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Abstract

This is a substantially abbreviated version of Tech-
nion CIS Report CIS-2002-03, available at the first
author’s web page http://www.cs.technion.ac.il/ ™ hey-
mann/. We investigate conditions for existence of Zeno
behaviors in hybrid systems.
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1 Introduction

In recent years, various algorithms have been proposed
" for the synthesis of controllers for hybrid systems [1],
2], (3], [4], [3], [6], [9], [10}, [11]. However, sometimes
the synthesized controllers may force the system to un-
dergo an unbounded (infinite) number of discrete con-
figuration changes (switches) in a finite length of time
and then violate the constraints. This phenomenon
is called Zenoness? (or a Zeno behavior), and can be
thought of as a type of instability of hybrid systems
that constitutes a major impediment to “proper” sys-
tem behavior, and is an obstacle to successful controller
synthesis, even in cases when controllers actually exist.

With the aim of bypassing the difficulties created by the
Zenoness phenomenon, several researchers proposed
controller synthesis approaches, that limit the maximal
switching rate of the synthesized controller, thereby
yielding controlled systems that switch configurations
at or below a specified upper rate. Such switching rate
limitation is accomplished by imposing various struc-
tural constraints on either the system or on the con-
troller {2, [3], [5], [11]. Yet, while such approaches
guarantee that a synthesized controller will never yield
a Zeno system, they do not answer the basic questions
associated with the Zenoness phenomenon. Specifi-

ture of controllers for the unconstrained system? Are
Zeno behaviors inherently possible in the unconstrained
system? When a safety controller for the constrained
system exists, does there also exist a minimally inter-
ventive controller for the unconstrained one? If the
answer to this latter question is affirmative, how are
the two controllers related?

To answer these questions, we must investigate con-
ditions for existence of Zeno behaviors in hybrid sys-
tems. We begin our investigation by examining eon-
stant rele systems in which each of the dynamic
(state) variables has a constant rate in every dis-
crete configuration. In the full version of the paper
(http://www.cs.technion.ac.il/” heymann/), we extend
our investigation to bounded rate systems where the
rate of each state variable is specified to lie within con-
stant upper and lower bounds and to more general hy-
brid systems with nonlinear dynamics. There, we also
use these results to investigate the existence and syn-
thesis of controllers for hybrid systems.

Our approach is based on a simple but crucial obser-
vation that a state of the hybrid system is reachable
at a given time if and only if it is reachable at the
same time in an “equivalent” continuous system that
is obtained as a suitable weighted combination of the
dynamic equations of the hybrid system in the different
discrete configurations. Thus, instead of a difficult in-

" vestigation of the rather complicated class of behaviors

cally, when controllers with the imposed switching rate -

constraint exist, are they necessarily minimally inter-
ventive for the system when no switching rate con-
straints are imposed? When controllers with the im-
posed switching rate constraint do not exist, what con-
clusions can be drawn regarding the existence and na-
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of the hybrid system, we examine the very simple class
of behaviors of the “equivalent” continuous system.

2 The Hybrid Machine Model

We use the hybrid-machine formalism as described e.g.
in [7] to model a hybrid system. A hybrid machine is
denoted by

HM = (Q)Evn D)E,Iv (qO‘I:EO))'

The elements of HM are as follows. Q is a finite set
of (discrete) configurations. We shall assume that the
system has n configurations; that is, dim(@) =n. ¥ is
a finite set of event labels. An event is an input event,
denoted by g (underlined), if it is received by the HM
from its environment; and an output event, denoted by
7 (overlined), if it is generated by the HM and trans-
mitted to the environment. D = {d, : ¢ € Q} is the
dynamics of the HM. For configuration ¢, the dynamics
given by & = f;{r,u), where = and u are, respectively,
the state and input variables of appropriate dimensions.
E={{g,Gra— d,¢):q.¢ € Q} is a set of edges,
where g is the configuration exited, ¢’ is the configura-



tion entered, g is the input event, and ¢’ the output
event. G is the guard. An edge (¢.G Ao — o, q',zg,)
is interpreted as follows: If the guard G is true and the
event ¢ is received as an input, then the transition to
g’ takes place at the instant g is received. The output
event ¢’ is transmitted as a side-effect at the same time.
I={I,;:ge Q} is a set of invariants. (go,zo) denotes
the initialization condition: gp is the initial configura-
tion, and xg is the initial value of z. A more detailed
description of the hybrid machine model can be found
in the full version of the paper.

A run of the HM is a sequence
eyt eg,iz e3,¢a
Go — q1 —— g4z —* ...
where ¢; is the ith transition and ¢;(> t;_1) is the time
when the ith transition takes place. For each run, we
define its trajectory, time stamp and path as follows.

The trajectory of the run is the sequence of the vector
time functions of the (state) variables:
EgorTqrsLggy e+

where 24, = {z4,(t) : t € [t;,tiy1)}. The time stamp
of the run is a (column) vector function In(i),t = 0,
where dim(In(t)) = dim(Q). If at time ¢ > 0 HM is in
the ¢th configuration, then In(t) has value 1 in its ith
entry and zeros in all others.

The path of the run is the sequence of the configura-
tions. We say that a path is irreducible if for any two
consecutive configurations g, ¢ in the sequence, ¢ and
¢’ have different dynamics (d, # dy). A run is irre-
ducible if its associated path is irreducible.

We shall call a run of a HM dynaemic if all its transitions
are dynanic transitions (triggered by guards becoming
true). Every dynamic run can be reduced to an irre-

ducible one. An unbounded irreducible dynamic run
€18 etz ea,ty ’
qo— 4 —q2 —/ ..
is called a Zeno run if
iMool =T < 00
A HM is called Zeno if it possesses Zeno runs. Other-
wise it is called non-Zeno or viable. A hybrid machine
all of whose runs are Zeno is called strongly Zeno.

Clearly Zeno HMs are ill defined, in that they may
uncontrollably execute an unbounded number of tran-
sitions in a finite (and bounded) time interval and thus
describe systems whose lifetime is limited, contrary
te our intention of modeling ongoing behaviors (that
never terminate). In the next sections we shall explore
conditions under which hybrid machines possess Zeno
behaviors.

3 Zenoness

In the simplified hybrid machine model described
above, we assume that state variables are the same for
all configurations. Such hybrid systems are called ho-
mogeneous.

For a run that starts at the initial state z(0) = xo, the

2380

dynamics of z(¢) for ¢ > 0 can then be expressed as

& = F(z,u,t) = [filz,u) ... fulz,w)]In(t). (1)

This description, which resembles the dynamic repre-
sentation of a continuous system, will be used below to
derive varicus results on Zenoness.

To illustrate some aspects of the Zeno phenomenon, let
us examine the following example.

Consider the hybrid system shown in Figure 1{a).
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Figure 1: Example of a Zeno system

It consists of three configurations labeled by 1, 2, and
3. There are three continuous variables z1, «», and
z3. The rates of changes of these variables are dis-
played in each configuration (thus, in configuration 1,
T = 100, 29 ~90, @y = 1, etc.). When a vari-
able reaches some lower bound?® and the corresponding
guard becomes true , a dynamic transition is triggered
that takes the system to a different configuration (e.g.,
when zo becomes zero in configuration 1, a transition
is triggered to configuration 2) as shown in Figure 1(a}.

Note that in each configuration of the system, at least
one variable is decreasing and will eventually cause the
system to change configuration. We call such a variable
an active varioble.

This example is an extension of the two water-tank ex-
ample that we first proposed in [7] and was later used
by others [8]. However, the behavior of this system is
much more complex than the two water-tank example,

3Without loss of generality, we assume that the lower bounds
are 0 in this paper.



as can be seen in Figure 1. It is not very straightfor-
ward to deduce intuitively from the dynamics whether
the system is Zeno. Indeed, the switching among the
three configurations is highly irregular as shown by the
simulation results in Figure 1(d) and the “water level”
in each tank (the value of the variables) does not show
an obvious pattern as can be seen in Figure 1(c). How-
ever, as can be seen in Figure 1(b), “time converges”,
that is, an unbounded number of transitions takes place
in bounded time and hence the system is Zeneo.

We are motivated, by this simple example and many
others, to investigate the complex phenomenon of
Zenoness.

To examine the Zenoness phenomenon, we review the
concept of instantaneous configuration cluster (ICC)
[7]. Let v be a valuation of the state vector and let
g be a configuration. Suppose that q is entered by a
dynamic transition guarded by G, whose value is true
at ». Assume further that q has an outgoing dynamic
transition guarded by G’, which is also true at v. Since
G’ follows G instantaneously, we say that the transi-
tion associated with (7 is triggered by that associated
with G. A sequence of transitions G;,Ga,... is trig-
gered by v if G is true at v and Gy4 is triggered by
G; for all ¢ > 1. For a given v, consider all transition
sequences in the HM triggered by ». Let HM(v) de-
note the HM obtained by deleting all transitions that
are not elements of transition sequences triggered by
v. A strongly connected component {SCC)? of HM ()
that consists of two or more configurations is called an
ICC. The triggering value v of the state vector will be
called a Zene point of the HM. Note that there may
exist more than one ICC for a given Zeno point and
there may be more than one Zeno point for an 1ICC.
In the above example, v = z = {0,0,0] is a Zeno point
associated with an ICC which includes configurations
1,2 and 3.

In [7] it is shown that existence of a Zeno point and its
associated ICC is a necessary condition for Zenoness,
although it is not sufficient. Clearly, once at a Zeno
point, the behavior of the HM is necessarily Zeno.
Thus, the question that must be examined is whether
if initialized outside (or away from) a Zeno point, a
possible run will enter the Zeno point after a bounded
length of time. We shall say that a Zeno point is a Zeno
attractor whenever there exist initializations of the HM
cutside the Zeno point such that for some run, the Zeno
point will be reached in bounded time. Clearly, a HM is
non-Zeno if and only if it has no Zeno attractor. Thus,
the problem of checking Zenoness of a HM consists of
identifying its ICCs, if any, and checking whether they
include Zeno attractors. Since identifying ICCs is an
easy job, in this paper, we address the latter issue.

We consider homogeneous hybrid systems with n con-
figurations and m continuous variables. We confine
our attention first to constant rate hybrid systems,
for which the continuous dynamics in configuration j,

4AnSCC is a set of configurations for which there is a directed
path from any configuration to any other.

j=12,...,n, is given by

i kg
3 ka;
1

where the k;;s are constant, and we shall consider sys-
tems that satisfy the following assumption:

Assumption 1

1. The legal region of the system is the nonnegative
orthant RT = {x e R™ : 2; 2 0,i = 1,2, ...,m}.

2. All the system’s configurations are in an ICC with
respect to the Zeno point z = 0.

3. Every variable is active in some configurations.

4. In every configuration, there is at least one active
variable.

5. In a given configuration, a unique transition is as-
sociated with each active variable z;. This transition
is triggered either by an event (generated by a con-
troller) or by the associated guard [z; < 0] becoming
true. Each transition leads the system to a configura-
tion where the triggering variable x; is not active.

In the above Assumption, (1) implies that a variable
is active if and only if its derivative is negative, (2)
states that every configuration is relevant to the Zeno
behavior, {3) states that every variable is relevant to
the Zeno behavior of the system, (4) ensures that the

- hybrid system cannot stay in any configuration indef-

initely and hence the system is forced to perform an

- unbounded number of transitions over an unbounded
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interval of time, and {5) states that the hybrid system
can be forced to exit a configuration at any time before
[z; < 0] becomes true.

Let us consider a run of & hybrid system HM initialized
at state x(0) = xo. We assume that zo is in int(R7),
the interior of R, Using equation (1), we obtain the
state x(t) at t > 0 as

z(t) = /: KIn{r)dr + xy, (2)

where K is the rate matrix

kn k12 kln
K= | ko k2 kon
kml ka kmn

Equation 2 can be rewritten as

z(t) = _/: KIn(r)dr + 2o = Kta(t) + 39, (3)



where a(t) = %fg In(r)dr = [ (t) ap(t) ... aa(t)]’.
Note that a;(£) > 0,1 =1,2,...,n, and a:(t) + a(t) +
. + an{t) = 1. Thus, ay(t) represents the fraction of
time (up to time ), that the HM resides in configura-
tion #;¢ = 1,2, ..., n. In other words,

alt) e A= {ac mf;ai — 1

It is readily noted that z(t) = fot KIn(r)dr + a9 is also
the solution of the following constant rate dynamical
system

{

for @ = a(t). This much simpler “equivalent” sys-
tem will serve us below to investigate the Zenoness
properties of the hybrid system HM. In particular, we
will show that the existence of Zencness is closely re-
lated to the existence of solutions to the inequality
Ko>0,a€ A

z=Ka

() =xo (4)

We shall make use of the following simple observation.

Lemuna 1 Let HM be a homogeneous constant rate
hybrid system satisfying Assumption 1 with initial
state £(0} = zg € int(RY). Let z € int(RT) be any
point. Then there exists a run of HM reaching z with
a trajectory wholly contained in R if and only if for
some o € A there exists a solution to system (4) start-
ing at xg and reaching x. Moreover, in that case, the
time T at which HM reaches x (i.e., z(T) = z) is the
same as the time at which the equivalent system (4)
reaches z.

The proofs of all the lemmas and theorems can be found
in the full version of the paper.

By investigating the equivalent system (4} instead of
the original hybrid systemm HM, we can simplify the
problem of determining Zenoness significantly. In par-
ticular, we have the following necessary and sufficient
condition for strong Zenoness.

Theorem 1 Let HM be a homogeneous constant-rate
hybrid machine satisfying Assumption 1 with initial
state z(0) = x¢ € int(RY). Then HM is strongly Zeno
if and only if X'« > 0 has no solutions in A.

The condition of Theorem 1 (which is the standard fea-
sibility condition for solution of a linear program) can
easily be checked using standard available software. If
Ka > 0 has solutions, the HM is not strongly Zeno
and there exist switching policies resulting in non-Zeno
runs of the system. However, without externally forced
switching, the dynamic runs may still be Zeno. We dis-
cuss the control issues in the full version of the paper.

Although the problem of finding necessary and suf-
ficient conditions for Zenoness (rather than strong
Zenoness) is still open, we can solve the problem for
regular systems, which satisfy both Assumption 1 and
the following:
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Assumption 2

The number of continuous (state) variables is equal to
the number of configurations (that is, n = m): Each
state variable is active in exactly one configuration.
Furthermore, the rate matrix is of full rank (that is,
rank{K) = n).

To present our results, let us consider all convex cones
in R™ rooted at the origin. Denote by

CONE(?)]_‘,UQ,..,,W)
{U ER™:v =31y + Bova + ...+ By
for some f3; 2 0,02 2 0,..., 5 = 0}

the convex cone generated by vectors v; € RR®¢
1,2,...,1.

Let u; = [0...1...0}T be the n-vector with 1 in its ith
position and 0 elsewhere. Denote

PO = CONE(uy,us, ..., un)(= R)
NE = CONE(—w1, —us, . ..

y "Unj.

If rank[viva... v r, then the dimension of
CONE(v1,v2,...,0;) is 7. Its boundary consists of r
surfaces. Fach surface is a part of a supporting hyper-
plane, generated by some r — 1 independent vectors in

{'U},UQ,- .- )Ul}-

Lemma 2 Let C; and Cq be two cones, If the surfaces
of C) intersect Cy only at the origin, then either €5 is
contained in 1, or } is contained in the complement
of Cg.

Dencte the column vectors of K by k: K

[ksks .. k-

Lemma 3 Under Assumption 2, the surfaces of
CONE(ky, ka,... k) and NE intersect only at the
origin.

Lemma 4 Under Assumption 2, Ka > 0 has no solu-
tion in A if Ka < 0 has a solution in A.

With these three lemmas, we can prove the following
theorem that gives a necessary and sufficient condition
for Zenoness of regular systems.

Theorem 2 Under Assumptions 1 and 2, a homoge-
neous constant-rate hybrid system HM is Zeno if and
only if Ka > 0 has no solution in A,

Note that for systems satisfying both Assumption 1
and Assumption 2, Zenoness and strong Zenoness are
equivalent; that is, there exists a Zeno run of a system
if and only if all its runs are Zeno. Also note that for
systems satisfying Assumption 1 but not Assumption
2, no conclusion can be drawn just from the existence of



solutions in .4 to the inequality Ka > 0, as to whether
the system is Zeno or not.

Zeno behaviors have a complex nature even for sys-
tems satisfying Assumption 1 (but not Assumption 2)
as we will illustrate by the following examples. Note
that when the conditions of Theorem 1 or Theorem 2
- are satisfied, then the results are independent of the
initial conditions and the exact layout of connections
between configurations. However, when these condi-
tions are not satisfied, a dynamic run may or may not
be Zeno depending on the initial conditions and on the
exact layout of connections and guards between con-
figurations. The first point is illustirated in Example
1.

Example 1 The system is shown in Figure 2.

Figure 2: A system where Zenoness depends on the initial
state

This systern satisfies Assumption 1 but is not regular,
since the second configuration has two active variables.
Notice further, that while Ka > 0 has solutions in A
and Ka < 0 has no solutions in .A, Zeno behaviors are
possible. To understand the dynamic behavior of this
system, observe that the loop consisting of configura-
tions 1 and 2 {denoted by 1 «— 2} has active variables
Z9 and x3. The submatrix corresponding to these vari-
ables is

and represents a Zeno regular HM; that it, ;Lub satis-
fies Assumption 2 and K fuba > 0 has no solutions in
'AsLub = {az,aalaz >0,a3 > 0,02+ a3 = 1}. Thus,
if a dynamic run is “trapped” in the loop 1 « 2, Zeno
behavior must occur.

-90
1

130

Kip= { ~90

On the other hand, the loop 2 < 3 consisting of con-
figurations 2 and 3, has active variables 1 and 2 with
associated submatrix

|

which represents a non-Zeno regular HM (K iba >0

has solutions in A% ,). Hence, if a dynamic run is
“trapped” in the loop 2 « 3, it will be non-Zeno.

—90
130

70

K= 90

5

One can see that the system of Figure 2 will be trapped
in one of the two loops after a number of initial transi-
tions. Suppose that the initial configuration is 1. When
zo = 0, a transition takes the system to configuration
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2. Now suppose z3 hits its guard before z; (i.e., x3 =0
is reached while z; > 0} and the system switches back
to configuration 1, where the rate of x; is greater than
the rate of z3. After a while, the transition to config-
uration 2 takes place again, where x; and 3 have the
same negative rate, and therefore 3 will again become
zero before 1, forcing the system back to configuration
1, and so on.
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Switching pat- run: Switching
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Figure 3: Representative Runs

{A) Zeno Run: zo = (2,90, 130}, go = 1; (B) Non-Zeno
Run: zp = [1,90,131], go =1

Thus, the behavior of the system is given by the ma-
trix K g‘ub, corresponding to x5 and x3 In configurations
1 and 2. On the other hand, if after the first transi-
tion, T; becomes zero before xz, a similar argument
shows that the behavior depends only on the matrix
Kﬁb corresponding to x; and zj in configurations 2
and 3. Therefore, we conclude that the run will or
will not be Zeno, depending on the initial state. A
simple calculation shows that, for gg = 1, the run is
Zeno if zg, > o, — (129/90)zo,, and it is non-Zeno
if zo, < o, — (120/90)x0,. In the case of equality,
then after the first transition {from configuration 1 to
configuration 2), both variables x, and zz become zero
in configuration 2 at the same instant, and the sys-



tem chooses its next configuration (either 1 or 3) non-
deterministically, thereby becoming Zeno if it switches
to configuration 1 and non-Zeno if it switches to con-
figuration 3. Two sample runs that demonstrate Zeno
and non-Zeno behaviors of this system are shown in
Figure 3.

Example 2 This example shows that even for a Zeno
system that has only one loop (and hence only one
switching sequence), there may exist non-Zeno runs
when switched properly.

The system is shown in Figure 4(a). Its dynamic run
(i.e., when switched by the guards becoming true) is
Zeno as shown in Figure 4(b)- Figure 4(d). However,
Ka > 0 has solutions in A. For example, one solution
is o* = [0.125,0.125,0.5,0.25]7. Therefore, if the sys-
tem is switched to remain in the proximity of the line
emanating from xp in the direction of a*, the run will
be non-Zeno.

5
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configuration

(c} The state variables {d) The switching

Figure 4: A Zeno system, for which Ka > 0 has solutions
in A

4 Conclusion

In this paper we studied various issues concerning the
possible existence of Zeno behaviors in hybrid sys-
tems and the related question of existence of safety
controllers that satisfy specified state invariance con-
straints.- We focused our attention on constant rate hy-
brid machines, and showed that the existence of Zeno
behaviors can be examined by checking for existence
of solutions to a set of linear inequalities in a speci-
fied region of B™. In particular, we have shown that
for the class of “regular” constant rate hybrid systems
Zenoness is equivalent to strong Zenoness; that is, the
system has Zeno runs if if and only if all its runs are

Zeno. In this case, it is clear that if Zeno runs exist,
no legal controller exists. :

When a system has Zeno runs but is not strongly Zeno,”
some legal controller exists. However we have shown in
the full version of the paper that, contrary to earlier
belief, the existence of a legal (or safety) controller in
Zeno systems does not always imply the existence of a
minimally interventive (or minimally restrictive) con-
troller. This implies, in particular, that the standard
iterative synthesis algorithmns that have been proposed
in the literature may not apply in such cases. However,
as was demonstrated in the full version of the paper,
controllers can still be designed by more ad-hoc proce-
dures.
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