
Kernel-based Construction Operators
for

Boolean Sum and Ruled Geometry

Haitham Fadilaa,∗, Q Youn Hongb, Gershon Elbera

aFaculty of Computer Science, Technion-Israel Institute of Technology, Israel
bDepartment of Computer Science and Engineering, Hanyang University, Ansan, South Korea

Abstract

Boolean sum and ruling are two well-known construction operators for both parametric surfaces and
trivariates. In many cases, the input freeform curves in IR2 or surfaces in IR3 are complex, and as a result,
these construction operators might fail to build the parametric geometry so that it has a positive Jacobian
throughout the domain.

In this work, we focus on cases in which those constructors fail to build parametric geometries with a
positive Jacobian throughout while the freeform input has a kernel point. We show that in the limit, for
high enough degree raising or enough refinement, our construction scheme must succeed if a kernel exists. In
practice, our experiments, on quadratic, cubic and quartic Bézier and B-spline curves and surfaces show that
for a reasonable degree raising and/or refinement, the vast majority of construction examples are successful.

Keywords: Tensor Product Surfaces, Tensor Product Trivariates, Boolean Sum, Ruled Curves/Surfaces,
Half Boolean Sum, Kernel.

1. Introduction

Boolean sum and ruling operators are very common construction operations in geometric modeling
(GM) and computer-aided design (CAD). Given freeform parametric curves in IR2 or surfaces in IR3, these
operators construct a surface or a trivariate, respectively, which interpolates the input on its boundary.
The constructed geometry is considered optimal when the parameterization yields a constant Jacobian
throughout the domain, a result that is impossible to achieve, in general. The parameterization is considered
valid when the Jacobian is positive over the entire domain, sometimes excluding the boundaries. Then, the
existence of an oriented normal field is ensured and robust integration using quadrature (interior) points is
secured, among others.

Testing the validity of the parameterization of a planar surface is relatively simple. Given a planar C1

continuous B-spline surface S(u, v), the (unnormalized) normal field of S is computed as the cross product
of B-spline functions Elber (1992), as n(u, v) = ∂S

∂u × ∂S
∂v , where

∂S
∂u and ∂S

∂v are the two partial derivatives of
S. Then, one can examine the coefficient of (the Z component of) n(u, v) and ensure they are all positive.
By the convex hull property of B-spline functions Cohen et al. (2001), this is sufficient for n(u, v) to be
positive throughout. Verifying the positivity of the Jacobian of a trivariate can follow a similar set of steps,
and in this work, this symbolic approach is employed to verify the values that the Jacobian can assume.

The Boolean sum and ruling are simple and automatic, computationally efficient, operators, and are
employed by many GM/CAD systems. Yet, they do not guarantee a valid parameterization. Cases of failing

∗Corresponding author
Email addresses: haitam.f@campus.technion.ac.il (Haitham Fadila), qyoun.hong@gmail.com (Q Youn Hong),

gershon@cs.technion.ac.il (Gershon Elber)

Preprint submitted to GMP 2023 April 25, 2023



to produce a valid parameterization are quite common, and solutions are quite complex. This work is about
improving the odds of (automatically) yielding a valid parameterization by computing the kernel of the
input geometry, and exploiting this special location, if exists. See Figure 1, for examples.

(a) A cubic Bézier surface is con-
structed by a Boolean sum opera-
tor, with an invalid parameteriza-
tion. See also (b).

(b) A cubic Bézier surface is con-
structed using the kernel-based
Boolean sum operator with a
valid parameterization. The sur-
face’s kernel is colored blue. Same
input as (a).

(c) A quartic ruled Bézier
surface with an invalid
parameterization. See
also (d).

(d) A quartic ruled Bézier
surface with a valid param-
eterization, created using
the kernel-based scheme.
The surface’s kernel is col-
ored blue. Same input
as (c).

Figure 1: Examples of invalid planar surfaces which have kernel points, constructed using regular Boolean sum and ruling oper-
ators, while the kernel-based variations of these constructors succeed in building planar surfaces with valid parameterizations.

A point P is said to be visible to a point Q if there exists a line segment between P and Q, that is not
blocked (intersected) by any other geometry. If, for an object O, there is a point P so that all points on
∂O, the boundary of O, are visible to P , P is considered a kernel point of O. An object O with at least one
kernel point is also denoted a star-shaped object. The kernel, if exists, is typically a convex region in O. A
kernel point is an interior kernel point if it is in the open domain of the kernel.

As part of this work, we consider three geometric constructors: ruling, Boolean sum, and half Boolean
sum, a simpler variation of the Boolean sum that was introduced in Masalha et al. (2021). We will first
consider the case of planar input curves that construct a planar surface, and then, the spatial case where
the input curves and/or surfaces in IR3 synthesize a trivariate.

The rest of this work is organized as follows. Section 2 discusses related previous work, and the con-
structor of the half Boolean sum is briefly presented in Section 3. In Section 4, the algorithms for the
kernel-based constructions are introduced, and in Section 5, some results are portrayed. Section 6 considers
some extensions to our method, and finally, Section 7 concludes this effort and discusses possible future
work.

2. Previous work

The kernel of a closed domain O is the loci of points in the interior of the domain, that are visible from
every point on the boundary of the domain. If a point K belongs to the kernel of O, there always exists
a straight line segment that connects K and an arbitrary point on ∂O, the boundary of O, while never
intersecting with any part of the boundary geometry. If K is an interior kernel point, then a line from K is
tangent to no point in ∂O.

The kernel is an important tool for the visibility analysis of geometry, and has been used in hidden surface
removal and collision-free path generation in a locomotion problem Guibas et al. (1995), or locating lights
in scene rendering Ghosh (2007). The kernel also provides information on the star-shapedness of geometry,
which can be useful to determine the proper parameterization of a closed domain Jüttler et al. (2019).

The computation of the kernel has been thoroughly studied for polygons in computational geometry. In
the context of kernel computation, a polygon consists of n ordered vertices with n directed edges connecting
the consecutive vertices. Then, the kernel of a polygon is the common intersection of n half-planes located

2



along the edges. Shamos and Hoey (1976) proposed an O(n log n) algorithm to compute the kernel of
simple polygons by intersecting these half-planes, and this intersection-based algorithm was improved by
Lee and Preparata (1979) to O(n). Preparata and Shamos (1985) also stated the kernel computation of
three-dimensional polyhedra based on half-plane intersections, but in a theoretical sense. Recently, Sorgente
et al. (2021, 2022) presented algorithms to compute the kernel of a polyhedron, by cutting the axis-aligned
bounding box (AABB) of the polyhedron iteratively with the planes containing facets of the polyhedron.

For the kernel of curved shapes, Dobkin and Souvaine (1990) computed the kernel of a curvilinear
polygon by modifying the kernel computation algorithm of a polygon. Elber et al. (2006), on the other
hand, proposed a method to compute the kernel of fully smooth and continuous closed freeform curves and
surfaces. They proved that the kernel of a closed C1 curve is bounded by the envelopes of tangent lines of
the curve. Additionally, the boundary of the kernel of a closed curve is determined only by tangent lines
at inflection points of the curve. Multivariate polynomial equations were then formulated to compute the
boundary of the kernel domain of a closed curve. Similar to the kernel of a closed curve, the kernel of a
closed C1 surface is bounded by the envelopes of tangent planes of the surface. The kernel of a closed surface
was constructed by intersecting tangent plane patches sampled at parabolic points of the surface. Hong and
Elber (2022) formulated inequality constraints that must be satisfied by the kernel of freeform curves and
surfaces, based on the observation that a point P must be on the positive side of every tangent line/plane
of a curve/surface if the point belongs to the kernel of the curve/surface, with inward normals. The verified
regions of the solution of the inequality constraints constitute a conservative approximation of the kernel of
the curve/surface, and were detected using a subdivision-based multivariate solver.

Polar parameterizations of star shapes utilize line segments as parameter lines to connect the center
point with the boundary points. In Jüttler et al. (2019), circular arcs are used as parameter lines and
the flexibility of underlying polar parameterization has been increased to be used for a wider class of
domains, including star-shaped ones. Recently, Trautner et al. (2021) analyzed another generalization of
polar parameterizations, which used parabolic arcs as parameter lines. These methods build regular planar
surfaces, except at the center point, where it is singular. Also, the control mesh of these generalizations
does not have a tensor-product structure.

Another way to build surfaces with a valid parameterization is by reparameterizing the input curves. In
Cohen et al. (1997), a pair of curves are reparameterized by solving a tangent matching problem, such that
the ruled surface between them has a valid parameterization, if one exists.

Recently, Atkinson et al. (2021) introduced a scheme to parameterize domains with smooth boundaries
by calculating a diffeomorphism between an open unit disk and the domain boundary. First, a homotopy
is constructed between the unit disk and the domain boundary. Then, the boundary of the homotopy is
extended to the inside of the domain.

3. Half Boolean Sum

Following Masalha et al. (2021), given two adjacent freeform surfaces in IR3, the half Boolean sum
operator constructs a trivariate in which two of its boundaries interpolate the two input surfaces. Herein,
we also consider a variant of this operator for a surface from two adjacent curves in IR2 or IR3, in Section 3.1,
and a trivariate from two/three adjacent surfaces in IR3, in Section 3.2.

3.1. A Surface Construction from Two Adjacent Curves

Given two adjacent freeform curves, C1(u) and C2(v), that share an endpoint location P , the half Boolean
sum surface is constructed as:

S(u, v) = C1(u) + C2(v)− P.

See Figure 2 for one example.

Lemma 1. S(u, v) interpolates the input curves C1(u) and C2(v) on two of its boundaries.

Proof. Let v = 0. Then,

S(u, 0) = C1(u) + C2(0)− P = C1(u) + P − P = C1(u),

3



C1(u)
C2(v)P

S(u, v)

-
?

Figure 2: A half Boolean sum surface S(u, v) constructed using two adjacent freeform curves in IR3
, as S(u, v) = C1(u) +

C2(v)− P , where P is the curves’ common endpoint. Note that the input curves are exploded (in red) a bit, for clarity.

and similarly for S(0, v) = C2(v).

3.2. A Trivariate Construction from Two/Three Adjacent Surfaces

This operator was introduced by Masalha et al. (2021) for two surfaces sharing a boundary curve. Given
two freeform surfaces, S1(u, v) and S2(u,w), that share a common boundary curve, C(u), the half Boolean
sum trivariate is constructed as:

T (u, v, w) = S1(u, v) + S2(u,w)− C(u).

See Figure 3 (a) for an example.

(a) A half Boolean sum trivariate T (u, v, w) is constructed using

two adjacent freeform surfaces in IR3
, S1 and S2. T is computed

as T (u, v, w) = S1(u, v) + S2(u,w) − C(u), where C(u) is the
common boundary curve of S1 and S2.

C(u)
S1(u, v)

S2(u,w) T (u, v, w)

PPq

6�
�
��

(b) A half Boolean sum trivariate T (u, v, w) is constructed us-

ing three adjacent freeform surfaces in IR3
, S1, S2, and S3. T

is computed as T (u, v, w) = S1(u, v) + S2(v, w) + S3(u,w) −
(C1(u)+C2(v)+C3(w))+P , where C1(u), C2(v) and C3(w) are
the common boundary curves of the respective surfaces, and P
is the common endpoint of these three curves.

C1(u)
C2(v)

C3(w)

P

S1(u, v)

S2(v, w)

S3(u,w)

T (u, v, w)

PPq ��)

6�
�
��

@
@@I

���

Figure 3: Constructions of trivariates from two/three adjacent surfaces. Note that the input surfaces are exploded a bit, for
clarity.

4



Lemma 2. T (u, v, w) interpolates the input surfaces S1(u, v) and S2(u,w) on two of its boundaries.

Proof. Let v = 0. Then,

T (u, 0, w) = S1(u, 0) + S2(u,w)− C(u) = C(u) + S2(v, w)− C(u) = S2(v, w),

and similarly for T (u, v, 0) = S1(u, v).

Given three freeform boundary surfaces S1(u, v), S2(v, w), and S3(u,w) that share boundary curves C1(u),
C2(v), C3(w) so that P is the common endpoint of these curves, the half Boolean sum trivariate is constructed
as:

T (u, v, w) = S1(u, v) + S2(v, w) + S3(u,w)− (C1(u) + C2(v) + C3(w)) + P.

See Figure 3 (b) for one example.

Lemma 3. T (u, v, w) interpolates the input surfaces S1(u, v), S2(v, w), and S3(u,w) on three of its bound-
aries.

Proof. Let w = 0. Then,

T (u, v, 0) = S1(u, v) + S2(v, 0) + S3(u, 0)− (C1(u) + C2(v) + C3(0)) + P

= S1(u, v) + C2(v) + C1(u)− (C1(u) + C2(v) + P ) + P

= S1(u, v). (1)

and similarly for T (u, 0, w) = S3(u,w) and T (0, v, w) = S2(v, w).

4. The Kernel-based Construction Algorithm

We assume the input is valid in the following senses. All parametric freeform inputs are regular and suf-
ficiently differentiable and the topology they form together is valid. That is, intersection and self-intersection
free, and the angles between tangents at adjacent locations (corners for planar surfaces) are less than 180
degrees (or otherwise the Jacobian will always be invalid at that corner).

Further, we assume that the input has open-end (clamped) end conditions, and only end control points
affect the boundaries. In other words, the input curves can be either Bézier or open-end B-spline freeform
curves or surfaces. An initial Bézier/B-spline surface S0 or trivariate T0 is constructed using the respective
regular operator: a (half) Boolean sum or a ruling. If the parameterization of S0/T0 has a negative Jacobian
in some regions in the constructed geometry, the approach we propose in this work is employed as follows:

� The kernel of S0/T0 is computed.

� Assume at least one kernel point, K, is detected. If a whole kernel region is detected, the centroid of
that region is computed as an interior kernel point K.

� An interior control point is a control point that does not affect the boundaries, under the open-end
conditions’ assumption. In other words, all control points that are not in the first nor in the last
row/column{/depth} of the surface{/trivariate} of the control mesh. All internal control points of the
control mesh of S0/T0 are moved to K, creating S1/T1.

� The parameterization of S1/T1 is examined for validity (positive Jacobian throughout) and if valid,
quit.

5



� If the parameterization of S1/T1 is not valid, the result will be incrementally refined/degree raised, as
Si/Ti, before moving all internal control points toward K.

Intuitively, consider the limiting case in which Si has more interior knots than its degree, in each of its
parametric axes. By moving all interior control points to K we end up with two types of polynomial patches
in Si:

1. Surface patches where all control points are identically equal to K. Then, the Jacobian of the geometry
in this interval is zero throughout.

2. Surface patches where all control points are identically equal to K except the first/last row/column of
control points (which will all be on the boundary). Then, this patch is a ruling between K and that
boundary region. By the fact the K is an interior kernel point, this ruling patch will almost always
assume a valid parameterization. Toward the end of Section 5, we will show why it will not always be
a valid parameterization geometry and how additional refinements successfully resolve that.

With these steps and the added intuition for the knot insertion in the limit case, we now present the
following result:

Theorem 4. Consider a parametric surface S or trivariate T that was constructed using (half) Boolean
sum/ruling of parametric input curves or surfaces, respectively, with at least one interior kernel point K,
while some region in the domain has a negative Jacobian. In the limit, by raising the degrees of and/or
(uniformly) refining S or T , and then moving all interior control points to K, a non-negative Jacobian
throughout the domain must result. At K, the Jacobian might vanish.

Proof. See Appendix.

We reiterate that by moving all interior control points to K, the Jacobian, J , might indeed vanish at K
for B-spline based geometry, with more interior knots than the orders. For now, we will allow J to vanish
at K and will propose a possible remedy in Section 6. Algorithm 1 presents the approach in detail, for
kernel-based planar surface constructors.

5. Results

To estimate the success rate of the proposed kernel-based surface construction operators, we tested these
constructors on a variety of randomized inputs. For each operator, we built three random datasets: cubic
and quartic Bézier curves, and uniform quadratic open-end B-spline curves with five control points. We
have three kernel-based operators, i.e., half Boolean sum, Boolean sum, and ruling. In total, we have nine
different random datasets.

All the freeform samples in the different datasets were verified to have a valid kernel domain, and the
constructed surfaces via the regular operators were found to have an invalid parameterization. Clearly, these
datasets are not unique, and they only exemplify the performance of the presented kernel-based construction
approach.

In Section 5.1, we discuss the generation scheme of the random datasets of the kernel-based planar surface
constructor. Then, in Sections 5.2 to 5.4, we present, for each operator, its success rate in constructing a
surface with a valid parameterization on these datasets, while introducing additional degrees of freedom to
the input curves, either by degree raising or by refinement.

5.1. The Random Datasets for the Kernel-based Planar Surface Constructors

Each random dataset of the kernel-based planar surfaces’ constructor is composed of one thousand samples
of random freeform curves in IR2 with a valid kernel domain, such that the regular operator fails to build a
surface with a valid parameterization. In addition, the samples are validated to be (self-)intersection free,
and adjacent geometry is angularly validated (e.g., at corners).

6



Algorithm 1 Planar kernel-based Surface Construction Scheme.

Input:
C - The input freeform curves in IR2;
T - The surface constructor: half Boolean sum, Boolean sum, or ruled surface;
AddDOF - The method to add degrees of freedom: either Degree Raising or Refinement;
MaxDOF - Bounds on added degrees of freedom;
Output:
Si - Constructed surface using constructor T , with a valid parameterization, or None if failed;
Algorithm:

1: S0 := T (C);
2: if S0 has a valid parameterization then
3: return S0;
4: end if
5: K := a kernel of S0, if any;
6: if K = ∅ then
7: return None;
8: end if
9: K := Interior kernel point as centroid of K;

10: for i = 0; i < MaxDOF ; i++ do
11: if AddDOF == Refinement then
12: Si := S0 refined with i uniform knots in each interval;
13: else
14: Si := S0 degree raised i times;
15: end if
16: Si := moving all inner control points of Si to K;
17: if Si has a valid parameterization then
18: return Si;
19: end if
20: end for
21: return None;

For each sample in the datasets of the Boolean sum operator, we generate four random curves: left,
right, bottom and top. The control points of the curves were generated around [−1, 1]2. The first and the last
control points of the left curve are (−1,−1) and (−1, 1), and its inner control points are generated randomly
in x between (−2, 0) and in y between (−2, 2). The other three curves were randomly generated in a similar
way.

Similarly, we generate two random curves, bottom and top, for each sample in the datasets of the ruling
operator. The ruled surface is formed between these two curves, while the ruling direction is initiated with
three control points and degree two to provide initial degrees of freedom for the kernel-based constructor. Left
and top curves are similarly generated, for each sample in the datasets of the half Boolean sum.

The kernel for each sample in a kernel-based planar surfaces’ constructor is computed using the con-
servative approach of Hong and Elber (2022), and the boundary of the regular surface constructor (S0 in
Algorithm 1) is given as an input to the kernel computation.

5.2. Boolean Sum Surfaces

Figures 4 and 5 show examples of the construction of a kernel-based Boolean sum surface with a valid
parameterization, for quartic Bézier and quadratic B-spline input curves. Figures 6 and 7 present the success
rate of the kernel-based Boolean sum constructor, on the operator’s three random datasets (cubic and quartic
Bézier and quadratic B-spline), using the two different methods to add degrees of freedom to the input
curves (degree raising and refinements). In Figures 6 and 7 and hence after and in all graphs, the x-axis

7



(a) Input Curves. Four quartic Bézier
curves.

(b) The regular Boolean sum surface,
with its control mesh - invalid parame-
terization.

(c) The kernel-based Boolean sum sur-
face, with its control mesh - valid pa-
rameterization.

Figure 4: Quartic Bézier (kernel-based) Boolean sum surface.

(a) Input Curves. Four open-end
quadratic B-spline curves, each with five
control points and a uniform knot vector.

(b) The regular Boolean sum surface,
with its control mesh - invalid parame-
terization.

(c) The kernel-based Boolean sum sur-
face, with its control mesh - valid pa-
rameterization.

Figure 5: Quadratic B-spline (kernel-based) Boolean sum surface.

represents the iteration number of adding i degrees of freedom (via degree raising or refinement), and the
y-axis represents the success rate in the i iteration (of cases that failed until the i iteration), in percentages,
and exploiting a log scale. Figure 6 utilizes degree raising, and Figure 7 utilizes refinement.

5.3. Half Boolean Sum

Figure 8 shows an example of constructing a kernel-based half Boolean sum surface with a valid param-
eterization for quadratic B-spline curves. Figures 9 and 10 display the success rate of the kernel-based half
Boolean sum constructor, on the operator’s three random datasets, and using the two ways to add degrees of
freedom to the input curves. Figure 9 utilizes degree raising, and Figure 10 utilizes refinement.

5.4. Ruled Surfaces

Figure 11 shows an example of a kernel-based ruled surface with a valid parameterization for quadratic
B-spline curves, after adding a degree of freedom to the input curves by utilizing the refinement operator for
one iteration. Figure 12 shows another example of a kernel-based ruled surface with a valid parameterization
for quartic Bézier curves, after adding degrees of freedom to the input curves either by utilizing the refinement
operator for one iteration or by utilizing the degree-raising operator for two iterations.

8



(a) Cubic Bézier curves - success rate per
iteration. Success without degree raising
(1st iteration): 98.8%, accumulated (all
iterations): 99.9%.

(b) Quartic Bézier curves - success rate
per iteration. Success without degree
raising (1st iteration): 97.3%, accumu-
lated (all iterations): 99.4%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without degree raising (1st itera-
tion): 81.7%, accumulated (all itera-
tions): 90.1%.

Figure 6: These graphs present the kernel-based Boolean sum operator’s success rates in constructing surfaces with a valid
parameterization, while the regular Boolean sum operator failed to build a surface with a valid parameterization, and the input
has at least one kernel point. The degree-raising operator has been used to add more degrees of freedom to the input curves.
Maximal degree: 17.

(a) Cubic Bézier curves - success rate per
iteration. Success without knot insertion
(1st iteration): 98.8%, accumulated (all
iterations): 99.9%.

(b) Quartic Bézier curves - success rate
per iteration. Success without knot in-
sertion (1st iteration): 97.3%, accumu-
lated (all iterations): 99.9%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without knot insertion (1st iter-
ation): 81.7%, accumulated (all itera-
tions): 100%.

Figure 7: These graphs present the success rates of the kernel-based Boolean sum operator in constructing surfaces with valid
parameterization, while the regular Boolean sum operator failed to build a surface with a valid parameterization, and the input
has at least one kernel point. The refinement operator has been used to add more degrees of freedom to the input curves.
Maximal refinement: 20 knots per knot interval.

Figures 13 and 14 display the success rate of the kernel-based ruling construction, on the operator’s three
random datasets, employing the two methods to add degrees of freedom to the input curves. Figure 13 utilizes
degree raising, and Figure 14 utilizes refinement.

Interestingly, the success rate of constructing a valid quadratic B-spline ruled surface, without adding
degrees of freedom to the input curves is quite small, as can be seen in Figures 13 (c) and 14 (c). While the
success rate clearly depends on the randomization of the datasets, and because a kernel point exists, after
enough degree raisings (herein up to degree 40!), the success rate for this case is still over 80%.

Our initial intuition to Theorem 4 stated that once we have more than degree knots, we will have only two
types of patches, those with all control points at K, or those with one boundary row/column of control points
and the rest of the control points at located at K. While true, under some conditions that we now portray,
these resulting ruling patches can still possess negative Jacobians. This explains the need to introduce more
than degree knots, under rare conditions, as some of the graphs in this chapter show.

Consider the construction using Boolean sum in Figure 15. The input consists of quadratic B-spline
curves so after the insertion of two knots (or more), all patches are of the above mentioned two types.
However, a (corner) patch, especially if K is very close to the boundary/corner, might be created with one
of its corners forming more than 180 degrees, as seen in Figure 15 (a). Additional refinements, more than
the degree, are required to reduce the span of the boundary/corner patch, until no such > 180 degrees corner
can be formed in this patch. See Figure 15 (b).

9



(a) Input Curves. Two open-end
quadratic B-spline curves with five con-
trol points and a uniform knot vector.

(b) The regular half Boolean sum sur-
face, with its control mesh - invalid pa-
rameterization.

(c) The kernel-based half Boolean sum
surface, with its control mesh - valid pa-
rameterization.

Figure 8: Quadratic B-spline (kernel-based) half Boolean sum surface.

(a) Cubic Bézier curves - success rate per
iteration. Success without degree raising
(1st iteration): 79.2%, accumulated (all
iterations): 100%.

(b) Quartic Bézier curves - success rate
per iteration. Success without degree
raising (1st iteration): 85%, accumu-
lated (all iterations): 99.9%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without degree raising (1st itera-
tion): 99.7%, accumulated (all itera-
tions): 100%.

Figure 9: These graphs present the kernel-based half Boolean sum operator’s success rates in constructing surfaces with a valid
parameterization, while the regular half Boolean sum operator failed to build a surface with a valid parameterization, and the
regular half Boolean sum surface has at least one kernel point. The degree-raising operator has been used to add more degrees
of freedom to the input curves. Maximal degree: 17.

Hinting on the expected computation costs, all the presented examples in this work were computed in
not more than a few seconds on a Windows 10 modern workstation. The computation of the kernel took,
on average, from 10 milliseconds for surfaces to about 10 seconds for trivariates. Then, for example, the
presented kernel-based Boolean sum operator for surface ranged up to a few seconds in the first ten iterations
of adding degree of freedom by either degree raising or refinement.

6. Further extending the Kernel-based Surface Construction Algorithm

So far, in all presented results, the Jacobian might vanish at K, especially in the kernel-based B-spline
construction cases. As stated, one can clearly have n consecutive interior control points all located at K,
where n is larger than the degree of the spline, and as a result, that interval will present zero velocity. To
overcome this limitation, we propose to organize the interior control points in a uniform grid, then scale it
down and translate it so it is centered at K. See Figure 16, for one example.

By utilizing this approach, no adjacent control points will be identical and as a result, partial derivatives
will not vanish. The size of this scaled-down grid immediately affects the magnitude of the Jacobian there.
Yet, a grid too large might result in an invalid parameterization.

10



(a) Cubic Bézier curves - success rate per
iteration. Success without knot insertion
(1st iteration): 79.2%, accumulated (all
iterations): 100%.

(b) Quartic Bézier curves - success rate
per iteration. Success without knot in-
sertion (1st iteration): 85%, accumu-
lated (all iterations): 100%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without knot insertion (1st iter-
ation): 99.7%, accumulated (all itera-
tions): 100%.

Figure 10: These graphs present the success rates of the kernel-based half Boolean sum operator in constructing surfaces with
valid parameterization, while the regular half Boolean sum operator failed to build a surface with a valid parameterization,
and the regular half Boolean sum surface has at least one kernel point. The refinement operator has been used to add more
degrees of freedom to the input curves. Maximal refinement: 20 knots per knot interval.

(a) Input Curves. Two open-
end quadratic B-spline curves
with five control points and a
uniform knot vector.

(b) The regular ruled surface,
with its control mesh - invalid
parameterization.

(c) The kernel-based ruled sur-
face, with its control mesh (and
no refinement/degree raising) -
invalid parameterization.

(d) The kernel-based ruled sur-
face after one iteration of re-
finement, with its control mesh
- valid parameterization.

Figure 11: Quadratic B-spline (kernel-based) ruled surface.

The extension of Algorithm 1 to constructors of trivariates in IR3, is immediate - replace every ‘surface’ in
Algorithm 1 with a ‘trivariate’ and every ‘curve’ with a ‘surface’. Some examples with valid parameterizations
of kernel-based constructed trivariates, where the regular constructors yielded invalid parameterizations, are
presented in Figures 17 to 19.

7. Conclusion and future work

In this work, we aimed to enhance the validity performance of common freeform construction operators.
We handled cases where the regular constructors failed to build a valid surface or trivariate, and a kernel
can be found in the domain. While the interior parameterization of Boolean sum can be general, ruled
surfaces are expected to have linear ruling lines. Clearly, we are no longer preserving the linear ruling
parameterization in this work while we aim to preserve the boundaries of the ruled surfaces, while constructing
a valid parameterization. Further, we can potentially utilize our kernel-based construction scheme for other
geometric construction operators.

As shown in the experimental results, the presented approach has an improved success rate, as more
degrees of freedom are being added to the input. Not surprisingly, the refinement operator typically converges
faster than the degree-raising scheme, most likely because refinement induces more locality. For instance,

11



(a) Input Curves. Two
quartic Bézier curves.

(b) The regular ruled
surface, with its control
mesh - invalid parame-
terization.

(c) The kernel-based
ruled surface, with
its control mesh (and
no refinement/degree
raising) - invalid
parameterization.

(d) The kernel-based
ruled surface after one
iteration of refinement,
with its control mesh -
valid parameterization.

(e) The kernel-based
ruled surface after
two iterations of de-
gree raising, with its
control mesh - valid
parameterization.

Figure 12: Quartic Bézier (Kernel-based) ruled surface.

(a) Cubic Bézier curves - success rate per
iteration. Success without degree raising
(1st iteration): 93%, accumulated (all it-
erations): 98%.

(b) Quartic Bézier curves - success rate
per iteration. Success without degree
raising (1st iteration): 84.8%, accumu-
lated (all iterations): 95.6%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without degree raising (1st iter-
ation): 8.5%, accumulated (all itera-
tions): 81.3%.

Figure 13: These graphs present the kernel-based ruling operator’s success rates in constructing surfaces with a valid param-
eterization, while the regular ruling operator failed to build a surface with a valid parameterization, and the regular ruled
surface has at least one kernel point. The degree-raising operator has been used to add more degrees of freedom to the input
curves. Cubic and quartic Bézier maximal degree: 17, and quadratic B-spline maximal degree: 40.

this behavior is evident in Figure 19 (c) where the knot insertion resulted with linear iso-parametric curves
that move from the boundaries to the kernel location.

The distribution of the interior control points in the vicinity of the kernel, as discussed in Section 6
(Figure 16), deserves additional attention. Similarly, one can examine the operators’ performance with a
more careful selection of the interior kernel location, a degree of freedom we did not exercise in this work.

Work has been previously done, using local numeric optimization of relocating interior control points,
to reduce the variance of the Jacobian as well as aiming at ensuring its validity. It is typically simpler to
optimize a problem starting from a valid solution (whole positive Jacobian) than starting from an invalid
answer. Hence, we expect that an intertwined solution of a kernel-based initial constructor, followed by an
optimization postprocess, such as Xu et al. (2013), could yield a superior result.

Acknowledgements

We would like to thank the anonymous reviewers for their comments and suggestions. This project has
received funding in part by from the European Union Horizon 2020 research and innovation programme,
under Grant Agreement No. 862025.

12



(a) Cubic Bézier curves - success rate per
iteration. Success without knot insertion
(1st iteration): 93%, accumulated (all it-
erations): 99.8%.

(b) Quartic Bézier curves - success rate
per iteration. Success without knot in-
sertion (1st iteration): 84.8%, accumu-
lated (all iterations): 98.9%.

(c) Quadratic B-spline curves with five
control points and a uniform knot vec-
tor - success rate per iteration. Suc-
cess without knot insertion (1st iter-
ation): 8.5%, accumulated (all itera-
tions): 99.4%.

Figure 14: These graphs present the success rates of the kernel-based ruling operator in constructing surfaces with valid
parameterization, while the regular ruling operator failed to build a surface with a valid parameterization, and the ruled
surface has at least one kernel point. The refinement operator has been used to add more degrees of freedom to the input
curves. Maximal refinement: 20 knots per knot interval.

(a) Four boundary quadratic B-spline curves yielded this result (af-
ter two refinement iterations) with negative Jacobian at the top
right patch (in blue), as it has one corner that spans more than 180
degrees.

(b) the same input from (a) yielded this result (after six refinement
iterations) with positive Jacobian throughout the surface. The cor-
ner patch from (a) now spans less boundary and that corner is just
below 180 degrees.

Figure 15: A kernel-based Boolean sum quadratic surface with invalid parameterization, even after two knots that were inserted
(a). More knot insertion iterations are required to reach a whole positive Jacobian (b).

References

Atkinson, K., Chien, D., Hansen, O., 2021. Constructing diffeomorphisms between simply connected plane domains. Electronic
Transactions on Numerical Analysis 55, 671–686.

Cohen, E., Riesenfeld, R.F., Elber, G., 2001. Geometric modeling with splines. A. K. Peters, New York.
Cohen, S., Elber, G., Bar-Yehuda, R., 1997. Matching of freeform curves. Computer-Aided Design 29, 369–378.
Dobkin, D.P., Souvaine, D.L., 1990. Computational geometry in a curved world. Algorithmica 5, 421–457.
Elber, G., 1992. Free form surface analysis using a hybrid of symbolic and numeric computation. Ph.D. thesis. University of

Utah.
Elber, G., Johnstone, J.K., Kim, M.S., Seong, J.K., 2006. The kernel of a freeform surface and its duality with the convex

hull of its tangential surface. International Journal of Shape Modeling 12, 129–142.
Ghosh, S.K., 2007. Visibility algorithms in the Plane. Cambridge University Press.
Guibas, L., Motwani, R., Raghavan, P., 1995. The robot localization problem. SIAM Journal on Computing 26, 1120–1138.
Hong, Q.Y., Elber, G., 2022. Detection and computation of conservative kernels of models consisting of freeform curves and

surfaces, using inequality constraints. Computer Aided Geometric Design 94, 102075.
Jüttler, B., Maroscheck, S., Kim, M.S., Hong, Q.Y., 2019. Arc fibrations of planar domains. Computer Aided Geometric

Design 71, 105–118.
Lee, D.T., Preparata, F.P., 1979. An optimal algorithm for finding the kernel of a polygon. J. ACM 26, 415–421.
Masalha, R., Cirillo, E., Elber, G., 2021. Heterogeneous parametric trivariate fillets. Computer Aided Geometric Design 86,

101970.
Preparata, F.P., Shamos, M.I., 1985. Computational geometry: an introduction. Springer-Verlag, Berlin, Heidelberg.
Shamos, M.I., Hoey, D., 1976. Geometric intersection problems, in: 17th Annual Symposium on Foundations of Computer

Science (sfcs 1976), pp. 208–215.

13



(a) Input Curves. Four open-
end quadratic B-spline curves,
each with five control points
and a uniform knot vector.

(b) The regular Boolean sum
surface, with its control mesh
- invalid parameterization.

(c) The kernel-based Boolean sum surface after one iteration of re-
finement is shown on the left, with its control mesh colored in red -
positive Jacobian throughout the domain. On the right, a zoom in
near the surface’s kernel point K is shown, which is colored in blue.

Figure 16: A Quadratic B-spline (kernel-based) Boolean sum surface with a positive Jacobian throughout, including at K.

(a) The regular B-spline half Boolean
sum trivariate, of orders (3, 4, 3) and
control mesh lengths (3, 9, 3) results in
an invalid parameterization. The iso-
curves are colored black, and the zero
level-set of the Jacobian is shown in pur-
ple.

(b) The kernel-based B-spline half
Boolean sum trivariate. One itera-
tion of degree raising, now with or-
ders (4, 5, 4) and control mesh lengths
(4, 13, 4), yields a valid parameteriza-
tion. The iso-curves are colored black,
and the kernel is shown in cyan.

(c) The kernel-based B-spline half
Boolean sum trivariate. One iteration of
refinement, now with orders (3, 4, 3) and
control mesh lengths (4, 13, 4), yields a
valid parameterization. The iso-curves
are colored black, and the kernel is
shown in cyan.

Figure 17: A B-spline trivariate created using a (kernel-based) half Boolean sum of two surfaces (back and bottom faces) that
are shown in yellow.

Sorgente, T., Biasotti, S., Spagnuolo, M., 2021. A geometric approach for computing the kernel of a polyhedron, in: Frosini,
P., Giorgi, D., Melzi, S., Rodolà, E. (Eds.), Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference,
The Eurographics Association.

Sorgente, T., Biasotti, S., Spagnuolo, M., 2022. Polyhedron kernel computation using a geometric approach. Computers &
Graphics 105, 94–104.

Trautner, S., Jüttler, B., Kim, M.S., 2021. Representing planar domains by polar parameterizations with parabolic parameter
lines. Computer Aided Geometric Design 85, 101966.

Xu, G., Mourrain, B., Duvigneau, R., Galligo, A., 2013. Optimal analysis-aware parameterization of computational domain
in 3d isogeometric analysis. Computer-Aided Design 45, 812–821.

Appendix A. Proof of Theorem 4

We prove Theorem 4 for the Boolean sum operator which is the most complex case, and input Bézier
curves under degree raising, the less obvious case between degree raising and refinement. The other con-
struction cases follow similar lines.

Let S(u, v) =
∑n

j=0

∑n
i=0 Pijθi,n(u)θj,n(v) be a Bézier surface, which is constructed using the kernel-based

Boolean sum operator on four regular C1 continuous Bézier curves that do not intersect and form a topological
rectangle. Denote its four regular top, bottom, left and right boundary curves as B(v) =

∑n
j=0 P0,jθj,n(v),

14



(a) The regular B-spline Boolean sum trivariate, with orders
(3, 4, 3) and control mesh lengths (5, 17, 5) yields an invalid
parameterization. The iso-curves are colored black, and the
zero level-set of the Jacobian is shown in purple (note the
two disjoint regions of the zero level-set).

(b) The kernel-based B-spline Boolean sum trivariate. With
no refinement/degree raising, so its orders and mesh lengths
are as in (a), the kernel-based constructor yields a valid pa-
rameterization. The iso-curves are colored black, and the
kernel is shown in cyan.

Figure 18: A B-spline trivariate created using (kernel-based) Boolean Sum of six surfaces shown transparent in yellow.

(a) The regular B-spline ruled trivari-
ate, of orders (4, 3, 3) and control mesh
lengths (9, 3, 3), yields an invalid param-
eterization. The iso-curves are colored
black, and the zero level-set of the Jaco-
bian in purple.

(b) The kernel-based B-spline ruled
trivariate after five iterations of degree
raising, so its orders are (9, 8, 8) and
control mesh lengths (29, 8, 8), yields a
valid parameterization. The iso-curves
are colored in black, and the kernel is
shown in cyan.

(c) The kernel-based B-spline ruled
trivariate after three iterations of re-
finements, with the same orders as in
(a) and control mesh lengths (30, 6, 6),
yields a valid parameterization. The iso-
curves are colored black, and the kernel
is shown in cyan.

Figure 19: A B-spline trivariate created using (kernel-based) ruling between two surfaces (bottom and bottom faces) that are
shown in yellow.

T (v) =
∑n

j=0 Pn,jθj,n(v), L(u) =
∑n

i=0 Pi,0θi,n(u) and R(u) =
∑n

i=0 Pi,nθi,n(u), and let K be an interior
kernel point for B, T , L, R.

The surface u partial derivative:

∂S(u, v)

∂u
=

∂

∂u

 n∑
j=0

n∑
i=0

Pi,jθi,n(u)θj,n(v)


=

n∑
j=0

∂

∂u

(
n∑

i=0

Pi,jθi,n(u)

)
θj,n(v)

15



=

n−1∑
j=1

∂

∂u

(
n∑

i=0

Pi,jθi,n(u)

)
θj,n(v) +

∂

∂u

(
n∑

i=0

Pi,0θi,n(u)

)
θ0,n(v) +

∂

∂u

(
n∑

i=0

Pi,nθi,n(u)

)
θn,n(v)

=

n−1∑
j=1

(
n−1∑
i=0

n(Pi+1,j − Pi,j)θi,n−1(u)

)
θj,n(v) +

∂L(u)

∂u
θ0,n(v) +

∂R(u)

∂u
θn,n(v)

=

n−1∑
j=1

n
(
(K − P0,j)θ0,n−1(u) + (Pn,j −K)θn−1,n−1(u)

)
θj,n(v) +

∂L(u)

∂u
θ0,n(v) +

∂R(u)

∂u
θn,n(v),

(A.1)

as the differences between the interior control points vanish, being all equal to K. ∂S(u,v)
∂v can be computed

in a similar way:

∂S(u, v)

∂v
=

n−1∑
i=1

n
(
(K − Pi,0)θ0,n−1(v) + (Pi,n −K)θn−1,n−1(v)

)
θi,n(u) +

∂B(v)

∂v
θ0,n(u) +

∂T (v)

∂v
θn,n(u).

We first show that the normal does not vanish on the boundary of the surface. Without loss of generality,
we assume boundary v = 0 and let u ∈ (0, 1), excluding the cases of u = 0 or u = 1, as we assume the input
is valid (at the corners):

∂S(u, 0)

∂u
=

∂L(u)

∂u
,

∂S(u, 0)

∂v
=

n−1∑
i=1

n(K − Pi,0)θi,n(u) +
∂B(0)

∂v
θ0,n(u) +

∂T (0)

∂v
θn,n(u)

=

n−1∑
i=1

n(K − Pi,0)θi,n(u)

=

n∑
i=0

nKθi,n(u)−
n∑

i=0

nPi,0θi,n(u)

= n(K − L(u)), (A.2)

as in the limit for n → ∞, θ0,n(u) = θn,n(u) → 0 for u = (0, 1).
The (unnormalized) surface normal equals n(u, v) = ∂S

∂u × ∂S
∂v , or in the limit, again,

n(u, 0) =
∂S(u, 0)

∂u
× ∂S(u, 0)

∂v

= n
∂L(u)

∂u
×

(
K − L(u)

)
, (A.3)

Now, because K is an interior kernel location, the vector (K − L(u)) is never tangent to the boundary,

and specifically never tangent to L(u), or (K − L(u)) and ∂L(u)
∂u are never parallel. In other words, n(u, v)

cannot vanish on that boundary. The proof for the other three boundaries is similar.
Now, assume u, v ∈ (0, 1). Then:

∂S(u, v)

∂u
=

n−1∑
j=1

n
(
(K − P0,j)θ0,n−1(u) + (Pn,j −K)θn−1,n−1(u)

)
θj,n(v) +

∂L(u)

∂u
θ0,n(v) +

∂R(u)

∂u
θn,n(v)

16



= nθ0,n−1(u)

n−1∑
j=1

(K − P0,j)θj,n(v) + nθn−1,n−1(u)

n−1∑
j=1

(Pn,j −K)θj,n(v))

= nθ0,n−1(u)

 n∑
j=0

Kθj,n(v)−
n∑

j=0

P0,jθj,n(v)

+

nθn−1,n−1(u)

 n∑
j=0

Pn,jθj,n(v)−
n∑

j=0

Kθj,n(v)


= nθ0,n−1(u) (K −B(v)) + nθn−1,n−1(u) (T (v)−K) , (A.4)

approaching the limit for n → ∞, θ0,n(v) = θn,n(v) → 0 for v = (0, 1). We note here that θ0,n−1(u) and
θn−1,n−1(u) also approach zero, albeit slower being of lower degree.

∂S(u,v)
∂v can be computed in a similar way:

∂S(u, v)

∂v
= nθ0,n−1(v) (K − L(u)) + nθn−1,n−1(v) (R(u)−K) .

Approaching the limit again, the (unnormalized) interior surface normal equals,

n(u, v) =
∂S(u, v)

∂u
× ∂S(u, v)

∂v

= n2 [θ0,n−1(u) (K −B(v)) + θn−1,n−1(u) (T (v)−K)]×
[θ0,n−1(v) (K − L(u)) + θn−1,n−1(v) (R(u)−K)]

= n2
(
θ0,n−1(u)θ0,n−1(v) [(K −B(v))× (K − L(u))] +

θ0,n−1(u)θn−1,n−1(v) [(K −B(v))× (R(u)−K)] +

θn−1,n−1(u)θ0,n−1(v) [(T (v)−K)× (K − L(u))] +

θn−1,n−1(u)θn−1,n−1(v) [(T (v)−K)× (R(u)−K)]
)
. (A.5)

A zero cross-product of non-vanishing vectors means the two vectors are co-linear. However, no such colin-
earity is possible because K is an interior Kernel location and (u, v) ∈ (0, 1). Further, an inspection, using
the right-hand rule, of the four cross products in the last expression reveals that all four have the same Z
sign. Then, the summed result is a non-zero normal.

Finally, and while the differentiation of B-spline input is a bit more complex, it will follow similar steps.

17


	Introduction
	Previous work
	Half Boolean Sum
	A Surface Construction from Two Adjacent Curves
	A Trivariate Construction from Two/Three Adjacent Surfaces

	The Kernel-based Construction Algorithm
	Results
	The Random Datasets for the Kernel-based Planar Surface Constructors
	Boolean Sum Surfaces
	Half Boolean Sum
	Ruled Surfaces

	Further extending the Kernel-based Surface Construction Algorithm
	Conclusion and future work
	Proof of Theorem 4

