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Abstract. An emergent problem in the study of
pathogen evolution is our ability to determine the
extent to which their rapidly evolving genomes re-
combine. Such information is necessary and essential
for locating pathogenicity loci using association
studies, and it also directs future screening, thera-
peutic and vaccination strategies. Recombination al-
so complicates the use of phylogenetic approaches to
infer evolutionary parameters including selection
pressures. Reliable methods that identify the presence
of regions of recombination are therefore vital. We
illustrate the use of an integrated model-based ap-
proach to inferring recombination structure using all
available sequences of the highly variable, trans-
forming Kaposi’s sarcoma-associated herpesviral
gene, ORF-K1. This technique learns the parameters
of a statistical model that takes recombination hot-
spots, population genetic effects, and variable rates of
mutation into account. As there are no known
mechanisms to explain the high mutation rate in this
DNA viral gene, recombination may account for
some of the variability observed. We infer recombi-
nation hotspots in conserved sites such as the tyrosine
kinase signaling motif, referred to here as recombi-
nation drift, as well as in nonconserved sites, a
process described as recombination shift.
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Introduction

Recombination occurs at substantial frequencies in
the natural populations of many species and appears
to play a significant role in determining selective
pressures1 (Fisher 1958; Maynard-Smith 1982; Rou-
zine et al. 2003). Areas of high recombination allow
adjacent genomic regions to have different evolu-
tionary histories, although the precise loci of recom-
bination in several species, specifically in viruses,
remain unknown (Awadalla 2003).

Viruses, including HIV and herpesviruses, in
which persistent infections are a well-known feature,
provide an opportunity to test evolutionary theories
by comparing model predictions against previously
obtained data. Conversely, evolutionary theories can
also be used to predict future properties of patho-
genic populations providing valuable insights into
coexistence and coevolution with their hosts, the so-
called molecular arms race (Gilbert et al. 1998; Hol-
mes 2001; Holub 2001; Stebbing and Gazzard 2003b).
Forces that affect genetic variability within a species
include the systematic pressures of natural selection
and migration (Perrin et al. 2003; Rouzine et al.
2003). In situations where these are the only pres-
sures, as may be the case in very large populations,
deterministic models suffice.
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As evolution occurs in populations of finite size,
random genetic drift adds a stochastic element by
causing the disappearance of genetic variants, a sit-
uation most marked when the population size is small
(Kimura 1968, 1969, 1976a, b; Kimura and Ota
1971). The balance between these has been shown to
result in an accumulation of deleterious mutations via
drift, resulting in cycles in which the best-fit geno-
types in a population are lost, events known as
Muller’s (1964) ratchet.

Recombination, on the other hand, allows species
to recreate fit genotypes following the accumulation
of mutations, thus resetting the ratchet (Maynard-
Smith 1982; Rouzine et al. 2003). As recombination
appears to be a critical feature in many viruses
studied (in both their zoonotic and human hosts
(Hahn et al. 2000), it appears reasonable to suggest
that it has an active role in their life history and fit-
ness (Guttman and Dykhuizen 1994; Robertson et al.
1995; Conway et al. 1999; Ochman et al. 2000;
Twiddy and Holmes 2003). Indeed, recombination
events can explain dynamics of endemicity and pa-
thogenicity and predict the development of advanta-
geous or deleterious mutations conferring drug
resistance, virulence and immune evasion, and the
spread of such mutations between genetically differ-
ent hosts and populations (Stebbing and Gazzard
2002, 2003a). Recombination is necessary for genetic
mapping to locate genes that underlie important
phenotypes, but its presence often complicates phy-
logenetic reconstruction and methods used to infer
population parameters (Schierup and Hein 2000a,b;
Feil et al. 2001). However, while almost all organisms
engage in some form of recombination, our under-
standing of why it occurs and how it is maintained
remains controversial.

Members of the Herpesviridae family are impor-
tant human and animal pathogens and have the
largest DNA genomes among known mammalian
viruses, with up to 200 potential open reading frames
(ORFs). Functional characterization of these genes,
accomplished by generating virus mutants and in-
vestigating resulting changes in phenotype, is im-
portant for understanding molecular aspects of
herpesvirus replication and pathogenesis, and may
also provide a basis for the rational development of
new vaccines and chemotherapeutics (Epstein 2001;
Gaschen et al. 2002; Ho and Huang 2002).

Kaposi’s sarcoma-associated herpesvirus (KSHV;
also known as human herpesvirus-8) is a c-2-herpes-
virus related to three other tumorigenic viruses: her-
pesvirus samirii (HVS), Epstein–Barr virus (EBV),
and murine c-herpesvirus-68 (Russo et al. 1996).
KSHV is implicated in the pathogenesis of all
epidemiologic forms of Kaposi’s sarcoma (classic,
African endemic, posttransplantation, and acquired
immunodeficiency syndrome [AIDS]-associated)

(Stebbing et al. 2003b, c). At the far left-hand end of
its 140-kb double-stranded DNA episome lies a un-
ique gene encoding a 46-kDa transmembrane type I
glycoprotein, K1, containing a sequence that func-
tions as an immunoreceptor tyrosine-based activation
motif (ITAM) (Russo et al. 1996; Lee et al. 1998;
Damania et al. 2000; Lagunoff et al. 2001; Zong et al.
2002). K1, expressed predominantly in the lytic viral
life cycle, appears able to couple extracellular signals
to multiple intracellular signalling pathways in re-
sponse to ligand–receptor interactions, which in turn
leads to cellular responses, including proliferation,
differentiation, and death (Samaniego et al. 2000;
Lagunoff et al. 2001; Bowser et al. 2002). K1 is also
able to transduce signals in the absence of exogenous
cross-linking ligands, and can orchestrate the ex-
pression of an array of transcription factors involved
in cellular activation that may ultimately lead to
growth dysregulation. As such, K1 appears capable
in vitro and in vivo of inducing cellular transformation
(Lee et al. 1998; Prakash et al. 2002).

Although the great majority of the KSHV genome
is conserved, K1 is variable (Nicholas et al. 1998).
The variability of K1, with a massive preponderance
of amino acid altering (nonsynonymous) mutations,
has been known for some time (Hayward 1999; Zong
et al. 1999; McGeoch 2001). More recently, it has
been shown that at an individual codon level, specific
sites in K1 appear to undergo a considerably greater
positive selective pressure than sites in other highly
variable mammalian or viral genes, such as the 58
codons in exons 2 and 3 that comprise the antigen
recognition site of major histocompatibility complex
(MHC) class I and the 34 codons in the V3 loop of
HIV-1 env (irrespective of evolutionary time scale)
(Stebbing et al. 2003a). The presence of clusters of
MHC class I-restricted epitopes within K1 have been
cited as putative evidence that pressure from CD8-
positive cytotoxic T lymphocytes may help drive this
gene’s extreme variability and positive selection
(Stebbing et al. 2003a). However, in the absence of an
error prone polymerase (as for HIV [Munoz et al.
1993]), there are no known mechanisms to explain
this. DNA–virus DNA polymerases do not perform
the template switches required to generate such di-
versity (An and Telesnitsky 2002). Furthermore, K1
does not appear to change over time within an indi-
vidual, nor does it differ between different tumor sites
within the same patient, quite unlike the situation
observed with retroviruses (Stebbing et al. 2001;
Walker and Korber 2001).

We therefore assessed the potential role of hot-
spots of recombination in generating the variability
observed in K1 using a model-based inference tech-
nique. This technique has been previously validated
by its application to the haplotype resolution prob-
lem for high density areas of the human chromosome
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21 (extending over 21.7 Mb [Patil et al. 2001]) and the
angiotensin converting enzyme gene on chromosome
17 (24 kb [Rieder et al. 1999]), where it obtained error
rates between 3 and 200 times lower than previously
published methods (Greenspan and Geiger 2003).

There are four key differences between our model-
based approach and traditional phylogenetic tree
construction. First, by inferring specific recombina-
tion points, our model divides sequences into con-
tiguous stretches, examining the relationships
separately within each. This is justified by the ob-
servation that a region of high recombination will
result in the areas either side having different evolu-
tionary histories. Second, we explicitly allow for the
presence of mutation hotspots, inferring their pres-
ence as part of a model. This is consistent with the
observation that mutation occurs in an uneven fash-
ion within the K1 gene and appears clustered in two
areas, termed variable regions 1 and 2 (VR1 and
VR2). Third, within each inferred stretch, we do not
seek to create a complete family tree, accepting in-
stead that distant relationships between sequences are
difficult to accurately ascertain and recover. This
approach is justified by population genetic consider-
ations which suggest that bottlenecks, genetic drift,
and selection pressures will narrow a populations
genepool losing the vast majority of ancient strands.
This process leaves behind a few groups, each of
which contains minor variations on a consensus se-
quence. The fourth and final difference is that within
each such group, we do not attempt to infer rela-
tionships between the sequences, opting instead to
consider them all as offspring of a single founding
ancestor. As before, this is justified by population
genetics—if a viral population grows rapidly from a
few founders then the most recent common ancestor
(MRCA) of any two contemporary sequences is likely
to be very close to those founders.

Thus, whereas traditional phylogenetic analysis
attempts to create a complete tree topology to relate
the observed sequences, we infer a set of disconnected
stars, each of which centers around a consensus se-
quence which may itself remain unobserved. By
simplifying the phylogenetic model in this way, we
reduce the calculation time for each candidate as-
signment of recombination hotspots. Furthermore, if
our assumptions accurately reflect the underlying
population processes, we will produce more accurate
inferences regarding mutation rates and selection
pressures.

An inferred model contains a lull description of
the variation structure of a set of observed sequences.
For our purposes, the most important parameters of
the model are (a) the location of the recombination
hotspots, (b) for each stretch between hotspots, the
number of inferred clades, and (c) cumulative muta-
tion rates for each site. Here, a clade is defined as a

group of similar sequences, within a single nonre-
combinant stretch. The cumulative mutation rates
represent the probability that the allele observed in a
sequence is different from the allele in the consensus
sequence for its inferred clade. It should be noted that
the full model also describes the linkage dependencies
between stretches which are separated by recombi-
nation hotspots but we will not be using that infor-
mation here. However, due to error rates a magnitude
lower than those previously observed. By examining
an inferred sample of suitable models, we identify
recombination hotspots within conserved and
nonconserved areas of a DNA viral oncogene (K1),
the most positively selected mammalian or viral gene
so far identified, thus postulating one mechanism by
which it generates its remarkable variability. The
hotspots in the conserved regions are postulated to
generate long–term variability and evolutionary per-
sistence (recombination drift), whereas those within
the variable regions produce immediate changes,
probably altering antigenicity in specific populations,
a phenomenon denoted recombination shift.

Methods

Sequences and Alignment

Nucleotide sequences encoding the KSHV ORF-K1 were obtained

from NCBI (Table 1); these were derived from nested PCR reac-

tionts (Zong et al. 1999; Cook et al. 1999, 2002; Meng et al. 1999,

2001; Lampinen et al. 2000; Lacoste et al. 2000a, b; Biggar et al.

2000; Zhang et al. 2000, 2001). All available 269 K1 sequences were

aligned successfully using CLUSTAL X, version 1.6. Unlike pre-

vious analyses of K1 variability and evolution (Stebbing et al.

2003a), no sequences were excluded and K1 was not divided into

strains (approximately 30% of the sequences could not be discreetly

placed in defined strains A–D). No two K1 sequences were iden-

tical and all K1 sequences were derived from different hosts.

Treeview, version 1.5, was used to create a radial phenogram

(Fig. 1).

The 269 K1 sequences were converted to amino acids and these

were used to create a consensus sequence at the website http://

prodes.toulouse.inra.fr/multalin/html (Corpet 1988), which was

then in turn used to predict a likely secondary structure for this

protein at the website http://bioinf.cs.ucl.ac.uk/psipred (Jones

1999; McGuffin et al. 2000; Marsden et al. 2002) (Fig. 1). We also

examined the relationship between sites of recombination and

phosphorylation (http://www.cbs.dtu.dk/services/NetPhos), N-

and O-glycosylation (http://www.cbs.dtu.dk/services/NetNGlyc/

or NetOGlyc/), myristoylation (http://mendel.imp.univie.ac.at/ny-

ristate), sulfination (http://us.expasy.org/tools/sulfinator/), cleav-

age (http://www.cbs.dtu.dk/services/SignalP/), and changes in Kyte

and Dolittle hydropathy values (http/us.expasy.org/cgi-bin/prot-

scale.pl) (Hansen et al. 1995; Blom et al. 1999; Monigatti et al.

2002; Maurer-Stroh et al. 2002a, b).

Model-Based Inference of Recombination Hotspots

To model the complex multivariable distribution underlying viral

sequences, a Bayesian Network was used. Such networks are useful,

as they allow distributions to be represented, learned, and queried
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efficiently by making the independence relationships between var-

iables explicit. Each Network has a natural graphical representa-

tion, in which a circle corresponds to a variable and the distribution

for each variable is conditional only upon those variables that point

to it (Pearl 1988; Jensen 1996). The probability of an assignment to

the variables in a Bayesian Network can be calculated efficiently by

bucket variable elimination (Dechter August 1–4, 1996). In addi-

tion, parameters for the distributions can be inferred from observed

data sets by the expectation maximization (EM) algorithm, which

are used at many stages during the search for a model to fit ob-

servations (Lauritzen 1995).

An example of the model used is shown by the Bayesian Net-

work in Fig. 2. It consists of a variable2 Ck for each block k and two

random variables Aj and Hj for each site j. A partition by recom-

bination hotspots of the sites into blocks is defined by the groups of

variables Aj pointed to by each Ck in the Bayesian Network. For

example, the model in the diagram places hotspots between adja-

cent single nucleotide polymorphism (SNP) pairs 3–4 and 5–6.

A model of the variation in observed sequences is given by the

distributions of these variables, while the etiology of a particular

sequence is specified by an assignment to them. For each block k,

the variable Ck represents the index of the clade for block k to

which a viral sequence belongs. The Markov chain between vari-

ables Ck reflects the assumption that the probability of a viral se-

quence belonging to a particular clade for block k depends only on

its clade for block k)1. Simulations and other analyses which

demonstrate that this assumption is accurate to a high degree have

been performed.

Given a value for Ck specifying a sequence’s clade for block k,

variables Aj which descend from Ck specify the consensus sequence

of that clade. Since there is no variation within each consensus

sequence, the value of Aj is fixed by Ck, thus the double border in

the diagram (Fig. 2). Here, we begin to see the power of the

Bayesian Network representation—although there is clearly a

strong dependency between the variables Aj within the same block,

this can be expressed solely in terms of their shared dependency on

Ck. Given a value for Aj specifying the allele at site j of the con-

sensus sequence for the appropriate clade, variable Hj specifies the

allele actually observed at that site in a viral sequence. The distri-

bution of Hj, conditioned on the value of Aj, is given by the cu-

mulative mutation rates inferred for site j. Unlike the rest of the

Bayesian Network, variables Hj are actually observed, as denoted

by the small dot within each.

The goal of this inference technique is to infer a sample of block

partitions and parameters of this Bayesian Network which provide

an accurate and concise description of the set of observed viral

sequences. Although ideally one would like to infer the single

correct model for our data, the uncertainty which is inevitable in

these forms of inference is best addressed by generating a wider

sample. Therefore, a search occurs for models according to the

minimum description length (MDL) criterion, which simultane-

ously seeks to minimize the model complexity and maximize the

probability of the observed data under that model (Rissanen 1978).

Formally, if DL(M) bits are required to represent a model M for

data D, then the description length for model M is DL(M)-log2
Pr(D|M). While Pr(D|M) is defined precisely by the Bayesian

Network, DL(M) is highly dependent on our representation

scheme. A scheme was chosen which represents the model pa-

rameters efficiently, based on known results in the data compres-

sion field (Shannon 1948; Rissanen 1983).

The search procedure is complex, since the space of possible

models for a given data set is vast. To begin with, for l sites, there

are 2l)1 different partitions into blocks, but our search must also

cover different numbers of clades for each block, possible consen-

sus sequences for each clade, and a wide range of cumulative mu-

tation rates. Each aspect of the search is addressed differently,

using a combination of local minimum search techniques and the

EM algorithm (Greenspan and Geiger 2003). While developing our

search algorithm, we confirmed that it is able to accurately repro-

duce the parameters of an artificial model from which simulated

data were generated, given a few dozen haplotypes or more. Re-

combination hotspots in the artificial model were consistently in-

ferred to within one or two SNPs, while false positives did not

appear. Since the data set for this paper contains 269 haplotype

sequences, we are confident in the accuracy of the inferences made.

The only parameter required by the model search is the maxi-

mum cumulative mutation rate, which constrains the distributions

for variables Hj. In general, as we allow more mutation, less re-

combination will be inferred. We chose to use three maximum

mutation rates, 0.5, 0.1, and 0.01, to allow different degrees of

variation within each clade. Values greater than 0.5 are meaningless

in the context of our technique, since we have no basis on which to

infer that a particular allele belongs in a consensus sequence if a

different allele usually appears in its place.

For each of the three maximum mutation rates, we chose to

sample 100 models. Each iteration of the sampling algorithm took

up to 3 h of processing time on a 2-GHz PentiumXeon workstation,

leading to a total running time of several weeks. The mean values

were calculated for the summary statistics of interest separately for

each of the three sets of models. Each model specifies the full allele-

to-allele cumulative mutation matrix for each site, which is con-

verted to an overall cumulative rate of mutation for that site using

the clade distribution. We also report the average of the cumulative

mutation matrix over all the sites, reflecting different mean substi-

tution, insertion and deletion rates for the different nucleotides.

Fig. 1. A radial phenogram of 269 KSHV ORF-K1 sequences

constructed using alignment (CLUSTAL X, version 1.6) and

Treeview (version 1.5) programs. Phylogenetic distance between

sequences is marked.

Fig. 2. Example5 Bayesian network used here to infer recombina-

tion hotspots.
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To demonstrate the potential of this modeling approach, it was

applied to the high-density haplotype resolution problem. The ac-

curacy of haplotype resolution based on our model for several

regions in chromosome 21 (Patil et al. 2001) was compared against

that for four other previously published methods (see supplemen-

tary information): (i) Clark’s (1990) algorithm, (ii) a variation of

the EM algorithm (Excoffier and Slatkin 1995; Long et al. 1995),

(iii) the PHASE algorithm (Stephens et al. 2001), and (iv) a beta

version of the HAPLOTYPER algorithm (Niu et al. 2002). We

obtained error rates which were 3–200 times lower than those ob-

served for the above methods, suggesting that our model accurately

captures the effects of uneven recombination and mutation.

Results

Sequences

Figure 1 shows the phylogenetic relationship between
269 different K1 sequences (Table 1), each of which
was sequenced from an individual host (or cell line
derived from such hosts). Traditionally, it has been
considered that KSHV can be subdivided into strains
according to the K1 sequence, which is thought in
turn to correspond to geographical origins of the
virus.

The KHSV A strain is found in northern Europe
and America, the B strain (thought to be the most
ancient) is from Africa and the C strain, often asso-
ciated with classical KS, is found in Mediterranean
countries (Cook et al. 1999). A KSHV D strain
containing nucleotide insertions has also been re-
cently described (mainly from South America and the
Pacific Islands) (Zong et al. 1999, 2002; Meng et al.
1999; Poole et al. 1999; Biggar et al. 2000). The ev-
olution and changes in these strains are thought to
reflect patterns of migration commencing in Africa
(Hayward 1999; Stebbing et al. 2003a).

However, Fig. 1 suggests that many sequences
cluster between previously recognized strains and
that the depicted phylogenetic distance between dif-
ferent strains is often closer than between two se-
quences of the same strain. This may reflect recent
events where travelers contribute to the spread of
viral diversity worldwide, an important contributing
factor being world migration of rural populations due
to poverty, famine, and wars (Quinn 1994; Malim
and Emerman 2001; Perrin et al. 2003).

Figure 3 represents a secondary structural predic-
tion from a consensus amino acid sequence created

from the nucleotides. The variable regions (VR1 and
VR2) are repeated strand–helix–strand motifs, while
the ITAM and transmembrane domains are coils.
Consensus sequences from K1 derived from each
KSHV strain show no significant differences in their
structure in spite of amino acid variability.

No putative myristoylation sites were detected in
K1. The potential sulfination, cleavage, and O- and
N-glycosylation sites did not occur at inferred re-
combination hotspots (see below), and changes in
hydropathy values at recombination hotspots were
not unique in comparison to other sites. Two serine
phosphorylation sites (scores �0.9) were located at
hotspots, however, K1 is heavily phosphorylated (at
least 23 residues have a phosphorylation potential of
>0.5). Here, as for Figs. 1 and 3, we are using con-
sensus sequences based on the multiple alignment and
not the model-based inferences described in the
Methods.

Hotspot Strength

For each of the three maximum mutation rates and
for each individual base pair, Fig. 4 demonstrates the
proportion of the 100 sampled models which placed a
recombination hotspot at that site. The midlines on
each graph represent the point at which 50% of the
inferred models have a hotspot, so any peak that
reaches or is close to this point is a likely position of a
recombination hotspot. High areas which are more
spread out suggest a region in which there is a hot-
spot whose exact location is unclear. Low areas near
the zero-line represent regions in which it appears
that no recombination hotspots are present. As ex-
pected, the less mutation allowed in the model, the
more recombination is inferred (top line, Fig. 4;
maximum mutation rate, 0.01).

For the two higher mutation rates (0.1 and 0.5),
codons 212 (base pair 616) and 230 (base pair 690)
were identified as recombination hotspots. Base pair
616 is located 27 nucelotides upstream of the second
variable region (VR2) of K1. While VR2 is an area
characterized by insertions, deletions, and nonsyn-
onymous mutations, base pair 616 is in a relatively
conserved area of this gene. Basepair 690 is located
midway within VR2 itself. At a maximum mutation
rate of 0.1, a further site was identified at base pair
606 in the most conserved area of K1 between the

Fig. 3. Predicted amino acid secondary structure ORF-K1, where a line represents a strand, an arrow a helix, and a cylinder a coil.

Corresponding nucleotide base pair positions are marked for the start and end of variable regions 1 and 2 (VR1 and VR2) and the

immunoreceptor tyrosine kinase activation motif (ITAM).
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variable regions. At these mutation rates, no sites in
or around VR1 were identified as recombination
hotspots in spite of the known positive selection oc-
curring here (>85% of nucleotide substitutions in
this region lead to amino acid changes). At the lowest
mutation rate (0.01), base pair 606 (codon position
202) was also identified as a likely recombination
hotspot. The highest likelihood of recombination was
found with a maximum mutation rate of 0.01 at base
pair 210 (codon 70), located within the hypervariable
area of the first variable region (VR1). VR1 was not
flanked by recombination hotspots at any mutation
rate.

As groups of small peaks in one area suggest a
likely hotspot without an exact site, our data also
provide evidence of recombination occurring near the
start codon, within VR1, following VR2 and, inter-
estingly, within the cytoplasmic ITAM motif (base
pairs 909 to 960). There were no recombination
hotspots within the transmembrane region (Fig. 3).

Inferred Clades

Clades of shared ancestry can be visible because of
bottlenecks and genetic drift, both of which serve to
reduce the variability within each region of low re-
combination. Bottlenecks occur when a population is
descended from a small group of individuals, for
example, if founded by some pioneers from an orig-
inal population. Genetic drift occurs particularly in
small populations, when chance significantly alters
allele frequencies, often causing some variants to
disappear completely. Although we do not know
when KSHV or ORF-K1 first appeared or underwent
significant reductions in variation, we can assume
that such formative processes have taken place in the
past.

Full ancestral sequences among the K1 pool are
unknown, and it is unlikely that any are present since
they can be expected to have recombined out of
recognition. However, for each block in between re-
combination hotspots, our model infers the number
of ancestral sequences that appear to be present for
that particular block. This is converted to a value for
each base pair, by endowing each base pair with the
same number of ancestors as the block which con-
tains it. For each of the three mutation rates de-
scribed above, Fig. 5 shows the number of ancestors
inferred for each base pair, averaged over the 100
samples. As for recombination, the less mutation in-
ferred, the fewer ancestors are required to explain the
observations.

A reduction in clades within a certain region may
reflect greater selection in that region. We observe
this reduction at the 50 end of K1, around base pairs
469 and 607 (between VR1 and VR2) and in a stretch
of nucleotides between base pair 787 and base pair
909. Selective pressures here are negative, as they lead
to conservation of nucleotides as opposed to varia-
bility.

Results were similar at all three mutation rates
with variation around a mean of four ancestors. The
highest number of putative ancestors (n= 6 to 7) are
located in the hypervariable area of VR1. Other
peaks are located within and beyond VR2 and the
lowest number (n = 3) are located in the relatively
conserved area between VR1 and VR2 and near the
start codon.

Cumulative Mutation Rate

For each of the three mutation rates described above
and for each pair, the average cumulative mutation
rate over the 100 samples models is shown (Fig. 6).

Fig. 4. Hotspot strength. One hundred models

were sampled for each maximum mutation rate

value. The height for each base pair shows the

proportion of those models which had a

recombination hotspot placed at that point.
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As expected, the highest probability of mutation is
observed within VR1, less so within VR2. There are
small peaks suggesting mutation within the conserved
areas between VR1 and VR2, none within the ITAM
motif.

Table 2 describes the average cumulative mutation
rates inferred over the K1 region, for each of the
three maximum mutation rates allowed. Each of
these tables reflects a broadly similar pattern, with the
substitutions A«T, G«T, and –«G significantly
rarer than the others. The effects of selection can be
filtered out of this analysis by considering the average
mutation rate from one allele to another only over
those sites at which both are observed. In this case,
the imbalances observed are substantially reduced
and in some cases disappear. This in turn suggests
that the mutation patterns inferred are more likely to
reflect selection pressures than actual per generation
substitution rates.

Discussion

This study of recombination within this highly var-
iable viral gene enables comparisons to be drawn in
genealogical history between different regions of K1.
We observe inferred hotspots of recombination fa-
cilitating sequence shuffling leading to patterns of
variation within KSHV. Recombination hotspots
are identified in K1 at both conserved and noncon-
served nucleotide positions. The mechanism of re-
combination at the different sites may therefore
involve separate mechanisms akin to immunoglob-
ulin gene recombination, with VDJ recombination
leading to greater sequence variability on account of
nucleotide insertion or deletion compared to isotype
class switch recombination (Bassing et al. 2002).
Interestingly, K1 is thought to be related to mem-
bers of the immunoglobulin gene superfamily (Lee et
al. 1998; Zong et al. 1999; Lagunoff et al. 200l;

Fig. 5. One hundred models were sampled for

each maximum mutation rate value. This graph

shows the mean number (over the sampled

models) of ancestral sequences inferred for each

base pair’s enclosing block.

Fig. 6. Total mutation rate. One hundred models

were sampled for each maximum mutation rate

value. This graph shows the mean total mutation rate

inferred for each base pair. The scale is relative, with

the top line magnified ·10.
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Bowser et al. 2002), and it has also been shown to
inhibit transport of immunoglobulins to B cell sur-
faces (Lee et al. 2000). The process of generating
variability in this DNA viral gene is termed here
recombination shift or drift based on the time scale
in which they are postulated to affect the viral se-
quence (as per previous assumptions3 [Verhoeyen et
al. 1980; Gething et al. 1980]).

Recombination shift involves changes that affect
variable positively selected sites wherein immediate
effects will be evident and drift is thought to occur
when homologous recombination occurs in conserved
regions, resulting in longer-term sequence changes
over generations.

Among the challenges of the analysis of the role of
recombination in evolution is the detection and esti-
mation of recombination in genomes where the rate
of substitution is sufficiently high that some sites have
experienced multiple mutational events. Viral genes
evolve at a high speed compared with genes of higher
organisms and hence viral evolution provides inter-
esting material for the study of molecular evolution
by recombination. Although recurrent mutations in
viruses can generate patterns of genetic variability
that resemble the effects of recombination (McVean
et al. 2002), the model inference technique shown
here adopts the more suitable explanation for each
region of the observed data (in this case K1 se-
quences). In addition, no assumptions are made
about the number of mutations that may have oc-
curred at an individual base pair site during the
phylogenesis of such a gene (other models assume
that a site will have mutated a maximum of once
during their evolution).

We used different maximum mutation rates, al-
lowing the results of allowing different degrees of
mutation to be compared. Importantly, we observed
almost-absolute consistency between the models, es-
pecially between mutation rates 0.1 and 0.5, sug-
gesting that our conclusions are independent of
whether KSHV is an ancient (Hayward 1999) or in
fact a relatively recent pathogen (Russo et al. 1996;
Antman and Chang 2000). We do not know, how-
ever, when KSHV was introduced, and it is likely that
many of its genes have been acquired or pirated
presumably by recombination from the host genome
over time (Murphy 1997; Nicholas et al. 1998). Since
then, these genes have apparently evolved to facilitate
viral survival (Nicholas et al. 1998; Haig 2001).
However, while most KSHV open reading frames
have known homologues or at least suggested
homologues, BLAST searches of nonrecombinant
stretches of K1 (and K15; data not shown) reveal no
sequences that suggest a pirated origin from human
genes.

We and others have not observed any relationship
between the two types of K15 alleles (predominant or
minor) and the K1 sequence. It is, however, notable
that both of these genes are located at the extreme
ends of the KSHV episome on the right- and left-
hand sides of the origin of replication, respectively.
Thus changes in K1 and K15 appear to reflect sig-
nificant recombination activity in this specific area.
The absence of any known homologues of these two
genes may in turn reflect this. This activity appears,
however, to spare the remainder of the viral episome,
perhaps due to differences in methylation and/or hi-
stone positioning. Supporting this hypothesis, the

Table 2. The average cumulative mutation rates inferred over the K1 region, for each of the three maximum mutation rates allowed

Contemporary allele

Ancestral allele A C G T —

Cumulative mutation probabilities for maximum rate 0.01

A 0.000699 0.000847 0.000362 0.000102

C 0.000664 0.000677 0.000775 0.000072

G 0.000676 0.000584 0.000336 0.000059

T 0.000324 0.000703 0.000439 0.000073

— 0.000129 0.000122 0.000050 0.000096

Cumulative mutation probabilities for maximum rate 0.1

A 0.002562 0.002414 0.001033 0.000191

C 0.002639 0.002563 0.002662 0.000162

G 0.002142 0.001879 0.001117 0.000076

T 0.001225 0.002169 0.001269 0.000177

— 0.000792 0.000621 0.000164 0.000551

Cumulative mutation probabilities for maximum rate 0.5

A 0.004203 0.003467 0.001773 0.000461

C 0.004760 0.004864 0.004185 0.000558

G 0.003215 0.002829 0.002084 0.000203

T 0.002270 0.003768 0.001912 0.000424

— 0.001511 0.001820 0.000405 0.001334
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transforming EBV oncogene, latent membrane pro-
tein-1, shares positional homology with KSHV K1
and induces the expression and activity of the DNA
methyltransferases (Tsai et al. 2002).

PCR-based studies examining the predominant
and minor forms of K15 have demonstrated evidence
for recombination within KSHV. The first of these
used classical linkage analysis and the criterion of
lack of cosegregation at multiple genetic loci. This led
to the hypothesis that an original recombination
event occurred that introduced exogenous sequences
from a related primate virus of unknown source and
that subsequent mutations led to certain KSHV lin-
eages (Poole et al. 1999). A conflicting study used
network analysis to show that the proposed intro-
duction of these exogenous sequences did not occur
via a single recombination event (Kakoola et al.
2001). Overall, however, analysis of K15 sequences
from individuals within the same family provides
evidence for recombination in approximately 20–30%
of cases.

Positive or negative selective pressures influence
nucleotide changes within all genes that change or
preserve them, respectively. The neutral theory of
evolution predicts that the stronger the selective
constraint against nucleotide changes, the lower the
rate of base substitutions (Kimura 1968). This pre-
diction is supported by a large number of observa-
tions at the DNA sequence level. For example, the
rate of synonymous or silent substitutions that pro-
duce no alteration in translated proteins is usually
much higher than the rate of nonsynonymous sub-
stitutions (Endo et al. 1996). However, that positive
selection in K1 favors change is evident by the large
number of nucleotide changes in the middle position
of a codon triplet, a substitution always resulting in
amino acid alterations. The recombination hotspots
within this highly variable gene provide a possible
mechanism by which positive selective pressures exert
their effects over time. For this viral oncogene, data
suggest that the selective pressure resides with the
host cytotoxic T lymphocyte response, as first sug-
gested by Hay ward et al. (Hayward 1999). The
inferred hotspots of recombination within the un-
conserved areas (recombination shift) may be re-
sponsible for short-term antigenic variation and
evasion or even recognition of host defenses, while
those in conserved areas maintain successful long-
term viral evolution, i.e., persistence in hosts, due to
recombination drift.

The small number of putative ancestors that we
infer could originally have been generated by bottle-
neck events and genetic drift. In this case, the troughs
in Fig. 6 infer the presence of highly increased neg-
ative selective pressures. This model allows, for the
first time, inference of the strength of negative selec-
tion, acting to maintain the same amino acids as

ancestral sequences. In addition, as well as bottle-
necks acting within the context of specific popula-
tions, the inferred results also provide evidence that
diversifying selection on amino acid variants may be
occurring (possibly at the same time). Thus, in K1 we
observe recombination facilitating strong positive or
negative selective pressures. The variability in K1
represents an example of a gene that is undergoing
intense positive or negative selection and the complex
mosaics appear to represent coordinated evolution-
ary drift at multiple loci.

This model is supported by recent preliminary
experimental data in which K1 from the human pri-
mary effusion lymphoma cell line BCP-1 was cloned
into c-murine herpesvirus-68 (an animal model of a
c-herpesvirus) and then injected into mice. Sequence
data from days 10, 14, and 21 postinfection in dif-
ferent animals demonstrates consistent changes oc-
curring at nucleotide position 690, the site at which
we infer the highest likelihood of recombination oc-
curring (S. Talbot, personal commun.). In addition,
on superimposing Fig. 6 (mutation rate) on Fig. 3
(recombination hotspots), it appears that hotspots
are inferred where there appears to be increased nu-
cleotide variation. As the number of segregating sites
in these regions appears to be high, this suggests a
spatial correlation between mutation rates and re-
combination rates, although we are unable to infer
such rates from this model.

It is quite conceivable that recombination is itself
mutagenic (Zhuang et al. 2002) and there are data to
suggest that this may in fact be the case. In an at-
tempt to evaluate the genetic diversity of HIV, Srin-
ivasan et al. (1989) designed experiments to analyze
recombination between retroviral DNAs by using
DNA transfection in cell cultures. They reported the
successful recombination between truncated HIV
proviral DNAs with an overlap homology of 53 base
pairs that leads to the formation of viable hybrid
virus. Recombination was also seen between exo-
genous DNA introduced into cells and homologous
HIV sequences resident in the cells. These results in-
dicated that recombination among various HIV iso-
lates may play a significant role in the generation of
genetic diversity of HIV. It may also be possible that
if a codon has two mutations within it that are seg-
regating in a population, recombination within that
codon creates a new amino acid by shuffling those
particular variants.

Herpesviruses have evolved through cospeciation
and coevolution with their hosts (McGeoch 2001;
Stebbing et al. 2003a). Evasion from all host immune
control mechanisms will lead to overwhelming viral
infection, with subsequent death of the host and
therefore the virus. For these viruses to persist as a
latent infection without causing harm, an equilibrium
between pathogen and host must be established.
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Unlike the error-prone reverse transcriptase of ret-
roviruses, herpesviruses do not have a mechanism
that will result in rapid sequence variation. Previous
data show a clustering of functional cytotoxic T
lymphocyte (CTL) epitopes within the most posi-
tively selected sites of the whole viral genome (K1),
indicating that the pressure causing this selection is
partly to facilitate immune recognition (CTL capture
as opposed to escape) (Stebbing et al. 2003a). As K1
is expressed predominantly in the early lytic cycle of
viral replication, a certain level of viral replication
occurs prior to immune recognition and the subse-
quent death of the infected cell. Recombination
provides a mechanism here to generate diversity in
response to selective pressures that lead to, we be-
lieve, the attraction of an immune response to this
variable oncogene. This would ensure that the virus–
host equilibrium is established and that latent infec-
tion may be achieved. This effect may be most im-
portant when the virus is introduced into a new
population group containing, for example, new MHC
alleles.

Although no homologues of K1 have been iden-
tified, it is possible that the K1 sequences represent
divergent forms of key genes that evolved very rap-
idly, with all intermediate forms being lost as each
subtype of the virus occupied a new biological niche.
Alternatively, conserved areas within K1 may repre-
sent relics of older forms of the virus or of related
viral species that persist as small areas of their orig-
inal genomes by virtue of rare recombination events
with more modern forms. The continuous expansion
of viral diversity over time is influenced by social,
behavioral, and biological forces (Perrin et al. 2003).
Such biological forces are driven by host immune
responses to K1, antiviral drugs, rapid turnover of
virus, and mutation events. In retroviruses, the error-
prone reverse transcriptase makes significant contri-
butions to these mutation events and facilitates es-
cape from cytotoxic T lymphocyte responses. We
show that recombination contributes to the extreme
diversity of a DNA viral gene.
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