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Abstract

The needs of modern (additive) manufacturing (AM) technologies can no longer be satisfied
by geometric modeling tools that are based on boundary representations (B-reps) - AM requires
the representation and manipulation of interior heterogeneous fields and materials. Further,
while the need for a tight coupling between design and analysis has been recognized as crucial
almost since geometric modeling (GM) was conceived, contemporary GM systems only offer a
loose link between the two, if at all.

For more than half a century, the (trimmed) Non-Uniform Rational B-spline (NURBs) sur-
face representation has been the B-rep of choice for virtually all the GM industry. Fundamen-
tally, B-rep GM has evolved little during this period. In this work, we review almost a decade of
research and development in extending this boundary representation to a B-spline based, vol-
umetric representation (V-rep) that successfully confronts the existing and anticipated design,
analysis, and manufacturing foreseen challenges. We have extended all fundamental B-rep GM
operations, such as primitive and surface constructors, and Boolean operations, to trimmed
trivariate V-reps. This enables the much-needed tight link between the designed geometry
and (iso-geometric) analysis on one hand and the full support of (additive) manufacturing of
porous, (graded-) heterogeneous and anisotropic geometries, on the other. Examples and ap-
plications of V-rep GM, that span design, analysis and optimization, and AM, of lattice- and
micro-structure synthesis as well as graded-heterogeneity, are demonstrated, with emphasis on
AM.

Keywords: lattices and microstructures, functionally graded material, additive manufac-
turing, functional tiles

1 Introduction

The spline based boundary representation (B-rep) has been introduced to the geometric modeling
community over fifty years ago. Nowadays, all commercial geometric computer aided design systems
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employ this spline based B-rep as their representation of choice. B-reps were the right solution when
the manufacturing process was subtractive. That is, a computer numerically controlled (CNC)
cutter that removed material from a stock of aluminum or steel. In other words, the initial stock
was homogeneous to begin with and so was the final carved artifact. Having homogeneous and
isotropic geometries, there was no need for representing interior properties.

In fact, this lack of need to represent the interior was never true with respect to analysis. Spline
based B-reps have been typically converted to piecewise linear volumetric finite elements (FE), like
tetra and hexa, in order to analyze these geometries, a conversion process (to FE, but also back
into the spline model!) that, in many cases, is more difficult than the analysis itself [10]. Clearly,
the physical properties of any geometry are governed by the interior of the model and not just
by its boundaries. Further, results of such analyses typically yield heterogeneous fields inside the
geometry, such as stress or heat flex, which cannot be represented using B-reps. Finally, because
analysis results typically affect the design, this design-and-analysis cycle is, in many cases, repeated
multiple times. It is not surprising then that a tight connection between the design’s geometric
representation and the analysis representation has been recognized as highly desired, almost since
GM was conceived.

About two decades ago, iso-geometric analysis [29, 10] (IGA) was introduced as an analysis
paradigm, in an aim to overcome the large gap between the representations of the design and analysis
stages. The use of a unified representation was preached, and specifically, the spline representation
that is common in all modern GM systems, namely (trimmed) B-spline/Non Uniform Rational B-
spline (NURBs) based geometry, has also been used in analysis, directly and with no representation
conversion.

Modern additive manufacturing allows for the fabrications of models with functionally graded
materials as well as porosity. Both (graded) heterogeneity and porosity are properties of the interior
of a model and, again, are not representable with ease, if at all, using B-reps. In fact, we are in
a first-ever situation where the manufacturing capabilities, as offered by modern 3D printers, are
ahead of our GM tools.

For the last decade or so, we have been developing a GM kernel [27] that is based on a volumetric
representation (V-rep). The proposed V-rep is based on (trimmed) trivariate B-spline/NURBs
functions, where a trivariate is a function of three variables or volumetric. The benefits we gain by
employing this representation include:

� Being a volumetric representation, the representation of graded heterogeneity on one hand,
and of general fields such as stress or heat flux on the other hand, are fully supported.

� These fields, being part of the geometric trivariate representation, can precisely match desired
boundary conditions. Further, the boundaries of the V-reps are merely trimmed surfaces.
In other words, the boundaries of V-reps are fully compatible with the existing B-reps of all
contemporary GM systems.

� Using symbolic computation, directly in the B-spline function spaces, we are able to build
lattices 1 that are precisely conforming to a general freeform shape, and no tile is being clipped.
Based on external prescriptions, for example from the end user or following analysis results,

1in this work, we employ the terms lattice and microstructure interchangeably to denote the same - a spatial
porous structure, typically as a 3D topological grid of tiles, whereas a tile is a 3D volumetric element in the 3D grid,
that others might denote as a cell.
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the geometry, the topology, and the graded material contents of individual tiles can be fully
adjusted and controlled.

� A unified representation for both design and analysis. Our (trimmed) trivariates are imme-
diately usable in IGA, as will be briefly demonstrated here, with all the additional potential
benefits in having higher order finite elements, with, possibly, higher continuity.

The rest of this work is organized as follows. In Section 2, we consider related work on and with
trivariate splines whereas in Section 3, we introduce our B-spline trivariate based V-reps. Section 4
examines the algorithms needed to bring V-reps all the way to 3D printing and Section 5 exemplifies
these abilities on additional examples. Finally, we conclude in Section 6.

2 Related Work

In this Section, we only discuss previous work that is related to volumetric splines. Clearly other
volumetric representations exist, most notably the discrete voxel based representation, but this and
similar representations are beyond the scope of this effort.

In the computer graphics community, trivariate splines were employed, for example, to thicken
stick figures of general topologies [36], where the challenge has been to construct proper volumetric
joints of general, n-sided, arms. Earlier, in [40], the well known idea of freeform deformation (FFD)
was introduced where geometry was mapped through a Bézier trivariate volume. Quite a few
variants of FFDs were introduced over the years. See, for example [19] and [26].

The use of trivariate B-spline functions is not new. Pierre Bézier introduced “Bézier cubes”
in [4], toward volumetric morphing, a result that predated the FFD work of [40] by almost a
decade. Bézier also employed trivariate Béziers in car design while multivariate splines (parametric
splines with arbitrary number of parameters) were discussed in the 60s [20]. That said, most if not
all FFDs are discrete approximations of the precise conforming lattices we introduce in this review,
using functional composition [14, 12].

In [31], harmonic functions are employed to build and parameterize volumetric trivariate B-
spline functions. In [41], a hybrid scheme is employed, in an effort to convert a trimmed surface
based B-rep model to a V-rep model. Aiming at a watertight representation, that is a challenge to
any GM system that employs trimming, a hybrid volumetric model is constructed, that preserves
the original (trimmed) B-rep boundaries. In [13], different volumetric splines are discussed, such as
(truncated) hierarchical B-splines, T-splines and LR B-splines, and compared.

In [38], scalar trivariate B-splines were used toward sculpting freeform shapes in 3D. Trivariates
can represent surfaces in motion. In [9, 28], trivariate functions are employed to represent the swept
volume of a parametric surface along a 3D path. The envelope of the trivariate is reduced to and
computed as a zero set of the Jacobian of a trivariate. Zeros of trivariates (and multivariates) were
also extensively used to solve quite a few problems in geometric modeling, such as the computation
of offset curves and (trimmed) surfaces, bisectors and trisectors, flecnodal and offset curves over
surfaces, packing and intersection problems, and in general, problems that can be reduced into a set
of multivariate algebraic constraints [21, 2, 42]. Toward this end, a B-spline based multivariate solver
has been developed and employed, exploiting favorable properties of splines, namely the convex hull
containment and subdivision properties. This multivariate solver has also been employed toward
AM in [18], to solve heterogeneous slicing problems, as will be discussed later in this review.
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In the IGA community, the need for a volumetric representation was also recognized. See, for
example [1]. A recent work of [37] sought the construction of trivariate splines from B-Rep NURBs,
to be used in 3-space IGA. Typically, in IGA, Bézier patches, including trivariates, are extracted
from the B-spline or NURBs geometry, in a process denoted as Bézier extraction [5], only to serve
as the finite elements.

While, as was demonstrated, trivariate splines have been studied to a great extent, it was never
aimed to be employed as a representation of choice in a GM kernel. Even today, the numeric
instabilities that all modern GM system have to face in light of the trimmed surface based B-reps,
are not negligible. Yet, in this review, we present an extension of trimmed B-spline based B-reps to
trimmed trivariate B-spline based V-reps and show that the expected benefits are high, if a V-rep
based kernel is to be used. This, while the numerical (Boolean operations) challenges in V-reps are
almost the same as in B-reps, and can further be based on B-rep solutions.

3 The B-spline based Volumetric Representation

We now briefly discuss the fundamentals behind our trimmed trivariate based V-reps. A trivariate
B-spline T is typically a mapping from a (u, v, w) box domain D ⊂ IR3 to IRk, k ≥ 3, for the
three XY Z spatial dimensions, but possibly also for additional dimensions of graded materials,
properties, and fields:

T (u, v, w)

=
l∑

i=0

m∑
j=0

n∑
k=0

PijkB
ou
i (u)Bov

j (v)Bow
k (w), (1)

where T is a trivariate with a control mesh of size (l + 1,m + 1, n + 1), control points Pijk ∈ IRk,
and B-spline basis functions Boq of orders oq, q ∈ {u, v, w}.

In the rest of this section, we will briefly exemplify, in Section 3.1, how trivariate primitives and
volumetric constructors can be formed, and how Boolean operations can be computed, in Section 3.2.
Then, in Section 3.3, some discussion of symbolic operations on trivariates will be presented and
specifically functional composition toward geometry conforming lattice constructions.

3.1 Trivariate Primitives and Constructors

We start the discussion on V-reps by presenting ways to construct simple shapes as trivariate V-
reps. Figure 1 presents two examples of primitive V-reps - a sphere and a truncated cone. The
sphere consists of seven different trivariates - one trilinear cube at the center and six additional ruled
trivariates between a face of the central cube and a corresponding spherical cap (see [8]), of orders
(5× 5× 2). The truncated cone consists of five trivariate, again one central trilinear pyramid and
four trivariates on the cone’s boundaries, of orders (3× 2× 2). In all, we support the construction
of the following trivariate primitives: a box, a skewed box, a sphere, a cylinder, a cone, a truncated
cone and a torus. All primitives but the sphere are of quadratic degree at the most, if rational, and
also, optionally, approximated as cubic piecewise polynomial B-splines.

One can also construct these primitives using a single singular trivariate, or a trivariate that
contains sub-regions where the Jacobian vanish. While we also support the construction of such sin-
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Figure 1: Two trivariate primitives - a sphere and a cone. Left shows regular views whereas exploded
views are shown on the right. Every trivariate is painted in a different color, iso parametric curves
are drawn in black and the control meshes of the different trivariates are drawn in blue.

Figure 2: Two examples of constructed V-reps, as a trivariate of revolution on the left and extruded
trivariate on the right. Iso parametric curves are drawn in black and the control meshes of the
trivariates are drawn in blue.

gular trivariates, singular trivariates are detrimental in analysis and, here, we offer these alternatives
of more trivariates per primitive that are all regular, or their Jacobian never vanish.

In Figure 2, two constructed trivariates are shown. On the left a volume of revolution is pre-
sented, rotating a surface to yield a trivariate and on the right a surface is extruded out of the
plane, into a trivariate. In all, the construction as trivariates of extruded volume, ruled volume,
volume of revolution, swept volume, and volumetric Boolean Sum [17] are supported.

In addition, many special operations on trivariate B-splines are also supported, operations that
are required in further geometry processing, including analysis and manufacturing. Those include,
for example, evaluations (positions and derivatives), subdivision and refinement, region extraction,
interpolation and fitting, partial derivatives at specific locations and as fields, point inclusion and
projection queries, slicing and intersections, etc. See [33] for more, on the topics discussed in this
section.

3.2 Boolean operations in V-reps

The computation of Boolean operations (union, intersection, and subtraction) over geometry has
always been a major challenge in GM systems. This, when the governing representation has been
B-rep based trimmed B-spline/NURB surfaces.
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C1
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Figure 3: On the left, the union between a red (material) V-rep box and a green (material) V-rep
cylinder is shown. The right shows an exploded view of the three VCells that are formed here.

A V-rep model, or a VModel for short, is defined as an extended, 3-manifold volumetric, repre-
sentation of the half-edge data structure [30], typically used to represent 2-manifold graphs, herein,
vertices, edges, and faces. The VModel will consist of several VCells, each of which is a (potentially
trimmed) trivariate. A VCell is bounded by trimming surfaces, whereas the trimming surfaces
themselves are trimmed by trimming curves.

Figure 3 demonstrates this. Shown is the union of a red box and a green cylinder, where different
colors depict different materials. This union Boolean operation results in three VCells. While VCells
C1 and C2 retain their original color, a question emerges what will be the color of C3, and should it
be homogeneous or heterogeneous? See [33] for more on V-rep Boolean operations.

In all, the representation is volumetric and hence, one can appreciate the added complexity in
Boolean operations for V-rep over B-rep. Luckily, we can divide the problem into two - considering
the boundaries and the interior as almost two independent problems:

1. Boolean operations over the boundaries of the V-rep input model. These 2-manifold problems
are reduced to traditional Boolean operations in B-reps and hence, one can exploit existing B-
rep kernels to compute the boundaries of the result, from the boundaries of the input V-reps,
that are regular trimmed B-spline based B-rep geometries.

2. The interior of the V-rep model is introducing a new challenge - an optional necessity to blend
as-smoothly-as-needed interior properties and fields (recall C3 in Figure 3). Here, we offer a
blending scheme that is based on the distances to boundaries of the different input V-reps, in
the VCell, and their material content.

To exemplify the material blending scheme we employ, in the interior of VModels, see Figure 4.
The figure presents a cross section of the simple example of a union of a red box and a green cylinder
from Figure 3. Again, three VCells are formed here:

1. VCell C1 as the region of the cylinder out of the box that stays with green material.

2. VCell C2 as the region of the box out of the cylinder that stays with red material.
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Figure 4: A planar cross section of an internal blend of materials in a V-rep union of a red box and
a green cylinder. See also Figure 3.

3. VCell C3 as the region common to the box and the cylinder, in which we blend the materials.

Consider point p ∈ C3. The minimal distances to the boundaries of red box and the green
cylinder are computed for point p, as d1 and d2 (see Figure 4 left). The color (material) at p will
be set based on d1 and d2 - the smaller di, i = 1, 2 is, the closer p is to the boundary of this V-rep
and hence we diminish its influence. Figure 4 right shows the final, smoothly blended, cross section
result. This blending approach can be made arbitrary smooth by employing powers of di in the
weighting functions, and further can be exploited even if more than two V-reps share a single VCell.
See [7] for more. Then, a planar section like Figure 4 right can be used in AM, as will be shown
in Section 4, as a prescription of one heterogeneous slice, allowing gradual and smooth changes
between red and green materials.

Reexamine Figure 4 right. The presented blending scheme has two singular locations - where
both d1 and d2 vanish, at points s1 and s2. As a result, the material is not well defined at those
locations. In [32], an aim was made to handle geometry as well as material discontinuities by adding
proper fillet trivariates that blend both the geometry as well as the encoded materials. See Figure 5
for an example.

Figure 6 shows a realized version of this model, 3D printed on a J55 printer of Stratasys 2. In
Section 4, we will examine how a heterogeneous V-rep model can be fabricated using 3D printing.

3.3 Trivariate and Symbolic Tools

A unique and strong capability of the GM Kernel [27] is the ability to symbolically manipulate
B-spline curves, surfaces, trivariates and multivariates. All the examples mentioned in Section 2
from offsets to intersection problems [21, 2, 42], were reduced into multivariate B-spline constraints
using additions, subtractions, and products of B-splines, directly in the B-spline function spaces.

2https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j55-prime/ (accessed on March 2023)
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Figure 5: A graded material V-rep Utah teapot model. The C1 discontinuities in the geometry and
C0 discontinuities in the materials (colors), at the joints between the body and the spout/handle
are clear, in the top row. In the bottom row, graded heterogeneous trivariate fillets are being added,
offering C1 continuity of the geometry and C0 in material. Note the boundaries of the fillets, in
black.

Figure 6: A 3D printed graded material V-rep Utah teapot model, from Figure 5, with fillets.

This scheme, combined with the aforementioned multivariate solver, allows us to precisely com-
pute derived geometries. Specifically, using these symbolic tools we are able to derive the functional
composition [14, 12] of two spline functions. Given a parametric surface S(u, v) : M ⊂ IR2 → IR3

as S(u, v) = (sx(u, v), sy(u, v), sz(u, v)) and parametric trivariate T : D ⊂ IR3 → IR3 as T (x, y, z) =
(tx(x, y, z), ty(x, y, z), tz(x, y, z)) and assuming S(u, v) ⊂ D, the precise (up to machine precision)
functional composition of

S(u, v) = T (S(u, v))

= T (sx(u, v), sy(u, v), sz(u, v))
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(a)

(b)

(c) (d)
Si

D T T (Si)

Figure 7: A simple example of functional composition. The tile in (a) consisting of over a hundred
surfaces, {Si}, is populating the domain D (2× 3× 5) times, in (b), of trivariate T , shown in (c).
The result of the B-spline functional composition, T (Si), is shown in (d).

(a)

(b)

(c)

Figure 8: A multi-resolution microstructure of a wing (a), with nano-tiles (b), and pico-tiles (c).
See also the movie in https://youtu.be/2wY-9fw3BMQ (accessed on March 2023).

= (tx(sx(u, v), sy(u, v), sz(u, v)),

ty(sx(u, v), sy(u, v), sz(u, v)),

tz(sx(u, v), sy(u, v), sz(u, v))) (2)

is a new surface that is mapped through T and into its Euclidean space. Similarly, we can compose
curves into trivariate T or even trivariates into trivariate T , forming a closure. Closure in the
sense that the outcome is again a set of trivariates that can be further used in additional functional
compositions, recursively.

The power of functional composition can be clearly portrayed with Figure 7. The tile in Fig-
ure 7 (a), consisting of over a hundred B-spline surfaces, {Si}, is populating the domain D (2×3×5)
times, in (b), of trivariate T , shown in (c). The result of the B-spline functional composition, T (Si),
is presented in Figure 7 (d). This result is fully conforming to the shape of T , precisely interpolating
the boundaries of T at the right locations, and while no tile is being clipped.

The degrees of the splines can grow quickly with additional recursive compositions. Therefore,
we offer an option to employ degree reduction approximation that works extremely well when the
recursive composition of a trivariate into another trivariate, yields a trivariate. Such a recursive
handling can yield multi-resolution microstructures - we can incorporate nano-structures in the
microstructures, pico-structures in the nano-structures, etc. See Figure 8 that includes snapshots
captured from the movie in https://youtu.be/2wY-9fw3BMQ (accessed on March 2023).

Symbolic operations and functional composition in specific, can also be employed over higher
dimensional spaces, for example when the trivariates also contain material properties. For the sake
of demonstration, assume that the RGB color is our material information (as a color vector in IR3).
Heterogeneity can be encoded into the macro-shape trivariate, T , as we denote the global shape of
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(a)

(b)

Figure 9: An example of functional composition using a heterogeneous tile (a), residing in IR6

(XY ZRGB). Tile (a) is composed with the same macro-shape as in Figure 7 (c), albeit from a
different view, (1 × 3 × 5) times, yielding the heterogeneous microstructure shown in (b). Note
material colors are inherited in (b) from the tile (a). Compare with Figure 10.

(a)

(b)

(c)

Figure 10: A simple example of functional composition using a heterogeneous macro-shape (a),
residing in IR6 (XY ZRGB). The tile in (b) is composed (1 × 3 × 5) times with the same macro-
shape as in Figure 7 (c), heterogeneous this time, and shown from a different view in (a), yielding
the heterogeneous microstructure, that is presented in (c). Note material colors are inherited in (c)
from the macro-shape (a). Compare with Figure 9.

the created lattice, or, alternatively, in the tile, T , now being a set of trivariates as well. Further, the
heterogeneity information can be encoded a-priori by the end user or be a result of some analysis,
previously performed over the lattice.

Consider a trivariate tile T , that is in IR6, for XY ZRGB or three spatial dimensions and
three RGB color axes. By composing T with the macro-shape trivariate, T , a heterogeneous
microstructure can be formed. See Figure 9.

Alternatively, the macro shape trivariate, T , can be heterogeneous in IR6. Then, based on the
positions of individual tiles in the domain of T , D, the functionally composed result will inherit the
material properties of T . See Figure 10.

As another related direction, one can exploit the functional composition scheme toward shell
lattices. In [11], this direction is exploited, using tiles that are derived by thickening the skeletal
form of regular and semi-regular planar tiles into surfaces and trivariates. See Figure 11 for an
example.

Clearly, the topic of heterogeneous, conforming to the macro-shape, microstructures is of high
interest and large. More on the synthesis of heterogeneous conforming microstructures can be found
in [15, 34, 22, 24].
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Figure 11: A shell lattice example. Semi-regular planar B-spline tiling is used to populate the
domain of a duck B-spline trivariate shell, only to yield the presented result, after functional com-
position.

4 Additive Manufacturing of Functionally graded Materi-

als/Geometries

As we introduced V-reps, we have portrayed two major advantages over B-reps. One is the extensive
support of (3D printing of) functionally graded materials and/or porosity and the other one is about
a tight link to analysis, a topic we will briefly discuss in Section 5. In this section, we focus on
additive manufacturing of heterogeneous and porous (microstructure) geometries using V-reps.

The traditional (homogeneous) 3D printing process computes parallel slices of the model-in-
hand. Then, and per slice, fill commands are generated for the interior of the computed outline(s)
of the intersections between the slicing plane and the VModel, that delineates the inside of the
model-in-hand, from the outside.

Clearly such an approach cannot be sufficient when heterogeneity is to be supported. Some years
ago, Stratasys offered a new interface to 3D printing that allows for heterogeneity and is based on
a voxel representation at the proper resolution for the 3D printer. The interface is denoted Voxel
Print 3 and it expects a stack of images instead of a stack of slices, as is traditionally done. Each
image depicts one slice as before, but the different colors in the image are mapped into different
materials, that in Stratasys printers can mean different colors but also translucent materials as
well as the hardness of the printed materials (different Shore values) which allows for functional
behavior, as will be demonstrated in the next section.

The synthesis of such a stack of images is complex. Each image (slice) is typically several
thousand by several thousand pixels and we have thousands of images per model. With dozens of
millions of pixels per slice, totaling many billions of pixels, the computation should be first and
foremost fast. Given a VModel, one needs to identify the VCell(s) that intersect this specific slicing
level zi, and intersect each trivariate T (u, v, w) = (tx(u, v, w), ty(u, v, w), tz(u, v, w)) in each VCell
with the plane Z = zi (and properly trim the geometry if so necessary). Given a specific pixel
P = (px, py), in image slice Z = zi, this amounts to solving in T for (u, v, w), given,

tx(u, v, w) = px,

ty(u, v, w) = py,

tz(u, v, w) = zi, (3)

3https://www.stratasys.com/en/resources/videos/voxel-the-3d-printed-pixel/ (accessed on March 2023)
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Figure 12: Two heterogeneous slices of the teapot in Figure 6. The left is at the level where the
Spout is about to be detached from the body and the right at the level of the top horizontal part
of the handle. Black denotes “no-material”.

or three non linear equations in three unknowns. While one can employ the aforementioned mul-
tivariate solver [21, 2, 42], with many billions of pixels to solve for, such an approach is computa-
tionally infeasible, in practice. Instead, in [18], we have exploited a critical property of VModels.
Given pixel P at slice Z = zi, if we have a (u, v, w) solution for P , it is unique, as all VModels are
constructed regular so their trivariates have positive Jacobians throughout and they do not globally
intersect. In other words, all VCell(s) in the VModel have a one-to-one mapping from their domain
to the Euclidean space. Exploiting this property, if we have a solution for pixel P ij = (pix, p

j
y) in

the slice, the solution to P i+1,j = (pi+1
x , pjy) is going to be very similar. Hence, one can employ

numerical tracing from the known solution of P ij, aiming to find the solution of P i+1,j. Knowing
that the solution is unique, if we found it, we are done. This approach is highly robust and yet gains,
typically, two orders of magnitudes of improvements, computationally, over the application of the
full multivariate solver on all pixels in the image. Practically, only a handful of pixels in an image
are computed using the full multivariate solver while the vast majority of them are robustly derived
using numeric tracing. Figure 12 shows a pair of slices at different levels of the heterogeneous Utah
teapot shown in Figure 6. Finally, one should recall that even with this improvement of two orders
of magnitudes, it, typically, takes hours to slice a heterogeneous V-rep model.

Another 3D printing company that offers heterogeneity via a similar image-based slicing is
Lithoz 4. Here, the porosity can be controlled at the pixel level, allowing for individual pixels to
contain one of two materials. Given a 3D microstructure model with a scalar density specification,
this density is locally mapped to two B&W images that together approximate the relative density.
Specifically, and given a V-rep model with a volumetric scalar density field, each slice of the model
will be a grey-level image, grey-levels that reflect on the density. By dithering 5 the image into only
black (void) or white (material) pixels, for each material, the relative density is determined.

Figure 13 exemplifies this process. In (a), a microstructure is constructed in a torus with a
square cross section. Tiles in different locations hold different arms’ thicknesses, while the desired
material density, as prescribed by the grey-levels, varies across the model as well. Each grey-level
sliced image is then dithered into two black-and-white images, as can be seen in (b) for one slice, for
one (of the two) material. The final 3D printing model, after soaking it in a pink crack penetration
liquid, is shown in (c). One of the two materials is more absorbent and hence such zones are more

4https://lithoz.com/en/ (accessed on April 2023)
5https://en.wikipedia.org/wiki/Dither (accessed on April 2023)
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(a)

(b) (c)

Figure 13: The square cross-section torus microstructure presented in (a) is heterogeneous in both
the geometry of individual tiles (different thicknesses of tiles’ arms at different locations) and in its
tiles’ porosity that is controlled via the (volumetric) grey-levels of the model in (a). (b) shows one
slice of this model with the computed porosity of one of the two materials (white is material, black
is void). One of the two materials here is absorbent and soaking this 3D printed model in a pink
crack penetration liquid, resulted in (c). This porosity graded alumina sample (c) was fabricated
by Lithoz GmbH (Vienna, Austria).

pinkish.

5 Additional Examples and Abilities

This section presents some additional V-rep examples of heterogeneous and porous geometries. All
presented tangible examples were 3D printed using a J55 printer of Stratasys 6.

Different tiles in the microstructure can differ in their geometry, topology, or material content
(recall Figure 9 (a)). Figure 14 shows samples of tiles of different geometries, topologies, and
materials. Tiles form families, controlled by input parameters. That is, the two tiles in Figure 14 (a)
are identical topologically while geometrically they differ in wall thickness and bending amounts.
The two tiles in Figure 14 (c) are only similar topologically (note the two vertical bars only in
one of the tiles), while also possessing different thicknesses in their different arms. The tile from
Figure 9 (a) is also from the family of tiles shown in Figure 14 (c), but heterogeneous. In summary,
the thicknesses of each of the arms in these tiles, as well as other geometric, topological, and material
content properties are all parameters that can be set, for example, following some results of stress
analysis.

For each of the six families of tiles showed in Figure 14, a pair of geometrically different shapes
are shown, created via a different set of parameters within the family. In all tiles, flexible materials
are drawn in green whereas in red, rigid materials are shown. Figure 14 (a) shows two variations of
bistable tiles and Figure 14 (b) portrays two variations of shear/twist tiles. Figure 14 (c) presents
two tiles with diagonal edges while Figure 14 (d) shows two auxetic tiles, one with a positive
Poisson’s ratio in all axes and one with positive/negative Poisson’s ratios, in X/Y , respectively.
Finally, Figure 14 (e) presents two spring tiles (of different spring coefficient) and Figure 14 (f)
portrays two 3D cross tiles, one of which with a boundary surface on one face.

6https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j55-prime/ (accessed on March 2023)
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(a)

(b)

(c)

(d)
(e) (f)-AK

6
X

Y

Z

Figure 14: Different tiles that differ in their geometry (e.g., arm thicknesses), topology, and material
content (different color depicts different material - in all tiles, flexible materials are drawn in green
whereas in red, rigid materials are shown), while possessing different behaviors in different directions.

Most of the tiles shown in Figure 14 are employed in the rest of this section, that is organized
as follows. In Section 5.1, we explore heterogeneous microstructure designs of 3D wings and in
Section 5.2, heterogeneous designs of solid rocket fuel are considered. Section 5.3 examines a
different application of shell lattice microstructures, that of 3D jigsaw puzzles, and in Section 5.4,
we look at using the presented V-rep toward custom-made soles. In Section 5.5, two extensions are
considered, of microstructures in general trimmed trivariate based V-reps and the possible use of the
V-rep based microstructure synthesis to tile legacy, existing, B-rep models. Then, in Section 5.6 we
consider tiling using implicit functions and finally, in Section 5.7, the use of compliant mechanism
tiles is considered toward compliant microstructure mechanisms.

5.1 A Wing Model

Wings are prime candidates for lattice designs. The need for strong yet light wings is obvious. By
exploiting (graded) heterogeneity, either in the geometry or materials, one can not only control the
stiffness of the geometry but also adapt it to a desired shape. While analysis is not in the scope of
this work, we already stated earlier that V-reps can be employed directly in iso-geometric analysis
(IGA) [1]. Figure 15 shows one such example where different wings are analyzed under the same
lift-load and the dihedral or wings’ bending are shown for each case. The different wings differ in
the geometry of individual tiles. In other words, by employing different tiles, similar to the family
of tiles in Figure 14 (f), in different locations, different mechanical responses can be observed. See
also the side sectional views next to each wing, in Figure 15. As a result, the three wings present
three different dihedral angles, under the same lift-load.

Another wing with variations in both the geometry and material content of individual tiles is
shown in Figure 16. One can observe different arm-sizes in different tiles in different locations in
the wing as well as the material colors’ variations that are inherited from the material prescriptions
in the tiles.

14



Figure 15: Iso-geometric analysis of a wing under lift load. The different dihedral bendings are due
to the use of different tiles in different locations in the wing, as can be seen from the sectional views.
Tiles are from the family of tiles in Figure 14 (f). Iso-geometric analysis (IGA) in collaborations
with Pablo Antolin and Annalisa Buffa (EPFL Lausanne).

Figure 16: A 3D printed wing with (graded) heterogeneous geometry as well as (graded) materials
(colors). Tiles in different locations are different geometrically as can be clearly seen via the sizes
of the arms of the tiles, in different locations. Then, the tile is heterogeneous and hence all the
microstructure inherits the tiles’ material content. Tiles here are similar to the family of tiles in
Figure 14 (f).

5.2 Heterogeneous Solid Rocket Fuel

One example where heterogeneous solids might be of great value is the application of heterogeneous
solid rocket fuel (as opposed to liquid fuel). While the most challenging difficulty in this specific
application is in the multi-modal analysis and optimization step, we portray how such design can be
performed. Consider the example shown in Figure 17 left. Retardants in the fuel are drawn in blue
and accelerants in red. The left design is aimed at an extreme boost to begin with, with accelerant
concentration in the interior portions, that burns first (note the burning is occurring inside-out).
The image shown in Figure 17 right exemplifies that even here graded heterogeneity with porosity
can play a role while the challenges here are far greater in the analysis and in making sure all the
fuel burns and does not simply break away. The potential advantage of porous solid rocket fuel is
in the extremely large surface area to begin with, which can be reduced to an extreme burn, and
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Figure 17: Two variants of solid rocket fuel, as trivariate(s) heterogeneous fuel with accelerants (in
red) and retardants (in blue), are presented. The scale presents the relative gradient from maximal
amount of accelerants (in red) to maximal amount of retardants (in blue), in the fuel. The right
example shows that even here heterogeneity with porosity can play a role.

hence boost, in a very short time. Interestingly enough, 3D printing of solid rocket fuel is already
under active research 7.

5.3 A 3D Jigsaw Puzzle

In Figure 11, we show that one can employ V-reps toward general shell freeform lattices. In [16],
we have used this scheme with tiles that are jigsaw puzzles based. By randomly yet smoothly
perturbing the puzzle tiles a bit and mapping them, using functional composition, over general
V-rep shell models, a 3D jigsaw puzzle can be created, with all tiles being different. Figure 18
shows one example of a 3D printed model of a jigsaw puzzle created for a V-rep model of the Utah
teapot.

5.4 Shoe/in-soles

In recent years, 3D printing of soles has been attempted by many, including commercially 8. While
heterogeneity in either the material content or geometry has been rarely examined, not to say graded
heterogeneity, we attempted exactly that. The sole in Figure 19 is custom made to a specific 3D
scan, and once the geometry of the customed sole is reconstructed as a trivariate, a conforming
microstructure is automatically created for it, using functional composition. Also of interest, is the
fact that the sole is functionally graded material-wise. The front (in black) is flexible and gradually
becomes rigid toward the back (in grey). One can envision 3D printing such custom made soles,
where the sole is only soft in locations with ulcers, an unfortunately common phenomena in diabetic
persons, for example.

7https://aerospaceamerica.aiaa.org/departments/3d-printed-rocket-fuel (accessed on March 2023)
8See, for example: https://www.eos.info/en/all-3d-printing-applications/people-health/sports-lifestyle-

consumer-goods/shoes-soles and https://www.materialise.com/en/inspiration/cases/adidas-futurecraft-3d-printed-
personalized-shoe (accessed on March 2023).
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Figure 18: A 3D printed jigsaw puzzle of the Utah teapot, as a shell microstructure. Top to bottom,
shown are the 3D computer model, the different 3D printed puzzle pieces, partial assembly of the
model and the final result.
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Figure 19: A 3D printed heterogeneous microstructure of a shoe sole. The front of the sole (in
black) is flexible while the back size (in grey) is more rigid. Note the gradual change between the
black and grey materials. Tiles from the family in Figure 14 (f).

5.5 Microstructures in Trimmed V-reps and general B-reps

Most of the presented models so far exploited a single macro-shape trivariate. However, given a
full VModel, consisting of several (trimmed) trivariate VCells, as a result of Boolean operations,
one can populate the valid regions in all trimmed trivariates with the proper tiles, only to build
bridging tiles between adjacent VCells. This process is demonstrated in Figure 20, where a hole
is subtracted from a body of duck (similar to Figure 11) near the tail, only to be united with the
two wings, forming three primary VCells - for the body with the tail hole and the two wings, and
two additional VCells in the common zone between the body and each of the wings. The yellow
tiles in Figure 20 are tiles in the body with neighboring tiles that were partially or fully trimmed
and hence purged away. In other words, the yellow tiles in the body are those next to the common
zones. Then, red bridging tiles are built to link together the adjacent microstructures (yellow in
the body), in the primary VCells. See [22] for more.

All we have presented until now was based on a macro-shape that is a trivariate V-rep. How-
ever, considering the huge set of legacy B-rep models, it is also desirable to aim at populating
(almost) conforming microstructures, in general B-rep models. Following the similar ideas we just
presented, for general trimmed V-rep models, we allow the population of general B-rep models,
with microstructures, via an auxiliary 3D field that is defined to capture the general shape of the
B-rep model. This, in a similar way to the use of cages in computer graphics, for deformation [6].
Herein, the auxiliary field is defined as a trivariate cage that governs the placement of the individual
tiles. Tiles that are found to be on the boundary or outside the B-rep, are purged only to build
precise bridging tiles from their neighbors to the B-rep. Figure 21 presents one example using the
Stanford bunny - a polygonal B-rep model. In Figure 21 (a), the Stanford bunny is shown in a
white transparent color. The trivariate cage built for it is also shown in red wire-frame colors.
Interestingly, herein, the trivariate cage has a C0 discontinuity and it splits near the ears, while it
is still supported as a macro-shape in the functional composition. Finally, (a) also shows the tiles
built using the cage and are found inside the bunny. Green tiles are interior ones, yellow tiles are
next to the boundary and blue tiles are bridging tiles from the yellow tiles and the boundary of the
bunny. Figure 21 (b) shows the microstructure with graded colors encoded, whereas (c) presented a
3D printed version with the microstructure embedded in the bunny that is printed in a translucent
material. See [24] for more.

The continuity of the resulting functional composition, T (S) (recall Equation (2)), is governed
by the lower continuity between T and S. In Figure 21, the macro-shape trivariate T has a
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Figure 20: A 3D printed heterogeneous microstructures of a trimmed V-rep model of a duck with
wings. Note the tail is also trimmed. Top shows the full microstructure with red tiles serving as
bridging tiles and yellow tiles are adjacent to them, in the body. The 3D printed model is shown at
the bottom with the microstructure embedded in the full trimmed V-rep model, 3D printing using
a translucent material. Tiles from the family in Figure 14 (f).

C0 discontinuity split, due to the ears. Yet, we managed to build a microstructure through it
by carefully positioning the tiles in the domain of the macro-shape, so they will never cross this
discontinuity. In general, every time a tile crosses a knot plane in the domain of T (that induces
some finite continuity), the composed tile will also lose continuity along that knot plane. In [43],
several remedies for this challenge are presented.

5.6 Implicit Tiling

Contemporary GM systems support other representations beyond NURBs based B-reps. Implicit
(trigonometric in specific) functions and polygonal meshes are, to a certain extent, also supported in
some GM systems. Interestingly, even the original FFD work [40] can be employed to approximate
the functional compositions of polygonal meshes. That said, the challenges in the (evaluation of)
composition of implicit function are significant and in this section, we focus on the latter - functional
composition and construction of microstructures using implicit tiles.

Recall Section 3.3, but now the tile will be a scalar (implicit) trivariate I(x, y, z) : [0, 1]3 → IR.
I > 0 will denote the interior of the tile, and I = 0 its boundary. Like the parametric tiles in
Section 3.3, I will typically be periodic.
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(a) (b) (c)

Figure 21: A 3D printed heterogeneous microstructures embedded in a polygonal B-rep model of
the Stanford bunny. (a) shows the Stanford bunny transparent with the trivariate cage (in wire-
frame red) created for it. Also shown in (a) are the tiles that are found inside the bunny, in
green, the bridging tiles to the boundary, in blue, and the bridged tiles, in yellow. In (b), the
full microstructure model is shown in graded heterogeneous colors, and (c) presents a colored 3D
printed result, embedded in the original B-rep model, 3D printed in a translucent material. Tiles
from the family in Figure 14 (f).

Denote the implicit surface of I = 0 as S0. Then, and as before, S0 can be mapped through
the macro-shape T (u, v, w) to the Euclidean space, as T (S0). Some previous work on implicit
microstructures (i.e. [25]) exploited this direction, and by providing a piecewise linear approximation
of S0, a polygonal approximation of the entire microstructure geometry can result. Interesting and
due to the huge polygonal data set that might result, a procedural representation was also proposed
in [25] to alleviate this data-explosion difficulty.

Nonetheless and beyond the data-size difficulty, the use of a polygonal approximation of implicits
also introduces errors that can be further augmented by the mapping through the macro-shape, T .
In [23], we offer an alternative to processing implicit tiling that is arbitrarily precise, a process that
is similar to the solution we employed for parametric forms (Recall Equation (3)).

Given a specific location (xi, yi) in a slicing level z, we need to identify if T contains this location,
and if so the solution parameters (u, v, w). Hence, we solve for (u, v, w) in:

Tx(u, v, w) = xi,

Ty(u, v, w) = yi,

Tz(u, v, w) = z, (4)

using our multivariate constraints solver [21]. If the location is found outside T (no solution), we
stop. Otherwise, and because all the domain of T is populated with a 3D grid of implicit tiles, we
locate the implicit tile I that holds that (u, v, w) location in T . Let (u, v, w) be the affinely mapped
(u, v, w) location to the domain of I. Then, by evaluating the implicit we precisely determine if
this location is inside the microstructure model (I(u, v, w) > 0) or not. The same numeric tracing
optimization we applied for parametric tiles in Section 4 can be used here as well, achieving a robust
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(a) (b)
(c)

(d) (e)

Figure 22: 3D microstructures formed using implicit tiles. In (a), a general implicit trivariate tile
shape is shown and in (b) a (trigonometric) Gyroid. (c) shows a 3D printed duck microstructure
with the implicit Gyroid tile (b) whereas (d) shows a 3D computer model and (e) shows a 3D
printed model of an infinity shape with the implicit tile in (a).

yet efficient evaluation of the entire image-slide.
By evaluating individual (pixel) locations in the implicits we have not only gained arbitrary

precision (up to the desired slicing image resolution), but we also achieved an ability to support
heterogeneity. I can now be I(x, y, z) : [0, 1]3 → IRk, k > 1 where, for k > 1, one can hold material
properties. Having the (u, v, w) solution from Equation (4), this merely means the evaluation of I
and extracting the material at location (xi, yi, z) from the k > 1 coordinates of I. Alternatively,
material information can be deduced from the macro-shape T , following Equation (1).

Figure 22 shows two examples of heterogeneous microstructures that were created and 3D printed
using implicit tiles. The heterogeneous properties (color) in both cases were inherited from the
macro-shape. See [23] for more on Microstructure with implicit tiles.

5.7 Compliant Microstructure Mechanisms

One powerful ability of building microstructures using functional composition is the fact that no tile
is being clipped. Because all tiles are fully preserved topologically and the geometric deformation
(in the local) of individual tiles is minimal, one can employ functional tiles, possibly with varying
behavior, in a microstructure based on a macro-shape V-rep. In other words, if a tile behaves
as a (compliant) mechanism, it will preserve its functionality after the functional composition or
the mapping into Euclidean space. This, unlike the common practice of clipping tiles, that are
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Figure 23: A 3D printed heterogeneous compliant mechanism microstructure, consisting of different
3D auxetic tiles. Note the black rectangle on the left that highlight the different auxetic tiles. See
also the movie in https://youtu.be/NKck4N7TKQI (accessed on March 2023) for the vertical force
response. Tiles from the family in Figure 14 (d).

positioned in a 3D axes parallel grid, to the freeform shape in hand. As a result, tiles on the
boundaries are typically truncated, and hence likely to lose their functioning abilities.

We present three such examples. Consider a microstructure consisting of auxetic tiles (recall
Figure 14 (d)). By embedding different tiles in different locations in the microstructure, a vertical
pressure will yield an arbitrary shrinking or expanding response, and as desired, in X and Y .
In Figure 23, a barrel-like macro-shape trivariate V-rep is populated with different auxetic tiles.
Recall that flexible materials are drawn in green whereas in red, rigid materials are shown. Note
the column of tiles, marked with a black rectangle, in Figure 23 left. All the auxetic tiles along this
column are different. As a result, a vertical pressure will cause some tiles to shrink in X and Y and
some to expand. See the movie in https://youtu.be/NKck4N7TKQI (accessed on March 2023) for
the pressure response and the resulting motion of the two wings.

Our second example is using the shear/twist tiles (recall Figure 14 (b)), that twists to one side
when a vertical pressure is applied. Figure 24 left presents a (piecewise linear) tubical trivariate
V-rep, in a translucent color, populated with a twist tile (all tiles are the same here). Here again,
flexible materials are drawn in green whereas in red, rigid materials are shown. The final model,
with caps and wings to visually augment the twisting effect, is shown in Figure 24 right. See the
movie in https://youtu.be/c3QUUFxBOyI (accessed on March 2023) for the pressure response in
this case.

Our third example is using the bistable tiles (recall Figure 14 (a)), that can assume two stable
states. The states shown in Figure 14 (a) are the expanded state in which the geometry is also 3D
printed and designed. Yet, and due to flexibility of the top arms in this tile, it can also collapse to
a much smaller state as can be seen in the movie in https://youtu.be/JTqGKculxgc (accessed on
March 2023). The computer model, is shown in Figure 25 (a), the 3D printed model in (b), and
the 3D printed model in a collapsed state is shown in (c).
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Figure 24: A twisting 3D printed heterogeneous compliant mechanism microstructure. See also the
movie in https://youtu.be/c3QUUFxBOyI (accessed on March 2023) for the vertical force response.
Tiles from the family in Figure 14 (b).

(a) (b) (c)

Figure 25: A bistable vase. This microstructure, in the shape of an ovalic vase, can be collapsed
to about 50% of its original height. The computer model is shown in (a), the 3D printed version
in (b) and the collapsed state of the 3D printed model is shown in (c). See also the movie in
https://youtu.be/JTqGKculxgc (accessed on March 2023) for this bistable behavior. Tiles from
the family in Figure 14 (a).

6 Conclusions and the Future of V-reps

In this work, we have reviewed a decade of development using V-reps and volumetric B-spline based
representations, mostly in the context of additive manufacturing. The advantages over traditional
B-reps are significant - extensive control over microstructures’ design and full support of graded
heterogeneity, two much needed abilities in additive manufacturing today, abilities that are lagging
behind in contemporary B-rep based GM systems.

Further, the connections between the design stages and the analysis/optimization stages are
much tighter with V-reps, compared to B-reps, as no conversions between function spaces is now
required. Beyond the immediate compatibility with iso-geometric analysis [29, 10], the ability to
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synthesize classic 3D finite element meshes, when a volumetric parametrization is in hand, is much
simplified.

The modeling processes using V-reps, from the end-user perspective, are similar to B-rep based
modeling, as was discussed here: Volumetric primitive can be prescribed, in the end-user interface, in
a similar way to B-rep primitives in contemporary GM systems, and same for high level constructors
such as sweeps, rulings, and extrusions. The complexity of performing Boolean operations in V-rep
is similar to that of B-reps, with the added complexity of handling heterogeneous properties, as
well as blending them. The effort of building a whole new GM system is huge, and is not clear if
V-reps should completely replace B-reps as the internal representation of choice in GM systems or
simply augment existing GM systems with V-rep abilities, with the realization that the boundaries
of V-reps are B-reps.

That said, B-reps suffers from additional deficiencies. As discussed in Section 3.2, doing Boolean
operations on highly complex B-rep geometries, like in Figures 19 or 20, is a challenge even in the
state-of-the-art B-reps systems. Since the boundaries of our V-reps are merely B-reps, this difficulty
should still be addressed, for B-reps as well as V-reps.

As stated in Section 5.6, implicits are also employed in modern GM and triply periodic minimal
surface (TPMS) tiles, such as Gyroids, are commonly exploited. While there are evidence on the
use of Gyroids-similar geometry in nature (i.e. [35]), the optimality of those tiles, like any other
tile’s shape and/or topology is clearly application dependent and should be further investigated.
Very little can be said on the optimality of these implicits or other tiles.

Specifically, one should recall not only that TPMS geometry is typically approximated, but the
tiles undergo some small yet not insignificant deformations by the mapping through the macro-
shape. Building the microstructure, as is done herein and also, for example in [25], the geometry
after the mapping is no longer preserving the zero mean curvature (minimal surface) property.

The presented functional composition based microstructures allows the separation of the design
problem into two: the design of the macro-shape and the design of micro-tile(s). Optimization
can now be applied to those two problems, with some levels of independence. Tiles’ shapes (as
well as their material and topology) should be globally and a-priori analyzed and optimized, for
any expected physical task. For example, via topological optimization (TO) [3] that has captured a
leading place as a solution for achieving optimal geometry and topology (and material distribution),
for some task in hand. Then, a parametric family of optimized tiles for the given task can be
constructed once and employed for specific optimization tasks, for example, to control the dihedral
angle of a wing, as in Figure 15. Furthermore, in this work we portrayed solution to precisely
handling implicit tiling. Interestingly, one can already find some work on iso-geometric analysis
(IGA) of implicits, for example [39].

When tiles vary in their shape and material content throughout the macro-shape, the aim should
be to preserve any needed continuity of both the shape and the material content, between all neigh-
boring tiles in the macro-shape. By having tiles that can present different geometry and material
content on their different boundaries, the desired continuity can be achieved. For parametric form,
this was done, for example, for the wing in Figure 16. Desired continuity can be also be achieved for
implicit forms, with varying geometry, as was done in [23] using implicit tiles that were represented
using trivariate functions, as in Figure 22 (a). Yet, achieving, for example, arbitrarily continuous yet
gradual control over wall-thicknesses and/or material changes in Gyroid tiles is a more challenging
task.

For the most part, the presented work was exploiting tiles that were organized in the macro-
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shape as cubes, topologically. Nevertheless, many other schemes, regular, semi-regular, general and
even a-periodic methods to tile the plane and 3-space exist and clearly some can posses superior
properties (consider the shape of a honey-comb). Such approaches to synthesize individual tiles and
tile the 2/3-space should be examined in this microstructures context.

All those microstructures are highly repetitive and parallelism of algorithms can be greatly
beneficial, computationally. For example the slicing of the model in [23] was parallelized with an
immediate boost that was almost inverse proportion to the number of used processors.

Needless to say, additive manufacturing is an enabling technology for heterogeneity and porosity.
Many other applications await further research here, beyond what was presented in this work, such
as heat exchangers and controlled heat transfer [44], aero-space applications, food, implants and
other medical applications, batteries, protective gears, etc. Only time will tell how far could we all
advance these and other fields.

Finally, all presented algorithms and tools are freely available, for non-academic use, in C/C++
source code level, in [27]. A end-user graphical user interface for this kernel is also available in
https://csaws.cs.technion.ac.il/∼gershon/GuIrit (accessed on March 2023).
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