Proceedings of the 42nd FEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003

WeMO01-5

A Framework for Conflict Resolution in Air Traffic
Management!

Stefan Resmerita?, Michael Heymann®, George Meyer*

Abstract

We propose a distributed multi-agent framework
for conflict free navigation in a discrete environ-
ment. The two-phased approach, which consists of
a ‘conflict-resolution’ phase followed by an ‘agent-
accommodation” phase, guarantees maximal capacity
utilization under guaranteed safety requirements. The
methodology, which is motivated by the Free-Flight
paradigm in Air Traffic Management (ATM}, is appli-
cable to autonomous UAVs, various ground transport
settings and, with suitable modifications, also to dis-
tributed ATAL

Keywords: Air traffic management. multi-agent sys-
tems, conflict resolution.

1 Introduction

The current air traffic management {ATM) system is
based on centralized control, with limited flexibility for
individual aircraft to freely choose their optimal paths.
The system relies on human operators in local air traf-
fic control (ATC) centers (that are further partitioned
into sectors), to track all aircraft along their nominal
pathways and control their trajectories so as to insure
adequate aircraft separation. Consequently, in order to
keep the system manageable, there are strict limits on
the number of aircraft that are allowed into a sector,
creating capacity and flexibility constraints.

An intense research effort is currently under way to
overcome some of the above mentioned limitations and
better utilize existing technological capabilities such
as Global Positioning Systeni, data-link communica-
tion, Traffic Alert and Collision Avoidance Systems and
powerful on-hoard conununication. This infrastructure
enables, among other things, aireraft to aircraft com-

!The work of the second author was supported in part by the
Technion Fund for Promotion of Research and was completed
while he was visiting NASA Ames Research Center, Moffett
Field, CA 94035, under & grant with San Jose State University.

2Department of Computer Science, Technion, Isracl In-
stitute of Technology, Haifa 32000, Israel. E-mail: ste-
fan@cs.technion.ac.il

3Department of Computer Science, Technion, Israel In-
stitute of Technclogy, Haifa 32000, Israel. E-mail: hey-
mann@cs.technion.ac.il

iNASA Ames Research Center, Moffett Field, CA 94035, E-
mail: George.lleyer-1Qnasa.gov

0-7803-7924-1/03/$17.00 ©2003 IEEE

2035

munication, predictability of trajectories of other air-
craft, and on-flight access to central databases with
flight plans.

One approach that has been proposed to achieve these
goals and to increase individual aircraft path selection
flexibility is the Free-Flight paradigm [3], in which pi-
lots would be allowed to choose optimal trajectories,
and possibly also be responsible for maintaining flight
safety. In addition to the potential savings that could
be achieved by airlines (in terms of fuel consumption
and travel time), decentralization of control could re-
duce the workload at ATC’s (which would then play a
more supervisory role). As a consequence, it might be
possible to increase the number of aircraft supervised
by ATC, thereby achieving a better utilization of the
airspace.

Inspired by the challenge posed by the Free-Flight idea,
we propose in this paper a novel framework for dis-
tributed Traflic Management, which, in addition to
safety and individual optimality, addresses explicitly
the issue of efficient utilization of the common resource
(airspace, tracks, roads, etc. as the case may be) .
In our proposed framework, we deal with Autonomous
Agents, and the above goals are accomplished through
inter-agent interaction, rather than through centralized
control.

A recent review of the literature on conflict resolu-
tion in ATM can be found in [2]. Most of the re-
search regarding Free Flight deals with collision avoid-
ance strategies [7] [4], i.e., computing deviations from
nominal paths of the involved aircraft. A multi-agent
approach based on negotiation is presented in (8]. A
token-based framework is described in [1j.

In the present paper we employ a discrete model of the
system. Its relation to ATA! is obtained by viewing the
aircraft as agents and the ‘airspace’ as partitioned into
cells, so that the required separation constraint is sat-
isfied by guaranteeing that at most one agent occupies
a cell (resource) at any time. Thus, the resource sys-
tem is modelled by an undirected graph, where a vertex
corresponds to a cell and an edge represents an adja-
cency relation between two cells. An agent must travel
from an initial vertex to a destination vertex (both of
which are specific to each agent). An agent trajectory
is a timed directed path in the resource graph, start-

ing at the initial vertex and ending at the destination
vertex. Each transition in the path specifies the time
of residence in the preceding vertex (the time of cell
traversal). The number of agents in the system is not
specified and-may change with time. An agent can en-
ter the system at any arbitrary (integer) instant of time
and exits the system upon task completion.

An agent is required to announce the set of all its op-
timal paths (which are of equal quality to the agent).
We call this the agent’s model. Optimal paths are de-
termined by a specified set of performance criteria, a
computation not further discussed in the present pa-

per. We assume that an agent can do that. To satisfy

safety, an agent’s movement is restricted to a legal sub-
set of its model, called legal plan, such that legal paths
of different agents are conflict-free. An agent follows an

arbitrary path in its legal plan. An incoming agent en-’

ters the resource system upon determining a nonempty
legal plan, at which time it becomes active. An active
agent cannot be stopped or suspended while executing
its task. Thus, a liveness specification, that insures
that an active agent always has a nonempty legal plan,
must be satisfied.

At the heart of the proposed framework is the mecha-
nism by which agents select their legal paths, so as to
insure safety, liveness, and efficient resource utilization.
The proposed methodology consists of two algorithmic
phases, preceded by an initialization phase. First, an
incoming agent determines the subset of its optimal
paths that are conflict-free with the legal paths of the
active agents (already in the system}. Then, in the
conflict resolution phase, the agent resolves potential
conflicts with paths of all other incoming agents. If no
legal path is obtained, then the accommodation phase
is executed, where the agent can request and obtain
resources owned by active agents (who will try to ac-
commodate an incoming agent).

In the sequel we describe the conflict resclution phase
(fully described in [5]), and then present in seme detail
the accommodation procedure.

2 Agent Models and Conflict Detection

Consider the portion of airspace depicted in Figure 1.
There are two airplanes, hereby denoted by R and S.
R needs to fly from cell g to h and it can use any of the
three routes depicted with dashed lines. 5 has to fly
from d to a and it can follow two routes. Each agent
has specific times of cell traversal. The models are rep-
resented in Figure 2 (the thick paths will be explained
shortly). For example, it takes three units of time for
agent R to arrive at cell ¢, and two units to enter f.
Notice that several conflicts may occur, involving: ¢ at
time 3, f at time 3, b at time 6 and e at time 9. We
use the symbol ¢ to signify flight termination (e is not
a node of the resource graph).

2036

Figure 2: Agent models

Let V be the set of vertices of the resource graph, An
agent automaton is a triple A = (@, g, E), as follows.
Q is a set of vertices: @ = Q' U {¢}, where Q' C V
and where ¢ is the task termination node (that occu-
pies no resource of V). go € @' is the initial node
which, if the agent is active, represents the currently
occupied resource, and if the agent is incoming, is the
first resource occupied upon becoming active. E is a set
(e}

of transitions {edges) of the form e : ¢ — ¢', where
ge @, ¢ €Q, ¢ # q and 7(e) is a positive inte-
ger representing the time (relative to the moment of
entry at g) at which e can be executed. Thus, the
agent may move from ¢ to ¢’ (by executing transition
e) precisely (e) units of time after entering ¢. In ad-
dition, if ¢’ # ¢, then (g,¢') is an (undirected) edge
in the resource graph. The following structural condi-
tions must be satisfied: the directed transition graph
of A is acyclic, and every vertex ¢ € @’ is contained in
an agent path. Notice that the undirected transition
graph of A is a subgraph of the resource graph.

By an agent path, or simply a path, we always under-
stand a complete path in the agent automaton, starting
at go and ending at e. A disputed resource, or conflict,
between paths p; of agent i and p; of agent j is a pair
(1,q) € N x V such that both agents i and j would oc-
cupy ¢ at time 7 if they followed p; and p; respectively
and at most one of £, j would occupy g at + — 1. Thus,

7 is an instant of conflict occcurrence between ¢ and 7
at g. For example, in Figure 2, (3.¢) is a disputed re-
source between the lower path of § and the uppermost
path of i.

Conflicts can be detected by computing the parallel
composition of the involved automata [G]. For exam-
ple, the composite of automata R and S from Figure
2 is shown in Figure 3. Observe that conflict (3,¢)
corresponds to the composite node < ¢, ¢ >.

<.t

<l {>
O

) 1 <h. £>

Figure 3: The composite of automata B and S

3 Conflict Resolution

Consider the situation when several incoming agents
want to enter the system at the same time. They have
access to a common database, containing the models
and current legal plans of all active agents in the sys-
tem. They must also register their optimal paths in the
database. Thus, after registration, an incoming agent
will know the models of all other incoming agents. Ini-
tially, an incoming agent determines the subset of its
paths that are conflict-free with the legal plans of the
active agents. However, this subset may have resources
that are disputed with the corresponding subsets of
other incoming agents. Thus, an incoming agent must
determine which of these paths are ultimately legal,
so that legal paths of different incoming agents are
conflict-free. This is the conflict resolution phase. If
the resultant legal plan of the incoming agent contains
at least one legal path, it becomes active. Otherwise,
it executes the gccormmodation phase.

A solution of the conflict resolution problem for a given
set of incoming agents is a collection of legal plans that
are conflict free. A solution S is less restrictive than
another solution $' if, for each agent. the legal plan
in 5" is included in the legal plan given by §, and the
inclusion is strict for at least one agent. A solution is
least restrictive, or marimal, if no other less restrictive
solution exists. WWhile maximal selutions need not be
unique, a maximal solution means that no agent can
unilaterally improve its legal plan without creating a
conflict with some other agent’s legal plan (and thus

2037

viclating the safety constraint). An algorithm that al-
ways finds a maximal solution is called optimal. ’

Our algorithmic approach to conflict resolution does
not require communication among agents. The reso-
lution is based on a prioritization of agents over the
disputed resources. The pricritization can be achieved
by applying a set of rules, so that if rule (i) does not
give a suitable prioritization, rule (i4-1) is applied. For
example, the following rules can be used to prioritize
the agents in Figure 2. The agent that has priority
is the one which: (1) Arrives first at the disputed re-
source; (2) Has the shortest time to its destination from
the moment of arrival at the disputed resource. Thus,
agent R has priority for (3, f} and (6,b4), while S has
priority for (3,¢} and (9,€). In our framework, we as-
sume that the prioritization is given, and we focus on
how to use it for conflict resolution. For the remaining
of the paper, unless otherwise stated, by resource we
shall mean disputed rescurce.

In [5), we present resolution algorithms for the two-
agent case, as well as for the general case, under differ-
ent conditions on the knowledge available to an agent
with respect to the other agents’ models and prioritiza-
tion. The general principle of optimal resolution is that
an agent reserves a resource if and only if the following
conditions are both met:

(*) The agent has the highest priority to the resource
among all agents that hawve access to the resource, and
(**) The agent can make successful use of the resource
by completing a legal execution. This, in particular,
implies that an agent is not permitted to reserve a re-
source (to which it may have priority) if the reservation
cannot be applied toward a successful task completion.

For the example in Figure 2, the resolution is done as
follows: because S has priority for ¢, b is inaccessibie
to R. Hence, S can claim b and complete a legal path.
On the other hand, R has priority for f from which
it ean complete a legal execution. Therefore § cannot
reserve e (for which it has priority). The maximal so-
lution is outlined by the thick paths in the higure. Note
that even in a maximal solution, there may be disputed
resources that remain in the public domain (e.g., e in
Figure 2).

In [5], we define a spectrum of possible approaches, as
follows. At one end, the most that an agent can do is
to take into consideration all the agents and conflicts in
the system, including those in which it is not directly
involved {assuming it knows the prioritization for all
of them). For this case, we give an optimal resolution
algorithm, At the other end of the spectrum, the least
that an agent should do is to take into consideration
only the agents with which it has conflicts, and to ig-
nore the others. Conflicts are resolved with each of the

:Competing agents, pairwise, the final resuit being the
intersection of the partial results. Since the number
of agents conflicting with a given one is usually much
lower than the number of all agents in the system, the
pairwise approach is computationally efficient, but the
result is, in general, not maximal.

4 Accommodation

In the accommodation phase, an incoming agent that
obtained an empty legal plan in the conflict resolution
phase, can request resources from active agents. Us-
ing also public resources (remained in the public do-
main after conflict resolution), the incoming agent tries
to put together at least one legal path to its desti-
nation. Active agents cannot reclaim now-public re-
sources, which they could not previously obtain in the
resolution phase,

The proposed accommodation algorithm is based on a
principle that an active agent must relinquish resources
at the request of an incoming agent, provided that the
active agent retains at least one legal path to its des-
‘tination. The accommodation algorithm stops as soon
as the incoming agent secures a complete path to the
destination, or if it is determined that no solution ex-
ists. An accommeodation algorithm is optimal if it al-
ways finds a solution (a legal path for the incoming
agent), if one exists. In other words, given an initial
condition (i.e., the legal plans of active agents), if any
mechanism finds a sclution, then an optimal accommo-
dation will also vield a solution under the same circum-
stances. It can be readily seen that the less restrictive
the- initial condition is (i.e., the larger the legal plans
of the active agents are), the more permissive an opti-
mal accommodation is. That is, if an accommodation
is not found for a given initial condition, a solution
may still be found for a less restrictive initial condition
(for the same madel of the incoming agent). Conse-
quently, a maximal solution of the conflict resolution
offers greater flexibility for accommodating an incom-
ing agent than a non-maximal sclution.

Protocol outline. We confine our attention to the
case of a single incoming agent, which tries to obtain
a legal path in a system where all the other agents are
active. We assume that an agent knows the models
and legal plans of the other agents. .In our accommo-
dation protocol, called ACCP, the incoming agent tries
to secure a legal path in its model, by requesting the
disputed resources along the path. After soliciting a
resource, the agent waits for the owner’s response. If
the answer is positive, then the agent proceeds to re-
questing the next disputed resource. If all disputed
resources on the path are obtained, then the path is
declared legal, and the accommodation succeeds. If a
certain resource cannot be obtained, then the current
path is abandoned and the agent tests another path

2038

in its model. If no path can be obtained, the accom-
modation fails, and the agent does not enter the sys-
tem. When an active agent receives a request for a
disputed resource contained in its current legal plan, it
tries first to remove the resource from the legal plan, in
order to satisfv the request. If the curtailed legal plan
is non-enipty, then the answer is positive. QOtherwise,
the agent tries to find a new legal path among the pre-
viously illegal ones in its model, by employing the same
procedure outlined above for the incoming agent with
respect to the other active agents. If a path is secured,
then it becomes the new legal plan and the answer is
positive. If no illegal path could be made legal. then
the request is denied. The procedure may be repeated
to any needed or specified search depth.

IHustrative example. Consider the incoming
agents and prioritization depicted in Figure 4, where
the highest priority is 1. For simplicity, transition
times are not represented. In phase one, the following
conflict resolution is executed:

R:
&:
T:
d i
2 1
b g
u: ——— > 0—————————»0
1 2

Figure 4: R, S, and T must accommodate U

R, S, and T reserve e, e, and d, respectively. Since i
is inaccessible to U (which is blocked at d), S reserves
i (it has priority over T), and also g, for which it has
priority. Consequently, I/ cannot use b and therefore
R can reserve it, together with ¢, which is inaccessible
to T (which is blocked at €). The legal plans are de-
picted by thick transitions. Ownership of a resource is
outlined by a thick circle. Observe that the solution is
maximal. Agents R, S, and T become active, while U
executes the accommodation phase, as follows,

[/ asks first for d. To answer the request, T tries to
secure its lowermost path, by requesting i. This is

granted by S, which can still use e. Next, T asks for g,
which is also relinquished by 5. Thus, T will give d to
. U. Having obtained d, I/ asks next for 7. Notice that
ownership of ¢ has changed from § to 7. In general, a
resource request is broadcast, because the resources’s
owner may not be known to the solicitor. In order to
give up ¢, agent T will try its uppermost path, by re-
questing e. This will be granted by 5, after obtaining
a from R and g from 7. The legal plans and resource
ownership at this stage are depicted in Figure 5.
Next, T asks for ¢. To grant ¢, R requests a, which

Figure 5: T asks now for ¢

& cannot relinquish, because neither e nor i can be cb- .

tained by S from T: T cannot give up e in order to
obtain ¢ and it cannot give up i, which it is currently
requested by U. Hence, R fails to get a, and conse-
quently denies ¢ to 7", which must abandon its quest
for the uppermost path. Moreover, T cannot secure
the middle path because it cannot get d from V. Thus,
T’s answer to U/ (with respect to i) is negative. Ob-
serve that, at this step, " owns e, but it doesn’t own
g (although g is on a current legal path). Therefore,
before sending the answer to U, T must re-acquire g
from S. It can be shown ([6]) that such requests are
always satisfied. In our case, S will relinquish g to T
after obtaining first e from T

Being refused Z, agent U/ abandons the upper path and
tries the lower one. It asks for &, which is given by R
after obtaining @ from S. Then, U requests g. T needs
first to get d from U/, and then sends a positive answer
to I/. The accommodaticn succeeds, with the following
new legal plans. R: the upper path, §: the uppermost
path, T: the middle path, and U: the lower path.

2039

The protocol procedures. ACCP has three proce-
dures: (1) ReguestHandler, which processes a resource
inquiry, (2) FindLegalPath, which selects a path to
be secured before giving an answer to a resource re-
quest, and (3) ClaimPath, wherein an agent tries to
obtain the disputed resources along the path selected
by FindLegal Path. These procedures use a database
of variables, as follows. LP is the set of current le-
gal paths. TR is the set of teniatively reserved re-
sources. Whenever the agent tries to secure a legal
path, TR holds all the disputed resources that have
been requested and obtained by the agent on the tested
path, until the current computational step. CO is the
set of currently owned resources (which are initially
those contained in the legal paths). The resources for
which the agent must answer, if (and when) it receives
a request, are those in CO and TR.

Procedure RequestHandler is executed by an active
agent upon reception of a request for a disputed re-
source g, provided that the agent is not already waiting
for an answer to a request that it has previously made
(see ClaimPath below). Let LP denote the set of all
(disputed) resources in LP. If ¢ € CO\ LP, then the
answer is positive. If ¢ € fﬁ, then a set newLP is
determined, of all paths in LP which do not contain g.
If newLP # @, then the answer is positive. Otherwise,
procedure FindLegal Path is called to determine a new
legal path (to be stored in newLP). If FindLegal Path
succeeds, then the answer is positive, otherwise it is
negative. In case of a positive answer, the variables
change as follows: CO := CO\ {¢}, LP = newlP,

and CO = COJnewLP.

For an active agent, procedure FindLegalPath suc-
cessively selects agent paths which do not contain the
requested resource (g) and a resource in the public do-
main. It tries to claim each of these paths by calling
ClaimPath until either a path is secured, or all paths
are tested, but none could be obtained. In the latter
case, the agent enters a recuperating phase, where the
disputed resources in LP\ CO are re-acquired. This is
necessary because resources on paths in LP may have
been relinguished while trying to secure “illegal” paths.
For example, this was the case for resource g in Figure
5. It can be shown {[6]) that such a request is always
satisfied, without the need to relinquish other resources
in LP. Therefore, if a resource in LP[CO is re-
quested by another agent at this stage, then the answer
is negative. For thle incoming agent, FindLegalPath
selects paths in the agent’s model arbitrarily, until ei-
ther a legal path is found, in which case the accommo-
dation succeeds, or no path can be obtained, and the
accommodation fails.

Procedure ClaimPath sends request messages for dis-
puted resources on a path selected by FindLegal Path,

until either a request is denied, or all resources are ob-
tained. After sending a request, the agent waits for one
reply. If this is positive, then the resource is memorized
in TR and the next resource is picked up. If the answer
is negative, then CO := CO{JTR, TR := 0, and the
procedure returns. While waiting for an answer, the
agent may receive request messages. These messages
are answered immediately, without making further re-
quests, as follows. Suppose that at the current com-
putational step agent R is waiting for the answer to
the request of resource gp, currently owned by agent
S. Also, § is walting for the answer to its request of
another resource gg. Suppose that S receives now from
some agent T a request for a resource gr. Note that T
cannot be R. S answers in one of the following cases:

1. If gr € TRg, then the answer is negative. Notice
that all resources in TRg have been previously ob-
tained by S along the currently tested path, up to gs.
Therefore, it is of no use for S to relinquish a resource
in TRg in order to (possibly) obtain gg.

2. If ¢r = gg, then again the answer is negative. S is
trying to accommodate the request for gg in order to
give it to R, not to T,

3.1f gr € CO\ {gr}, then the answer is positive and
C0O :=CO\ {gr}

The incoming agent never executes RequestHandler.
It starts the accommodation by calling FindLegal
Path. When the procedure returns, a message is broad-
cast, signaling the end of the accommodation. If it
was not successful, then all agents must switch back to
their initial legal plans. The protocol does not spec-
ify the order in which candidate paths are selected by
FindLegal Path, or resources on a selected path are re-
quested in ClaimPath. While the computational and
communication efficiency may depend on a particular
selection strategy, the correctness and optimality of the
protocol do not. We state next the main properties of
the ACCP (for proofs, see [6]).

Theorem 1 The solution obtained by ACCP satisfles
the requirements of safety and liveness.

Theorem 2 ACCP is optimal.

Implementation issues. Ohserve that agent mod-
els and legal plans change in time. Thus, an agent may
have to make a move while being involved in an ac-
commodation. Additional mechanisms must be used
to deal with this situation. It is very likely that such a
mechanism will require an agent not to relinquish some
resources {(which in the ideal case can be relinquished).
For example, an agent may withhold resources with
times within a certain lookahead range.

At a given computational step, the depth of the proto-
col execution is the number of .agents waiting for an-
swers to their requests. It can be readily seen that

2040

the maximum depth of any execution is 7 — 1, where
7 is the number of agents. For the incoming agent, a
large depth means a long walting time for an answer.
This period can be shortened by limiting the depth
to a specified value. Thus, we obtain a protocol that
approximates the ideal accommodation up to a given
depth.

Notice that ACC' P does not preserve maximality of le-
gal plans. Moreover, this can be also lost as a result
of time passing. To maintain maximality, one can em-
ploy optimal conflict resolution among active agents,
with respect to the freed resources only. Thus, the le-
gal plans of active agents are augmented, such that a
maximal solution is obtained.

In our framework, an agent can attempt to cheat and
include non-optimal paths in its declared model, so as
to retain more legal paths. The effects of such an ac-
tion are heneficial to the system, because flexibility is
increased, but the agent may end up having to follow
a non-optimal path. Thus, an agent has a disincentive
to cheat. In fact, in order to increase flexibility, agents
may be required to include sub-optimal paths in their
models. In this case, existing agents can he forced to
deviate to sub-optimal legal paths, in order to allow
new agents in the system. In other words, individual
performance (path optimality) may be sometimes sac-
rificed in order to increase global performance.

References

[1] S. Devasia, M. Heymann and G. Meyer, 2002.
Automation procedures for Air Trafic Management: a
token-based approach. Proceedings of the ACC.

[2] J. K. Kuchar and L. C. Yang, 2000. A review

of conflict detection and resolution modeling methods.
IEEE Trans. Intell. Transp. Syst. 1(4). pp. 179-189.

[3] R. Jacobsen, 2000. NASA’s Free Flight Air Traf-
fic Management Research. NASA Free Flight/DAG-
ATM Workshop.

[4] PK. Menon, G.D. Sweriduk, and B. Sridhar,
1999. Optimal strategies for Free Flight air traffic con-
flict resolution. Journal of Guidance, Control and Dy-
namics 22(2), po. 202-210.

[3] S. Resmerita and M. Heymann, 2003. Conflict
Resolution in Multi-Agent Systems, CDC 2003.

[6] S. Resmerita, 2003. A multi-agent approach to
control of multi-robotic systems. PhD thesis, Technion.

[7] C. Tomlin, G. Pappas, J. Lygeros, D. Godbole,
and S. Sastry, 1996. A Next Generation Architecture
for Air Traffic Management Systems, Lecture Notes in
Computer Science 1271, Springer Verlag.

8] J.P. Wangermann and R.F. Stengel, 1998, Prin-
cipled negotiation between intelligent agents: a model
for air traffic management. Artificial Intelligence in En-
gineering (12) pp. 177-187.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

