereby achieving concurrency.

2. Transitions are allowed to take place at all levels of the hierarchi-
cal structure, thereby achieving succinctness or descriptive econ-
omy (i.e., exponential reduction in descriptive complexity as
compared to ordinary state machines).

HSMs are well suited for modeling and specification of complex
processes such as manufacturing systems, communication nctworks,
resource distribution systems, air traffic control systems, etc,

The paper focuses on HSM computations, with emphasis on
computations of asynchronous HSMs (AHSMs). There is assumed to
be no interaction between the parallel components of AHSMs (all
interaction is assumed to be modeled in the control constraints; see {1]
for more details). It is shown that such pivotal issues as computation
of reachability can be executed in the AHSM framework in exponen-
tial reduction of complexity as compared with the equivalent ordinary
state machine representation of the process. We develop an efficient
algorithm for testing reachability that makes fundamental use of the
hierarchical structure of the process thereby demonstrating the inherent
advantage of the AHSM representation. In the remainder of this sec-
tion we shall give an informal description of HSMs. The formal struc-
ture of HSMs is presented in section 2, whereas section 3 deals with
reachability computations in the HSM framework.

States are represented by boxes. Hierarchy is represented by the
insideness of boxes, as illustrated in Figure 1, where 1a may replace
1b. The symbols o-n stand for events associated with the various
edges (transition-paths). The state a is called an OR-state which
means that being in a is equivalent to being in either b or ¢ or d (but
not in more than one state at a time). The edge 7y, which leaves the con-
tour of a, applies to b,c and d, as in 1b. Default-arrows indicaie
default states. In Figure 1b, state e is selected as the initial state, and
not a (a fact represented in 1a by the default arrow attached to e). The
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arrow attached to state ¢ is the default among b,c and d if we are
already in a, and alleviates the need for continuing the B-arrow beyond
a’s boundary.

Orthogonality or concurrency is the dual of the OR decomposi-
tion of states. In Figure 2a, state 4 consists of two orthogonal com-
ponents, f and g, related by AND; to be in £ is equivalent to being in
both f and g, and hence the two default arrows. Edges internal to f,
such as the transition labeled o, do not affect the g component. Thus,
if @ occurs at < a,d >, it affects only the f -component, resulting in

<b,d >. Anevent A at j causes entrance to combination <a,d >,

and L at < b,e > causes transfer to i. The event 6 from d states that
the AND -state h (= f X g) is left and j entered, depending only on the
fact that the g-component is actually at d. The n-arrow, on the other
hand, leaves & unconditionally. By default arrows, event A at i means
entering <b,e >, whereas p means entering <b,d >. The
intended semantic of Figure 2a is given by its equivalent ‘flat’ version
Figure 2b.

2. Formal Structure of HSMs

An HMS is a structure H =(A, ~,Z,T,p) where: A is a set of
states, + is the hierarchy relation on A, X is a set of event symbols, T
is a set of transition-paths (or edges) and p is a default function. Next
we give a detailed description of these elements, as well as some
related notions (part of the terminology is adopted from [2, 4]). First,
we shall need the following notations. Let x,y and z be three tuples.
We shall write x cy iff every element of x is an element of y, e.g.,
<a,b>g<a,c,b,d>. We shall write z =x—y iff z consists of all
clements of x that do not appear y, e.g.,
<a,c,b,d>-<a,b>=<c,d>.

in

2.1 states

A is the (finite) set of states of H , consisting of A*, the subset of
OR -states, A, the subset of AND-states and A% the subset of
basic states (see below). The hierarchical structure of H’s states is
represented by the binary relation + on A, called the hierarchy rela-
tion and satisfies the following conditions:

1. There exists a unique state, called the root state of H and denoted
r =(r(H)),suchthat fornostatca € A,a +r.

2. Forevery state a € A, a #r, there exists a unique state b € A
such that b —a. The state b is called the immediate superstate
of a, whereas a is an immediate substate of a.

3. A state a € A is basic if and only if a has no immediate sub-
states.

4, Ifa b thencithera e A*Ab ¢ A* ,or a e At Ab e A"

Assumption 4, the alternating structure assumption, means that the
immediate substates of OR -states are either AND -states of basic states,
whereas the immediate substates of AND -states are OR -states. The
reflexive and transitive closure of — is denoted +~". Thus, a +'b
means that b is a (not necessarily immediate) substate of a. It is clear
that the pair (A, ) defines a tree, called the hierarchy tree of H (see
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Figure 3 for the hierarchy tree of the HSM of Figure 2a).

2.2. Configurations

Let ¢ be a tuple of (disjoint) states. (The examples throughout
this subsection relate to Figure 2a).

e The restriction of q to astate a, denoted ¢ |, is obtained from ¢
by deleting all elements that are not substates of a. E.g,
<b,e>ly=<b>.

e  Astate a is a Superstate of q if every element of ¢ is a substate
of a. E.g., h and k are superstates of <b,e >.

e The Lowest Superstate of q denoted LS (q), is the superstate a of
q that satisfies the condition that for each superstate b of ¢q,
b+"a. Eg,LS(<b,e>)=h.

e  Two states q; and ¢, are orthogonal, denoted q,1q,, if either
41 = q or, alternatively, if neither is a superstate of the other and
LS(<q1,q,>) € A*. A tple of states g is orthogonal if every
pair of states in ¢ is orthogonal. E.g., <b,e> is orthogonal,
whereas <b,h> and <b,i> are not orthogonal. An orthogonal
tuple is also called a configuration. Intuitively, a configuration is
a tuple of states all of whose elements can be occupied simul-
taneously when running H .

e  Let g be a configuration and let a be a superstate of g. Then ¢
is a full configuration of a if it cannot be extended with the aug-
mentation of further orthogonal substates of a, i.e., if ¢ satisfies
the condition that

VbeA, ar'b = <q,b> isnotorthogonal. (2.1)

If ¢ does not satisfy (2.1) then it is a partial configuration of a.
E.g., <b> and <b,g> are, respectively, partial and full confi-
gurations of 4. The configuration g is basic if all its elements are
basic states. The set of all basic full configurations of a is
denoted Q, .

. For a basic (partial or full) configuration of state a, the a-span of
q, denoted C,(q) is defined as the set of all basic full configura-
tions p of a such that qcp. Eg.,
Ci(<b>)= { <b,e><b,d>}.

2.3 Transition-paths

Associated with each OR -state a is a set T° of transition-paths.
A transition-path of a is formally represented by a triple ¢ = (4, 0,v),,
where u is a (possibly partial) configuration of @ and v is a full confi-
guration of a, called, respectively, the source and destination confi-
gurations of ¢, and 6 € Z is an event symbol that labels ¢. The associ-
ation of ¢ with T¢ implies that in the associated HSM graph, a is the
lowest OR -state containing ¢’s source and destination configurations,
as well as its entire arc. Thus, in Figure 2a, the transition-path labeled
o belongs to state f, whereas the 6-transition-path belongs to state k.
The set of transition-paths T of the entire HSM is defined as
T =y T°. Foreach OR-state a, let S, (D,) denote the set of all

aeA*

source (respectively, destination) configurations of transition-paths of
a. It was shown in [2] that it is possible to transform an HSM to one
in which every source configuration of a transition-path is basic. Hen-
ceforth, we shall assume that all HSMs have been thus transformed.

2.4 Default configurations

e  The default function p : A*—A specifies for each OR-state an

immediate substate, called its default.

o  The default configuration function ﬁ specifies inductively for
each state g a unique basic full configuration, called its default
configuration, as follows:

1. For an AND -state @ with immediate substates a, . .., a;,
pa)= <pap.....pa)> .

2. For an OR -state a with immediate substates a;, . . ., 4,
p@)=p@) If a;=p@).

3.  For a basic state a, ﬁ(a) =<a>.
In Figure 2a, p(k) = p(h) = <p(f ). p(g)> = <b,e>.

. Let ¢ =<q,, ..., ;> be a full configuration of a state a. The
default of q, denoted d(q), is then defined as the basic full confi-
guration <;;(q,) b g;(q, )> of a (where p(g;) is the default
configuration of g; as defined above).

. A transition-path (4, 6,v), is canonical if its destination confi-
guration is a basic full configuration of a, that is, if d(p) =p.

We shall assume throughout that transition-paths are given in their

canonical form. In view of the assumption that source configurations

are basic and that transition-paths are in canonical form, we shall

assume henceforth that all configurations are basic.

2.5 Transition functions

In the remainder of the paper we shall consider only asynchro-
nous HSMs (AHSMs), that is, HSMs in which no two distinct states
have transition-paths labeled by identical event symbols. That is, for
every pair of distinct states a,b € A*

w,ov)eT® A W0 v)eT? = ozo .

We interpret the transition-paths of an AHSM H as follows. Suppose
H is at configuration ¢ € Q (=Q,). Then a transition labeled 6 € I is
defined at q iff there exists a transition-path ¢ =(u,0,v) such that
u < q. Furthermore, the ‘next’ configuration of H will be p, where p
is the configuration obtained from ¢ by replacing (in g ) the restriction
of ¢ to a with the destination configuration v. Thus, in Figure 2a, the
transition-path ¢ = (<d>,08,<j>)e T* is defined at configuration
q =<b,d>, and if the AHSM H executes 6 at ¢ it enters configura-
tion p =<q—ql;, j>=<j> (since ¢ |, =¢q). Formally, we associ-
ate with each state @ € A the transition function 8, : Q, x 2%
satisfying the condition that for all ¢,pe Q, and o€ Z,

p € 8,(q,0) iff there exists a transition-path («, S, v) of a substate of
a such that

ucqg A p=<q—qlz,v>.

The transition function of H is defined as §=35,. We interpret an
AHSM H =(A, +,Z,7,p) as a device that starts at configuration
¢, = p(r) and executes configuration transitions according to its transi-
tion function 8. That is, H can be represented by its equivalent (ordi-
nary) state machine M (H)=(Q.Z,8,9,) whose states consist of all
full configurations of H and whose transition function is the transition
function 8 of (the root of) H.

3. Reachability

In this section we discuss the problem of testing reachability of a
set of (full or partial) configurations from a given full configuration.
Leta € A. A path of a is a finite sequence s =¢,,01,91,-- -, Op1qn»
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where the g; are full configurations of a and the o; are symbols in I,
such that g; € 8,(¢;_,0;) forall i =1,2, ..., n. In this case we say
that g, is a-reachable from q,,. For a subset P of full configurations of
a, define R;'(P) 1o be the set of all full configurations of a from
which P can be a-reached.

Given a full configuration ¢ of H and a subset P of configura-
tions of H, our objective is to verify whether there exists a full confi-
guration w of H such that for some p e P, pcw, and w is r-
reachable from ¢, i.e., to verify whether

q € R7NC,(P)) , (3.1)

where C,(P) is the r-span of P. In the sequel, we present an algo-
rithm for testing (3.1) that does not require the construction of the
equivalent state machine M (H) whose state set is exponential in the
number of orthogonal components in H. Let us begin with a simple
example. Consider the AHSM H depicted in Figure 4. Let
g =<ayb> and p =<ayb,>, and suppose we wish to verify
whether p is ¢ -reachable from g. That is, whether there exists a path s
of ¢ that starts at ¢ and ends at p, such that s consists only of
transition-paths that belong to substates of c; in this case y, ¢,6 and p
(for clarity, we identify transition-paths with their event symbols). By
the asynchrony assumption, this question can be resolved by
independent reachability tests in states @ and b. Thus we check
whether <a,> is a-reachable from from <a,> , and whether <b,> is
b-reachable from from <b,> . Since the answer to the latter is nega-
tive, we conclude that <a,, b,> is not ¢ -reachable from <a,,b,>.

Next we discuss the effect of the transition-paths o, B,y and 8 of
state f. Specifically, we wish to verify whether p = <a3,b3> is f -
reachable from ¢ = <ay,b,>. Since p is not c -reachable from ¢, we
search for a configuration s € Sy (ie., s is a source of a transition-path
of f) such that s is ¢ -reachable from ¢. Since the source <b;> of yis
not c-reachable from ¢ = <ay,b,>, we proceed with B whose source
<ay> is c-reachable from ¢. Our final destination is p = <a3,b;>
(which is a configuration of ¢ ), and thus we continue with ¢, thereby
entering configuration <ag4bs>. Now we check whether
P =<as,bs> is c-reachable from <a4,b4>. Since this is not the case,
we continue with §, the only transition-path of f whose source <b;>
is ¢ -reachable from <a4,b4>, and return to state ¢ through y. This
search terminates successfully since p = <a3, b3> is c-reachable from
the destination <as,b,> of y. In summary, p =<as,by> is f-
reachable from ¢ = <ay,b,> via the following path (see Figure 5):
<apby>, ¥, <axb;>, B, <d>, «a, <ayubs>, p, <agbs>, S,
<e>, ¥,<as, by>, p, <as, bs>.

Notice that during the search performed in the previous para-
graph we checked whether p is c-reachable from ¢, and from
<a4bs> and <aj,by>, where the latter are configurations of ¢ that
are in Dy, the set of all destinations of transition-paths of . In fact, a
reachability test from ¢, <ay4,bs> and <as, b,> has been carried out
also w.r.t. <a;> and <b3> that are configurations of ¢ and belong to
Sy, the set of all sources of transition-paths of f. Thus we conclude
that the information about reachability within state c, that is relevant
for state f, is the ¢ -reachability of configurations in Sfu{q} from
configurations in DyU{p }. This observation is a key point in the
development of the algorithm below for reachability computations
associated with (3.1).

Fix a full configuration ¢ of H, and a set P of configurations of
H. For each state a € A we define a set X, (¢) (called the input set of

a) of full configurations of a, and a set Y, (P) (called the output set of
a) of configurations of a, as follows. A configuration w of a is an
element in X, (¢) iff either x =q 1,, or x =d |, where d is a destina-
tion configuration in D, for some strict superstate b of a. That is, in
Figure 4, X (<a).b;>)=(<asbg>, <a3by>}u{<ayb>).
Analogously, a configuration y of state @ is an element in Y, (P) iff
cithery =p |, for some p € P,ory =5 |, where s is a source confi-
guration in S, for some strict superstate b of @. That is in Figure 4,
Yo({ <a3,b3> })= { <ay>,<b3> YU { <asz,b5> }.

It should be clear from the examples above that for each state
a €A at a given level in the hierarchy, all the information about
reachability that may be required for higher level computations con-
cems only g -reachability tests between input configurations in X, (¢)
and output configurations in Y, (P). If @ is an AND -state, these a-
reachability tests are carried out separately and independently in each
substate of a. If, however, a is an OR -state, we test a-reachability in
the digraph G, (¢,P) whose edge set consists of all transition-paths of
a, and edges representing reachability within the substates of a. Fig-
ure 6 shows the digraph G;(¢,p), where f is the root state of the
AHSM in Figure 4, ¢ =<a;,b,> and p = <a;,b;>. The results of
these tests are represented by a subset Wa(q.P)SX,(q)XY,(P),
where for a pair (x,y)e X,(q)XY,(P), (x,y) e W,(q,P) means
that y is a-reachable from x. The computation proceeds inductively
(up the hierarchy), and since for the root state 7, X,(g)= {q } and
Y,(P)=P, the verification of (3.1) can be accomplished by testing
whether W, (q,P)= & . Formally, we have the following algorithm
for testing reachability.

Algorithm: Given ¢ and P as above, compute
Wa(q.P)<X,(q)xY,(P) inductively (up the hierarchy) as follows:
(1) Forabasicstatea, W,(q,P)= Q.
(2) Foran OR-state a with immediate substates a, . . .
all (x,y) € X,(q)xY,(P).
(x,y)e W,(q.P) iff y is reachable from x in the digraph
G,(q.,P), whose node set is

Va(q.P)=X,(q)Y,(P)uD,UsS, ,

, a, and for

and whose edge set is

k
Ea(q,P)={g’Wa'(q,P)}u( wm,v)1 3 o, st.(u,0,v)e T?} .

(3) For an AND -state @ with immediate substates ay,...,a, and
forall (x,y)e X,(q)XY,(P) :
x,y)e W,(q,P) iff for each substate a; either
x 'a;')’ Ia,-) € W,(q,P) or y la.» =< >,
(4) Upon termination (at the root state r),
qeR7CEY It W, (q.P)=O .
n

Example 3.1:  Consider the AHSM H of Figure 4, and suppose we
wish to test whether p = <a3, b3> is reachable from q = <a,b,>. For
applying the Algorithm above, we first compute the input/output sets:

X (@={ql}, Y)={p ). X.(q)=(q.<a4bs> <asby>},
Y.(p)= {p.<ay> <b3> }, X,(@)= { <a;>,<az><as> ),
Y,(p)={<az><a>}, X,(q)={<b;><by> <b>} and

1.4.3

89



Y,(p) = (<b>, <b3>) The digraphs G,(q.p) and G,(q.p) (see step References
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respectively. Thus modeled as hierarchical state machines”, CIS Report #9103,
Technion - IIT, 1991.
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tion, Weizmann Institute of Science, Rehovot, April 1988.

W,(q.p) = { (<a;>, <a;>),(<az>, <az>),(<a3><6>)} .
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Wy(q.p)= { (<by>,<b;>),(<b3>, <b>),(<by>,<b3>),(<bg> <b3>)} (3] Harel, D., “ Statecharts: A visual formalism for complex sys-

The digraph Gy is given in Figure 6, where the set W_(q,p) is the set tems”, Science of Computer Programming, 8 , pp. 231-
of all dashed arrows. Since p is reachable from ¢ in Gy, and therefore, 274,1987.
W;(q.p)# @, we conclude that p is reachable from ¢ inH. W [4] Harel, D., Pnueli, A., Schmidt, J. P., and Sherman, R., “ On the

formal semantic of statecharts” , IEEE Symposium on Logic in
Computer Science, 1987.
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Figure 1: (3) An HSM H consisting of OR-states. (b) The

equivalent state machine of H .

Figure 2: (a) An HSM H consisting of AND- and OR-states. (b) The Figure 5: A path of state f (in Figure 10) that connects g 0P .

equivalent state machine of H .
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Figure 3: The hierarchical tree of the HSM of Figure 2(a). Figure 6: The digraph G, (q.p) of state f in Figure 10.
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