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Abstract

We consider the problem of conflict resolution among
multiple agents who navigate in a discrete shared re-
source environment. We present distributed algorithms
that yield maximal solutions (Nash Equilibria) for the
conflict resolution problem in the two- and multiple-
(more than two) agent cases.

Keywords: Multi-agent systems, noncooperative con-
flict resolution

1 Introduction

This paper is concerned with multi-agent systems
where agents navigate in a shared resource environment
modelled as a resource-graph. Access to resources (ver-
tices of the graph) is mutually exclusive: distinct agents
are not permitted to simultaneously occupy the same
vertex. Agents enter the system at arbitrary times.
Each agent has a specific initial (entry) vertex, a spe-
cific final (exit) vertex, and a specified set of candidate
trajectories (timed paths) from entry to exit, called the
agent’s (execution) medel. Each transition in an agent
path specifies the time of residence in the preceding ver-
tex. The transition itself is instantaneous. The number
of agents in the system is not specified and may change
with time. This general setup is frequently encountered
as a safety and liveness specification in applications like
Robot Navigation 6], Traffic Control [5], Air Traffic
Management (1] and the like.

Two trajectories of different agents are in conflict if
they occupy the same resource at the same time. The
problem addressed in this paper is how to resolve the
conflicts; that is, how to find for each agent a subset of
its model, called legal plan, so that no two legal plans
are in conflict. A simple solution to this problem is for
each agent to select its subset of trajectories that are
copflict-free with all trajectories of other agents. But
then all conflicting trajectories remain unclaimed and
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unutilized. Thus, we seek mazimal solutions, where no
agent can unilaterally improve its legal plan without
creating a conflict with some other agent’s legal plan.

We examine the noncooperative situation, where agents
are greedy and no inter-agent communication takes
place during the conflict resolution. We shall assume
that disputed resources are prioritized over competing
agents, and that distinct resources may have different
prioritizations. We shall assume that the prioritiza-
tion is given, and that each agent knows the models of
the other agents, as well as the resource prioritizations.
We seek an optimal solution to the conflict resolution
problem. That is, a Nash-equilibrium that constitutes
a set of noncooperative strategies that always yield a
maximal solution. Obviously, we want the resultant so-
lutions to assign resources to agents consistently with
the resource prioritization (which, in the case of non-
uniform prioritization, is far from being simple).

‘We shall consider first the case of two-agents and then
the general (more than two agents) case. We shall
present in this paper optimal algorithms, as well as
nop-optimal but computationally efficient approaches.
Complete formal analysis for these algorithms can be
found in {8].

Finding conflict-free paths by restricting given sets of
paths is part of the approach called roedmap planning
in the Robotics literature [6] [7]. Research in Artificial
Intelligence concerning multi-agent planning for agents
pursuing independent goals is primarily focused on co-

_operative planning [2] [3]. One of the works in Al that
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deals with planning under assumptions similar to curs
is [4].

2 Preliminaries

Agent models and conflicts. An agent model can
be compactly represented by a type of timed automa-
ton called agent automaion. Since each agent knows
the models of the other agents, it can individually de-
tect all the conflicts in the system, by computing the
parallel composition of the involved agent automata.
The formal definition of the agent automaton, as well
as an example of parallel composition of two automata
can be found in [9].

Let V denote the (finite) set of resources (vertices of
the resource graph). Suppose that n agents, referred



to as agent 1, ..., agent n, want to enter the system.
We denote by P; the model of agent z.

A disputed resource, or conflict, between paths p; of
agent ¢ and p; of agent j is a pair (7,q) € N x V such
that both agents 7 and j would occupy g at time 7 if
they followed p; and p; respectively and at most one of
i, 7 would occupy ¢ at 7 — 1. Thus, 7 is the instant of
conflict occurrence between ¢ and j at ¢. In the sequel,
unless explicitly stated otherwise, by resource, we shall
mean disputed resource. We use Dp, . p ) to denote
the set of all disputed resources among the 7 agents.

A prioritization of agents’ access to the disputed re-

sources is a map
T D('pl’_“"p")x{Pl,pQ, s ,'Pn} —_— {1’ 2,... ,TL},

given by

~lg,Py) = {

such that n{g, P;) # w(q, P;} whenever they are defined
and ¢ # j. We assume that a larger number means a
higher priority.

undefined, otherwise.

ke {1,2,...,n}, ifgisona pathin P;;

Consider, for example, two agents with models-rép— '

resented in Figure 1. The set of disputed resources
is D(’Pn,'Ps) = {(l,j), (23‘3): (3,i), (3:f)1 (4,d), (5,(1),
{5.9), (5,e), (6,b), (6,R), (7,k)}. The following rules
have been used to prioritize the two agents, and prior-
ity is given to the agent that: (1) arrives first.at the
disputed resource; (2) has the shortest time to arrive
at its destination from the arrival time at the disputed
resource. If rule (1) does not yield a prioritization, rule
(2) is applied. The priorities of the agents for the dis-
puted resources are depicted in Figure 1 next to the
corresponding vertices. .

The basic conflict resolution problem is formulated as
follows. Given a multi-agent system {Py,...,P,} and
a prioritization #, find for each agent a set of paths
LP; C P; (a legal plan) such that (LP),...,LP,) is

conflict-free. That is, no two paths belonging to dif--

ferent legal plans have a disputed resource. A solution
(LPy,...,LP,) is less restrictive than another solution
(LP{,...,LPYif LP! C LP; for all i = 1,n and the
inclusion is strict for at least one agent. A solution is
least restrictive, or mazimal, if no other less restrictive
solution exists. While maximal solutions need not be

unique, a maximal solution means that no agent can

unilaterally improve its legal plan without creating a
conflict with some other agent’s legal plan (and thus
violating the safety constraint}. An algorithm that al-
ways finds a maximal solution is called optimal.

Resolution principles. QOur approach te optimal
conflict resolution is based on the following guidelines.
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R:

Figure 1: Agent models

An agent reserves a resource if and only if the following
conditions are simultaneously met:

(*} The agent has highest priority for the resource
among all agents that have legal access to it, and {**)
The agent can make successful use of the resource, by
completing a legal execution. This, in particular, im-
plies that an agent is not permitted to reserve a re-
source (for which it may have priority) if the reservation
cannot be applied toward a successful task completion.

We say that an agent has legal access to a resource
g if it is not prevented by other agents from reaching
¢, even if it may be prevented from completing the
execution {from g to the destination vertex). Thus,
an agent does not have legal access to ¢ only if each
path p containing ¢ also contains some other resource
gy, Preceding g, such that ¢’ is reserved by some other
agent. For example, agents R and S in Figure 1 have
legal access to resource i. Since R has priority for ¢ and
it can complete a legal execution, it will reserve ¢. In
particular, this'means that h is inaccessible to S.

By the above reservation guidelines, a path is consid-
ered legal whenever all disputed resources on the path
are legally accessible and the agent has priority for the
last disputed resource on the path.

Theorem 1 A solution based on the above principles
is conflict-free and maximal.

Proof

The solution is clearly conflict-free: different agents
cannot reserve the same resource, since each agent has
a unique priority for that resource.



If the solution is not maximal, then some agent has
an illegal (i.e., unreserved) path which is conflict-free
with the legal plans of the other agents. This means
that every resource on this path is legally accessible and
the agent has the highest priority for the last disputed
resource or the path (among all the agents for which
that resource is legally accessible). Hence, the path
must be legal (i.e., reserved) a contradiction. =

In the sequel, we shall present algorithms which imple-
ment the above principles, first for the two-agent case,
and then for the general case of more than two agents.

3 The Case of Two Agents

Consider two agents, denoted by R (with model Pg)
and S (with model Pg}, and a prioritization 7 of all
disputed rescurces in Dip,, p) over R and S.

Outline of the procedure. The resolution algo-
rithm, henceforth referred to as DOR2, works on two
sets of “unresolved” paths, initialized with the paths
of the models of the two agents. We shall denote these
by MP ("my paths”) and OP ("opponent’s paths”).
At each iteration, paths which are determined as legal
are moved from the unresolved set to a “legal” set. Le-
gal sets are denoted by MLP ("my legal paths™), and
OLP (Popponent’s legal paths”). Paths which are de-
termined as illegal are eliminated from the unresolved
sets. The algorithm stops when the unresolved sets
are empty, i.e., when each path in the initial models is
marked as either legal or illegal.

At each iteration, the algorithm determines a set of re-
sources which are legally accessible in MP. A path p
in MP is then considered as legal if all disputed re-
sources on it are legally accessible and M P has prior-
ity for the last disputed resource on p. In this case,
all the paths in OP having disputed resources with p
are illegal, and therefore they are eliminated from OP.
Such paths may contain resources that are disputed
with other paths (beside p) in MP. These resources
become now undisputed, and this may give legal access
to resources in M P that were previously inaccessible.
Hence, in the next iteration, new legal paths may be
found. Similar operations are executed by reversing
M P with OP (at each iteration). Thus, the algorithm
will yield the agent’s legal plan as well as the oppo-
nent’s legal plan.

Example. Let us illustrate the algorithm by resclv-
ing the conflicts in the example of Figure 1. Consider
the viewpoint of agent R. Initially, M P is R’s model
and OP is §’s model (as depicted in the figure). In this
example, for simplicity, we shall omit the time compo-
nent from a disputed resource (e.g., we shall use a in-
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stead of (5,a)). At the beginning of the first iteration,
the set of resources that are legally accessible in M P is
{a,b,i,¢,d,j, f}. Of these, R has priority only for a,e,
and i. Since a legal execution can be completed from
i, it follows that p; is legal. Consequently py is lilegal
and therefore resource h is available in M P. The path
Py is moved from MP to MLP and pyp is removed
from OP. Each of the remaining paths in AP (ie,
P1, P3, Pq, Ps) contains a disputed resource for which
R does not have pricrity. Therefore, we turn now to
check legality of paths in OP. Since S has priority for
7, and it can complete a legal execution from j, it fol-
lows that pr is legal. Consequently, py is illegal which
means that resource k is available in OP. Now each
path in OP has a resource for which S does not have
priority. The algorithm proceeds to check legal acces-
sibility of resources in M P and then in OP. Since a
can be claimed in M P, it follows that b is inaccessible
in OF, which means that b is available in AfP. Hence,
a and b can be reserved in A P. Resource ¢ can also
be claimed in MP (it is legally accessible and R has
priority for it), causing g to be inaccessible in OF and
therefore to be available in M P. However, in contrast
to the case of b, g is inaccessible in M P at this step
{due to f). No new legally accessible resource can be
determined now in M P, hence we turn to OP. Since
e is inaccessible in M P, it will be reserved in OP (to-
gether with d). The sets AfP and OP at the beginning
of the second iteration are given in Figure 2 (where the
prioritization of inaccessible resources is zero).

Figure 2: After the first iteration

The second iteration begins with moving p; from AP
to MLP, and deleting pg from OP. Consequently, f
becomes undisputed in M P, which makes g legally ac-
cessible. Therefore, ps is legal, which implies that pg
is illegal. Now M P contains only ps and OP only ps.
Clearly, pg is legal and hence ps is illegal. The algo-
rithms stops. The maximal solution obtained by agent
R is depicted in Figure 3. Agent 5 executes the same
algorithm (this time A1 P is initialized with the model
of S and OP with the model of R) and obtains the same
solution (where M LPs = OLPg and OLPg = M LPg).



Figure 3: The solution obtained by I

Monotonicity. An interesting property of DOR2 is
monotonicity with respect to the input models, which
guarantees that the algorithm can be safely used when
the knowledge of the opponent’s model is not ex-
act, but is conservative, as follows. Let Pr and Pg
be the real models of agents R and S, respectively.
Let Pg- 2 Pg be the model that R knows about §
and Pr.- O Pg be the model that S knows about
R. Agent R is given a prioritization 7}, defined over
Dpy.ps.)- Agent § is given a prioritization 75 defined
over D('Ps,'pn_). We assume that the restrictions of 7f
and 7% to D(p, p,) are identical. Let 7 denote this re-
striction. Let (MLPE,OLFPg) = DOR2(Pg, Ps+,7h)
and (MLPg,OLPg) = DOR2(Ps,Pg-, &)

Theorem 2 Under the above assumptions, the pair
(MLPE, MLPZ) is conflict-free.

4 The General Case

In the multiple (more than two) agent scenario, we con-
sider two extreme situations: (1) The most that an
agent can do; that is, to take into consideration all
the agents and conflicts in the system, including those
in which it is not directly involved ( and assuming it
knows the prioritization for all of them). For this case,
we present an optimal resolution algorithm. (2) The
least that an agent must do; that is, to take into con-
sideration only the agents with which it has conflicts,
and to ignore all the others. Conflicts are resoclved with
each of the competing agents, pairwise, the final result
being the intersection of the partial results. Since the
number of agents conflicting with a given one is usu-
ally much lower than the number of all agents in the
system, the pairwise approach is computationally more
efficient, but the result is, in general, not maximal.

In the sequel, we shall use the following example to
illustrate the two situations. Consider the agents with
models and prioritization given in Figure 4 (transition
times are omitted for simplicity).
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Figure 4: Three agents

{1) All-agent resolution. When taking all the
agents in the system into account, one must deal with
the complex interactions among the agent models, due
to the (generally non-uniform) pricritization of agents
over disputed resources. In our example, we present
two possible reasonings. Since resource d is available
to T, it will be blocked in 2 and S. Now e is inac-
cessible to 5, which means that it is legally accessible
to T. Hence, d, e, and f are deployed by T, together
with A (which is not disputed) leading to the modified
triple in Figure 5. Then, a can be tentatively claimed
in model 7V, thereby being blocked in §" and R’. R’
can go to g, and it has priority over T/ for resource b
{to which S’ has no access). Hence, R’ can block T’
at b if 77 acquires a. And now consider two possible

Figure 5: The marked resources are already reserved



continuations:

1. Since the acguisition of a by T’ dees not enable
T’ to successfully complete its task, 77 cannot re-
serve a. Next in line for resource a is S’ which
can go to o (knowing that T’ cannot) - and §'
also has priority over R for b, Consequently, S’
gets a legal path and R’ is completely blocked.
The solution is given in Figure 6. Notice that the
solution is maximal. However this argument does

a b [

Figure 6: Solution 1

not fully comply with the guiding principles out-
lined in Section 2 in two respects: (z) T should
not give up resource a just because b is legally
accessible to R'. Rather, it should do that only if
(and when) R’ (or §') can reserve b. (i2) The rea-
soning on behalf of R’ has not been completed.
By completing it, we obtain another solution be-
low.

. Since b is legally accessible to R, and R’ has pri-
ority for & (due to T” blocking S’ at a), it follows
that ¢ is also legally accessible to R’. Moreover,
T' is blocked at b, and therefore R’ has priority
for ¢. Hence, the path containing g, b, and ¢ is
legal. This means that a cannct be used by §’
or 7" and consequently the path containing a be-
comes also legal for #’. The maximal solution is
shown in Figure 7.

Figure T: Solution 2

The conflict resolution algorithm for multiple agents,
henceforth referred to as DOR, implements the prin-
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ciples presented in Section 2, by executing the same
operations as DORZ on two aggregate models, as fol-
lows.

The joint model of agents #y,...,1i; is

TP(Piy, .-, Pi) = Ujoy 1 Pis» where 45 € {1,...,n},
and £ £ n. We say that q is a dispuled resource
between two joint models TPr = JP(Piy,....Pi.)
and JPg = JP(Pj,,..., P;.) if ¢ is a disputed re-
source between two agent models P;, ¢ JPgr and
P, CJPgforsome he{l,...,k}and € {1,...,m}
with iy # f. Of special interest is the case when
JPr and JPgs are identical and contain the models
of all agents: JPr = JPgs := JP(P1,...,Pr). One
can see that the set of all disputed resources hetween
JP(Py,...,P,) and itself is the same as the set of all
disputed resources among the agent models Py, ..., Py:
Dirpr.aps) = Dep,,....p,)- The algorithm DOR works
on two sets of paths M P C JPgr and OP C JPg, ini-
tialized with JP g, respectively JPs. Notice that M P
and OP can be in conflict only at paths belonging to
different agents. The operations on AP, OP are the
same as those executed by DORZ. For instance, the
two identical joint models corresponding to the agent
models depicted in Figure 4 are shown'in Figure 8.

o g b ¢ N
— 00— O—————0
P 2 2 :
a b ¢ .
O—» 00— 00— ————

P2 1 2 2 : MPr
a e f !
o—»——O—O——»0 !
F3 1 1 I -
a b c -
g O—— 0
2 3 § :

d e ¢ ; MPg
o OO Qe )|
Ps 2 3 ] -
a b [ .
O— O O——— >0
Po 3 1 3 i
d ¢ £ !

O o) O —————— = O————— )

Pr 3 ¢] 3 MPT
h e f !
o—— O !
Ps s E .
g b c -
O—O———— > O—»O———»0 |
Po 2 2 i
a b ¢ |

P10 O-ﬂ———boi—————wbaz——mbo / OPg
d e f i
O—» OO —» !
Pn N f | .
a b ¢ ~
pp O———— e ————————— - |
2 3 1 ;

d e f OPs
1 O OO |
P 7 3 7 -
a b c .
o H)——— P O———pO——»0
P1a 5 i o |
d e i i

Pis Q——_—>O—’0—"O——>3 5 s O ' OPy
h e f i
O |
Pis 2 % ,'

Figure 8: Joint models



Proposition 1 Under the assumptions of perfect
knowledge of models and prioritization, if each agent
runs DOR, then it obtains the correct legal plans of all
agents.

Theorem 3 The algorithm DOR is optimal.

One should emphasize that, while each agent executes
the same algorithm on the same input information, the
exact executions of distinct agents may be different.
This is because the property of legal accessibility is
independent of the order in which resources are checked
by the algorithm. This makes DGR suitable for being
utilized in a distributed setup.

{2) Pairwise resclution In general, an agent may
not have full knowledge of all conflicts and prioritiza-
tions. However, each agent must know at least the
models of and prioritization with the other agents with
which it has direct conflicts. Even when an agent has
complete knowledge, executing DOR may be compu-
tationally prohibitive. An alternative to all-agent res-
olution is pairwise resolution, where an agent executes
DORZ sequentially against each other agent with which
it has conflicts. The legal plan obtained from the pair-
wise resolution is the intersection of the legal plans of
the individual (pairwise) executions.

Let us see how the pairwise approach applies to the
agents in Figure 4. R versus T': since R has access to
b, it will block & at T, therefore B can reserve b and c.
Consequently, the uppermost path of 7" is illegal and
R can also reserve a. T will reserve d, e, and f. The
solution is the same as the one in Figure 7. R versus
S: R obtains nothing and S gets both paths (because
S has priarity for a, b, and d over R). The legal plan
of R is then the empty set. & versus T: S gets nothing
and T gets everything. Therefore, the legal plan of S is
empty and the legal plan of T is given by T* in Figure
7. Notice that this solution is not maximal.

Another pairwise approach is to execute DORZ suc-
cessively against each other model by starting with the
own model and using at each execution the result of
the previous execution {as opposed to the case above,
where the own model is used at each iteration). This
is computationally more efficient, since the own inter-
mediate legal model is smaller and smaller at each new
execution. One can show, by using the monotonicity of
DOR2 (Theorem 2), that the solution obtained in this
case is always at least as restrictive as the one given by
the first pairwise approach.

Remarks:

{1) Clearly, DOR works also {or the case of two agents
only, where it is not identical to DOR2, which is tai-

lored for that case (and executes less operations than
DOR). In contrast with DOR2, the algorithm DOR is
in general not monotonic with respect to input mod-
els. In fact, DOR may yield an unsafe output when
the knowledge of other agents’ models is conservative.
On the other hand, the pairwise algorithms are clearly
monotonic and therefore they can be safely used in such
circumstances.

{2) Both algorithms work work correctly when the
agent models are replaced by simplified agent models,
in which undisputed resources are not presented. Since
the disputed resources are in general significantly fewer
than the total number of employed resources, the com-
putational complexity is considerably reduced.

(3) Dealing first with early conflicts and then with late
conflicts makes our approach suitable to the case of lim-
ited lookahead, where an agent may consider only par-
tial models of other agents, with a certain time depth.
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