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STRATIFIED EXPONENTIAL FAMILIES: 
GRAPHICAL MODELS AND MODEL SELECTION 

BY DAN GEIGER, DAVID HECKERMAN, HENRY KING 
AND CHRISTOPHER MEEK 

Microsoft Research, Technion and Microsoft Research, 
University of Maryland and Microsoft Research 

We describe a hierarchy of exponential families which is useful for 
distinguishing types of graphical models. Undirected graphical models with 
no hidden variables are linear exponential families (LEFs). Directed acyclic 
graphical (DAG) models and chain graphs with no hidden variables, includ- 
ing DAG models with several families of local distributions, are curved 
exponential families (CEFs). Graphical models with hidden variables are 
what we term stratified exponential families (SEFs). A SEF is a finite union 
of CEFs of various dimensions satisfying some regularity conditions. We 
also show that this hierarchy of exponential families is noncollapsing with 
respect to graphical models by providing a graphical model which is a CEF 
but not a LEF and a graphical model that is a SEF but not a CEF. Finally, 
we show how to compute the dimension of a stratified exponential family. 
These results are discussed in the context of model selection of graphical 
models. 

1. Introduction. A graphical model is a family of probability distribu- 
tions specified via a set of conditional independence constraints that a graph 
represents or via a parametric definition dictated by a graph. The wide appli- 
cability of graphical models to many problems in statistics is due to several 
features. Graphical models provide a language to facilitate communication 
between a domain expert and a statistician, provide flexible and modular def- 
initions of families of probability distributions and are amenable to scaleable 
computational techniques [e.g., Pearl (1988), Lauritzen (1996)]. Furthermore, 
graphical models based on directed acyclic graphs (DAGs), which are called 
DAG models or Bayesian networks, have numerous uses including data anla- 
ysis [e.g., Whittaker (1990), Spiegelhalter and Thomas (1998)], modeling of 
causal relationships [e.g., Spirtes, Glymour and Scheines (1993), Pearl (2000)], 
and representing and reasoning about uncertainty in expert systems [e.g., 
Cowell, Dawid, Lauritzen and Spiegelhalter (1999)]. Specific applications of 
graphical models include diagnosis and troubleshooting [e.g., Olesen, Kjaerulff, 
Jensen, Jensen, Flack, Andreassen and Andersen (1989); Shwe, Middleton, 
Heckerman, Henrion, Horvitz, Lehmann and Cooper (1991); Heckerman, 
Breese and Rommelse (1995)], medical monitoring [e.g., Berzuini, Bellazzi, 
Quaglini and Speigelhalter (1992)], genetic counseling [e.g., Harris (1990)], 
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information retrieval [e.g., Turtle and Croft (1991), Fung and Del Favero 
(1995)], natural language processing [e.g, Eizirik, Barbosa and Mendes (1993)], 
weather forecasting [e.g., Abramson, Brown, Edwards, Murphy and Winkler 
(1996)], manufacturing [e.g., Gavard, Bhadeshia, MacKay and Suzuki (1996)], 
digital communication [e.g., McEliece, MacKay and Cheng (1998), Frey (1978)], 
and machine vision [Sarkar and Boyer (1993), Kumar and Desai (1996)]. 

We describe a hierarchy of exponential families which is useful for dis- 
tinguishing types of graphical models. Undirected graphical models with no 
hidden variables are known to be linear exponential families (LEFs) [e.g., 
Lauritzen (1996)]. Directed acyclic graphical models and chain graphs with 
no hidden variables, including DAG models with several families of local dis- 
tributions, are shown to be curved exponential families (CEFs). Graphical 
models with hidden variables are what we term stratified exponential families 
(SEFs). A SEF is a finite union of CEFs of various dimensions satisfying some 
regularity condition. We also show that this hierarchy of exponential families 
is noncollapsing with respect to graphical models by providing a graphical 
model which is a CEF but not an LEF and a graphical model that is a SEF 
but not a CEF. Finally, we show how to compute the dimension of a stratified 
exponential family. 

Our work is motivated by results on model selection within linear and 
curved exponential families. A Bayesian approach to model selection is to com- 
pute (via integration) the probability that the data is generated by a model 
given a prior over the parameters and to select the model that maximizes 
this probability. We call this probability the marginal likelihood. Although, in 
principle, this Bayesian approach is appealing, in practice it is often impossi- 
ble to evaluate the integral (even by sampling techniques) when the number 
of parameters is large. When the dataset consists of many cases, asymptotic 
results for approximating the marginal likelihood are useful. 

Schwarz (1978) considered the problem of evaluating the marginal likeli- 
hood when a model is an affine subspace of the natural parameter space of 
an exponential family. He derived an asymptotic formula for the log marginal 
likelihood, log P(Data I Model) = L(H)N-d/2 log N+Op(1), where L is the log 
likelihood, 0 is the maximum likelihood estimator, d is the dimension of the 
affine subspace and N is the sample size. This formula has become known 
as the Bayesian information criteria (BIC). We note that Schwarz's origi- 
nal result applies to the undirected graphical models discussed in Section 2 
because these models define a linear subspace of the natural parameter 
space. 

Haughton (1988) established, among other results, that BIC, under some 
regularity assumptions, is an Op(1) asymptotic approximation of the log of 
the marginal likelihood for curved exponential families. The main regular- 
ity assumption of her work, and of Schwarz's work, is that the prior distri- 
bution expressed in a local coordinate system near the maximum likelihood 
solution is bounded and bounded away from zero. Other regularity assump- 
tions are used to insure that with sufficient data, a unique model is selected 
with high probability. When these assumptions are acceptable, Haughton's 
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results on model selection apply to all graphical models discussed in Section 3, 
since these graphical models are shown to be curved exponential families. In 
particular, these results on model selection apply to DAG models with several 
families of local distributions including decision trees and leaky noisy-or dis- 
tributions. Several of these families do not have a known closed-form formula 
for the marginal likelihood. 

We note that although researchers have been using BIC for selecting mod- 
els among graphical models with hidden variables, especially mixture models 
[e.g., Fraley and Raftery (1998)], this methodology has not yet been estab- 
lished as an asymptotic approximation of a Bayesian procedure as it has for 
CEFs. In Section 4, we show that graphical models with hidden variables are 
SEFs and usually not CEFs. This result implies that the justifications given 
by Schwartz and Haughton for BIC do not apply to graphical models with 
hidden variables and that a generalization of their arguments is needed. We 
offer stratified exponential families as a natural class for which the validity 
of BIC might be investigated. 

2. Linear exponential families. In this background section we give a 
definition of linear exponential families (LEFs) and discuss the well-known 
representation of undirected graphical models as LEFs [e.g., Barndorff-Nielsen 
(1978), Lauritzen (1996), respectively]. 

2.1. Definition of linear exponential families. A family (or model) is a set 
of probability density functions. A probability density in an exponential family 
is given by 

(1) p(xl 1q) - e( 1 
- 

q)-(0 

where x is an element of a sample space X with a dominating measure ,u and 
t(x) is a sufficient statistic defined on X taking values in Rk with an inner 
product (.,.). The sample space X is typically either a discrete set, Rn, or a 
product of these. We use the notion of a variable to describe the product sample 
space. A variable has a domain which is either finite or R and the product 
sample space is the Cartesian product of the domains for the variables of 
interest. The quantity qi(q) is the normalization constant. 

Every probability distribution for a finite sample space X belongs to an 
exponential family. For example, a sample space that consists of four outcomes 
can be written in the form of (1) by choosing t(x) and q as follows: t(x) = 
(t1(x), t2(x), t3(x)) where ti(x) = 1 if the outcome of x is i, 1 < i < 3 and 
zero otherwise, and rqi = log(wi/wo) where wi is the probability of outcome i, 
1 < i < 3 and w = 1 - w1i is the probability of the fourth outcome. 

When the vector r7 has k coordinates and when p(xlIr) cannot be repre- 
sented with a parameter vector smaller than k, then the representation is min- 
imal and the order (or dimension) of this family is k, and the parameters are 
called natural parameters. It is known that this order is unique for each family. 
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The natural parameter space is given by 

N = qE Rk fet(x)-I47(n)dpt(x) < oo} . 

The set of probability distributions whose densities have the form (1) are 
denoted by y2. If for each 71 in N there exists P', in Y, then J is said to 
be a full exponential family; if, in addition, N is an open subset of Rk, then Y 
is said to be a linear exponential family. The name "linear exponential family" 
comes from the fact that the log densities form a vector space over R where 
the coordinates of t(x), called the canonical statistics, are the basis of the 
vector space and its dimension is the order of the family. Linear exponential 
families include many common distribution functions, such as multivariate 
Normal and discrete distributions. (A linear exponential family in a minimal 
representation is often called a regular exponential family.) 

A subfamily of a linear exponential family is a subset /4 of J. A subfamily 
can be described by a mapping f: 0 -e N which defines /4 via No = {f(0)I 
0 E 0}. When f is a linear mapping of rank p, and 0 is an open set, a new 
linear exponential family is formed of order k - p. In other words, a linear 
transformation f imposes p independent linear constraints on the parameters 
and these constraints can be used to reparameterize the family with k - p 
natural parameters. In Sections 3 and 4, we discuss exponential families that 
are formed by nonlinear transformations f. 

2.2. Undirected graphical models. In this section, we discuss the repre- 
sentation of undirected graphical models as linear exponential families. 

Let G be an undirected graph such that each vertex i in the vertex set 
corresponds to a variable xi. We consider three cases: (1) all xi are discrete; 
(2) all are continuous and their joint density is a multivariate nonsingular 
Gaussian; (3) some are continuous and some are discrete with a joint condi- 
tional Gaussian (CG) distribution. An undirected graphical model w.rt. G is 
the set of probability distribution functions such that all of the saturated inde- 
pendence facts implied by the graph hold; that is, xi and xj are conditionally 
independent given the remaining variables whenever nodes i and j are not 
adjacent in G. Since discrete, multivariate Gaussian, and CG distributions 
over a fixed set of variables belong to a linear exponential family and since 
saturated independence constraints are linear restrictions when expressed in 
terms of the natural parameters, undirected graphical models define linear 
exponential families. We now discuss the three cases. 

A discrete undirected graphical model is a family of probability distributions 
over a finite set U of variables each having a finite domain such that for some 
set of pairs of indices {(i, j)}, xi and xj are conditionally independent given 
U\{xi, xj}. Consider, for example, the graph given by a cycle of size 4 with 
variables x1, ..., x4 arranged clockwise. Then the independence constraints 
imposed by this graphical model are that x1 and x3 are conditionally indepen- 
dent given {x2, x4}, and that x2 and x4 are conditionally independent given 
{ xI, x3}. Suppose, for simplicity, that the four random variables are binary 
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(having exactly two states) and denote by wi the probability of the joint ith 
state of the four binary variables (1 < i < 15) where wo = 1- E wi. Each inde- 
pendence constraint translates to four equations of the form wiwj = wkWl. 
Dividing each equation by (wo)2 and taking the log, yields eight linear equa- 
tions in terms of the natural parameters q i = log wi /wo. In general, discrete 
undirected graphical models are log-affine models which are LEFs [Lauritzen 
(1996), page 76). 

A Gaussian undirected graphical model is a family of multivariate non- 
singular Gaussian distributions in which some of the off-diagonal elements 
tij of the precision matrix (the inverse of the covariance matrix) are set to 
zero. Note that setting tii to zero is equivalent to requiring that variable xi 
and xi are conditionally independent given the remaining variables. Recall- 
ing that a multivariate nonsingular Gaussian distribution belongs to a linear 
exponential family and the fact that setting the off-diagonal elements of the 
precision matrix to zero is equivalent to placing linear restrictions on the natu- 
ral parameter space yields the conclusion that Gaussian undirected graphical 
models are linear exponential families. For details see Lauritzen [(1996), pages 
124-132]. 

A conditional Gaussian undirected graphical model is a family of con- 
ditional Gaussian (CG) distributions over a set of discrete and continuous 
variables defined by a set of saturated independence constraints stating that 
variables i and j are conditionally independent given the remaining variables. 
That CG undirected graphical models can be represented as linear exponen- 
tial families is shown in Lauritzen and Wermuth (1989). See also Lauritzen 
[(1996), pages 171-175]. 

3. Curved exponential families. A curved exponential family of dimen- 
sion n is defined to be a subfamily of an exponential family of order k such 
that No c N is a n-dimensional smooth manifold in Rk. A subfamily of an 
exponential family /4 c J is often described by a mapping f: e -> N which 
defines /0 via No = {f(0)6 I 0 0} and where e is an open set. Alterna- 
tively, a subfamily can be described by a set of constraints on SO given by 
No = fq E RJh(Qq) = 0} where h: Rk - Rk-n. The relationship of these 
alternatives and a method, called implicitization, for finding constraints from 
a mapping f is discussed in Geiger and Meek (1998). 

In this section we recall the definitions of smooth manifolds and show that 
DAG models correspond to smooth manifolds and are therefore curved expo- 
nential families. We illustrate that there are DAG models which are curved 
and not linear exponential families. Conditional Gaussian DAG models and 
conditional Gaussian chain graphs are also curved exponential models. 

Curved exponential families were studied by Efron who explored geomet- 
rical interpretation of various statistical measures using these families [e.g., 
Efron (1978)]. A treatment of this topic is given by Kass and Vos (1997). We 
study curved exponential models because the standard asymptotic theory is 
valid for these models. In particular Haughton's (1988) results on model selec- 
tion apply to all graphical models discussed in this and the previous section. 
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3.1. Manifolds. A diffeomorphism f: U c Rn -+ Rm is a smooth (C?) 1-1 
function having a smooth inverse. A subset M of Rn is called a k-dimensional 
smooth manifold in Rn if for every point x E M there exists an open set U 
in Rn containing x and a diffeomorphism f: U n M -* Rk. When f is only 
assumed to be continuous and to have a continuous inverse (namely, a homeo- 
morphism), then the set M is called a topological manifold. Since composition 
of diffeomorphisms is a diffeomorphism, we get the following proposition. 

PROPOSITION 1. If g: A c Rn-* B c Rn is a diffeomorphism, then M c A 
is a smooth manifold if and only if g(M) is a smooth manifold and N C B is 
a smooth manifold if and only if g-1(N) is a smooth manifold. 

Another way to verify whether a subset of Rn is a smooth manifold is given 
by the following theorem [e.g., Spivak (1965)]. 

THEOREM 1. Let A c Rm be open and let h: A -- Rm-n be a smooth 
function such that h'(x) has rank m - n whenever h(x) = 0. Then h-1(O) is a 
n-dimensional smooth manifold in Rm. 

Note that the rank of the Jacobian matrix h' in Theorem 1 is m - n if h has 
the form hi(x1, ..., xm) = xn+i - fi(x1, . . ., xn) for i = 1, . . ., m - n where f i 
are smooth functions because in this case the (m - n) x m matrix h' factors 
as [Q(m-n)xnlIm n] where Im-n is the identity matrix of size m - n. 

3.2. Discrete DAG models. A discrete DAG model B(0, n, m) is a mapping 
Bn, m: e C Rn Rm where ?, n, m and Bn m are given as follows [Pearl 
(1988)]. Let (x1, ..., Xk) be an ordered sequence of variables each having a 
finite set of possible values. Let pi be a subset of {x1, ..., xi1-}, called the 
parents set of xi, and let ui = {x1, ..., xi-1}\pi. Let xi, P. and uf be the 
jth value of xi, pi and ui with j > 0. Let Ixil, lpil and luil be the number 
distinct possible values for the variable or set of variables. The components of 
Bnm: 0 C -R are defined by Xa.c = Oxalpb, for all a > 0 b > 0 and 
c> 0. Note that there are n = L1(txI - 1)lp1l source coordinates denoted by 
0 aipb and m = Ei(Ixj -1)jpi1ujj = (Hi Ixil)- 1 target coordinates denoted by 
oxaipb uc. The set 0 is the cartesian product of Oi j over i and j where 0i j = 
{(oxi pI *., *OXxil-1iji)O < OxIlp < 1, Ek>O Oxkikpi < 1}. The target coordinates 
of Bn m are called the conditional space parameters. 

THEOREM 2. For every discrete DAG model B(O, n, m) the set Bn, m(0) iS 
a n-dimensional smooth manifold in Rm. 

PROOF. Define the components of a function h by h1,a,b,c(0) = 0xal b,- 

oxaIpbUO where a > O, b > O and c > O. Thus, h has Ej(jxij - 1)1pil(juji 
i 

m - n components. In other words, h imposes m - n constraints on the target 
coordinates Oxajpb ~U. Note that in light of the definition of h and Bn m, we have 
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h-1(0) = Bn,rm(0). Also note that h' has the form [Q(m-n)xnIIm-n], where Im'-n 
is the identity matrix and so h' has full rank. Thus, according to Theorem 1, 
Bn, mr(0) is a n-dimensional smooth manifold in Rm. O 

A second definition of a discrete DAG model B is obtained by defining Bn m 
with the equations w v1.xvk = I Ox= I pc where xb is equal to xiv and pc is the 

cth value of pi obtained by the projection of (x1, ..., xl) to the coordinates 
that correspond to the variables in Pi. The mapping Bn m(O) > Bn,m(E3) iS 
a diffeomorphism for positive 0 values and so the conclusion of Theorem 2 
remains valid under this definition. The components of the image of 0 under 
Bn m are called the joint space parameters. 

The practical significance of DAG models stems, among other reasons, from 
the small number of network parameters compared to the number of joint 
space parameters. When the number of network parameters is still too large 
because IpiI is too large for some i's, additional factorizations are usually 
introduced. These include decision tree and decision graph models [Friedman 
and Goldszmidt (1996); Chickering, Heckerman and Meek (1997)] noisy-or 
gates, leaky noisy-or gates, max-gates and causal independence models [Pearl 
(1988); Henrion (1987), Heckerman and Breese (1996); Meek and Heckerman 
(1997)]. These models share the following characteristic. 

For each variable xi in the DAG model, a subset of ki states of pi are 
designated as reference states. The components of Brnm: 0 c Rn -* Rm are 
defined by OxaIlpb,uc = fi(6Xiap,7 Xalpki-i) 

for all a > 0, b > ki and c > 0 
where fi are smooth functions. We call DAG models defined in this way DAG 
models with explicit local constraints. The number of network parameters is 
given by n = Ei(Ixi - 1)ki where ki is often much smaller than pi. 

When the number of reference states is zero, namely each fi is the constant 
function, we get a discrete DAG model. In the case of a noisy-or model, the 
reference states are the states where exactly one parent is on and the other 
parents are off [see Pearl (1988)]. For leaky noisy-or model, the reference 
states also include the state when all the parents of xi are off. For decision 
tree models, the reference states are those that correspond to a path from the 
root to a leaf in the decision tree; all parents on the path are at a specified 
state and all those not on the path are at state zero. Note that for decision 
trees, noisy-or and leaky noisy-or models, the functions f i are all polynomial 
functions. 

THEOREM 3. For every discrete DAG model B(O, n, m) having explicit local 
constraints the set Bn, mr(0) is a n-dimensional smooth manifold in Rm. 

PROOF. Suppose the local constraints are given by f i. Define the compo- 
nents of a function h by 

hai,bi,ci(0) = 0xpi,Ui 
fa( 

ajpu 
..I 
*, a 
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where (a > 0, b > 0, c > 0) or (a > 0, b > ki, c = 0). Note that h has 
Ei(lxil - l)[Ipil(iuiu - 1) + ({pij - ki)] = m - n components. The conclusion 
now follows from Theorem 1 and the comment that follows. D 

Recall that for a discrete distribution with u states each associated with 
a positive parameter wi such that Ei wi = 1, the map -qi = log wi/wo, i = 
1, ..., u - 1 defines a diffeomorphism between the natural parameter space 
7) and the parameters {wi}1-'. Consequently, due to Theorem 2, we have 
established the following claim. 

THEOREM 4. Every discrete DAG model B(0, n, m) with explicit local con- 
straints is a curved exponential family of dimension n. 

3.3. Gaussian graphical models. The parameters of a multivariate non- 
singular Gaussian distribution can be described in various ways. The most 
common representation is by the elements of a covariance matrix E and a vec- 
tor of means pt. A second representation is by a precision matrix E-1 and A. 
These two representations are related by the diffeomorphism f: E E-1. 
A third representation is constructed as follows. Assign a total order to the k 
variables. Specify the regression coefficients bi j of xi given xl, ..., xi-, and 
the conditional variance and conditional means of xi given xl, ..., xi-,. The 
third representation is called the regression parameterization and is related 
to the second representation by a well-known diffeomorphism [(e.g., Shachter 
and Kenley 1989)]. 

A Gaussian DAG model is a family of multivariate nonsingular Gaussian 
distributions in which some bij are set to zero [Shachter and Kenley (1986)]. 
A Gaussian undirected graphical model was defined in Section 2.2 to be a 
family of multivariate nonsingular Gaussian distributions in which some of 
the off-diagonal elements of the precision matrix are set to zero. Both models 
define a map Bn,m: 0 C Rn - Rm. It follows from Theorem 1 that Bn,m(O) 
is a n-dimensional smooth manifold in Rm since the components of h can be 
defined as projections and so h' has the form [Q(m-n)xnlIm-n] where Im-n is 
the identity matrix and Q is a matrix of zeros. 

The difference between the two models is that the restrictions formed by 
setting elements of the precision matrix to zero define linear constraints in the 
natural parameter space and therefore Gaussian undirected graphical models 
are also LEFs while the restrictions set by a Gaussian DAG model are not lin- 
ear in the natural parameter space. To demonstrate the latter fact we note that 
the restriction b31 = 0 imposed by the Gaussian DAG model x1 -+ X2 X3 
can, in terms of the precision parameters, be written as tl 2t3, 3 = tl, 3t2, 3 and 
thus is not linear in the natural parameter space. See Geiger and Heckerman 
(1994) for the relationships between t j and bij for this three-node model. 

We note that Spirtes, Richardson and Meek (1997) show that Gaussian 
mixed ancestral graphs (MAGs) define smooth manifolds. Since Gaussian 
MAGs are a generalization of Gaussian DAG models, their results also imply 
that Gaussian DAG models define smooth manifolds. 
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4. Stratified exponential families. This section is divided into four 
parts. First, we provide some mathematical background, then we define strati- 
fied exponential families (SEFs) and show that graphical models representing 
discrete, Gaussian, and conditional Gaussian with or without hidden variables 
are SEFs. In Section 4.3 we show that graphical models with hidden variables 
are usually not CEFs and in the final subsection we discuss a method to com- 
pute the dimension of a SEF. 

4.1. Mathematical prerequisites. The set of all polynomials in x1, ..., x" 
with real coefficients is denoted by R[x1, . .. , xj]. Let q1, . . ., qt be polynomials 
in R[x1, ..., x,j. A variety V(ql,..., qt) is the set {(x1, ..., x n) C 
Rnlqi(xl, ..., xn) = 0 for all 1 < i < t}. A variety is also called an algebraic 
set. 

A subset V of Rn is called a semialgebraic set if V = Us=1nFri {X E 
.;x ij 0} where Pij are polynomials in R[x1, ..., xn] and ,ij is one 

of the three comparison operators { (, =, ) }. Loosely speaking, a semialgebraic 
set is simply a set that can be described with a finite number of polynomial 
equalities and inequalities. A variety is clearly a semialgebraic set. 

A map f: X -* Y where X C Rn and Y C Rm are semialgebraic sets, is 
called semialgebraic if the graph of f is a semialgebraic set of Rn+m. Note that 
if f is a polynomial map, then f is a semialgebraic map because its graph can 
be described by m polynomial equalities: yj - f j(x) = 0, where 1 < j < m. A 
key result about semialgebraic sets is given by the Tarski-Seidenberg theorem 
[see, e.g., Benedetti and Risler (1990)]. 

THEOREM 5 (Tarski-Seidenberg). Let f: X -- Y be a semialgebraic map. 
Then the image f (X) C Y is a semialgebraic set. 

We note that some smooth manifolds are semialgebraic sets and some are 
not. Similarly, some semialgebraic sets are smooth manifolds and some are 
not. Consider, e.g., the variety V(x2 2 y2z2 + z3) which can be described para- 
metrically as a (two-dimensional) surface in R3 by x = t(u2 - t2), y = u 
and z = u 2 - t2 (see plot in Figure 1). This variety is not a smooth manifold 
because, locally, at each point of the y-axis other than the origin the surface 
looks like the intersection of two smooth manifolds, as evident from the figure. 
To prove that the variety V(x2 _ y2z2 + Z3) is not a smooth manifold it suffices 
to observe that as we approach any point on the y-axis other than the origin 
we have two (two-dimensional) tangent planes where each plane contains a 
tangent vector that is not spanned by the other tangent plane. 

Another important result about semi-algebraic sets is that they admit a 
stratification. We will first illustrate this concept with the variety V(x2 _ 
y2z2 +Z 3). This variety can be described as a union of several two-dimensional 
smooth manifolds along with a one-dimensional smooth manifold, the y-axis. 
These smooth manifolds define a stratification of the variety. 

Formally, a stratification of a subset E of Rm is a finite partition {Ai } of 
E such that (1) each Ai (called a stratum of E) is a di-dimensional smooth 
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: ~~~~~~~~~ 

FIG. 1. A plot of part of the variety V(x2 _ y2z2 + Z3). 

manifold in Rm and (2) if fl A1 # 0, then Aj c A1 and dj 1< d (frontier 
condition) where A1 is the closure of Ai in Rm. See Akbulut and King (1992) 
for a more general definition. 

A stratification is called semialgebraic if every stratum is semialgebraic. A 
stratified set is a set that has a stratification. The dimension of a stratified set 
is d1, the largest dimension of a stratum. A key theorem about semi-algebraic 
sets is the Stratification theorem [see Benedetti and Risler (1990)]. 

THEOREM 6 (Stratification). Every semialgebraic set has a semialgebraic 
stratification. 

We note that if E is a stratified set and f is a diffeomorphism, then f(E) 
is also a stratified set. This proposition, that stratification is preserved under 
a diffeomorphism f, is proved as follows. Let {Ai} be a stratification of A. We 
show that { f(Ai)} is a stratification of f (A). Clearly, { f(Ai)} is a partition of 
f (A). Due to Proposition 1, the image of a smooth manifold Ai under a diffeo- 
morphism f is a smooth manifold f (Ai) and so condition (1) of the definition of 
stratified sets is satisfied. The frontier condition is satisfied because A. c A3j 
implies f (Ai) c f (A ) which, due to continuity of f, implies f (Ai) c f (A ) 
as needed for satisfying the frontier condition. 

4.2. SEFs and graphical models. We define a stratified exponential fam- 
ily (SEF) of dimension n as a subfamily of an exponential family having a 
natural parameter space N of order k if its parameter space No c N is a 
n-dimensional stratified set in Rk. In this section we show that No defined 
by some graphical models with or without hidden variables is a stratified set 
because it is a semialgebraic set or diffeomorphic to one. Consequently, these 
models are SEFs. 

All graphical models considered in the previous sections are SEFs because 
LEFs and CEFs are subsets of SEFs. Every one of these models is a set of 
distributions that satisfy all the independence constraints represented by a 
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graph G. For discrete and Gaussian graphical models an independence fact is 
expressible as a finite set of polynomial equalities. Combined with the inequal- 
ities which state that parameters of the discrete distribuiton are positive and 
that variances are positive, respectively, the resulting graphical model corre- 
sponds to a semialgebraic set. 

There are several classes of graphical models defined by a set of conditional 
independence constraints that can accommodate a combination of discrete and 
continuous variables using conditional Gaussian distributions. Among these 
models, in addition to the models discussed in the previous sections, are AMP 
chain graphs [Andersson, Madigan and Perlman (1996)] and reciprocal graphs 
[Koster (1997)]. These graphical models all correspond to semi-algebraic sets 
because independence facts in CG distributions are expressible as polynomial 
equalities. 

We now discuss graphical models with hidden variables. In particular we 
show that discrete DAG models with hidden variables correspond to semial- 
gebraic sets. We note that a similar claim holds for any graphical model rep- 
resenting CG distributions of which we are aware as long as the distribution 
over the observable variables is in the exponential family. 

A discrete DAG model B(0, n, m) with hidden variables is a DAG model 
where , n, m and Bn, m are given as follows. Let (x1, . . ., Xk) be an ordered 
sequence of variables each having a finite set of possible values. Partition this 
set of variables into two disjoint nonempty sets H and X. The variables in H 
are hidden. Those in X are observable. For each xi define two disjoint sub- 
sets of {x1, ..., x_1}, the observable parents pi C X and the hidden parents 
hi c H. 

The components of Bn m: e C Rn Rm are defined by Wa = LbkH=1 
Xalpa,hb where a are (vector) values of the observed variables X and b are 

(vector) values of the hidden variables H. The values xa and pa are obtained 
by the projection of a to the coordinates that correspond to xi, Pi. Similarly, the 
value hb is obtained from b. As before, the domain e of Bn is the Cartesian 
product of sets of the form {(t1, ..., t1xil)10 < ta < 1, La ta < 1}. Note that 
n = Lk=1(Ixi - 1)Ipilhih| and m = 1Ixki x -X1. 

The Tarski-Seidenberg theorem guarantees that for a discrete DAG model 
with hidden variables, Bn m(O(O) is a semialgebraic set because it is the image 
of a semialgebraic set under a polynomial mapping. Similarly, we note that 
Gaussian DAG models with hidden variables also correspond to semialgebraic 
sets due to their parametric definition via a polynomial mapping called the 
trek-rule [see, e.g., Spirtes, Glymour and Scheines (1993)]. Consequently, the 
image of these graphical models can be described with a set of polynomial 
equalities and polynomial inequalities. 

We have thus shown that No defined by each of the models considered in 
this paper is a stratified set because it is a semialgebraic set or diffeomorphic 
to one. We note that graphical models which represent a mixture of Gaussian 
distributions are not SEFs because the distributions represented are not in 
the exponential family. 
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4.3. Graphical models with hidden variables are not CEFs. It is clear that 
SEFs are a class of models that is strictly larger than CEFs; however, it 
remains to show that this new class contains graphical models which are not 
contained in the smaller classes. In this section we show that many graphical 
models with a hidden variable which are SEFs are not CEFs. 

We concentrate on a class of graphical models which are often called naive 
Bayes models. We show that naive Bayes model are stratified exponential 
families but are usually not curved exponential families. The proof extends to 
wider classes of graphical models. 

Let H, F1, ..., F,, be a set of variables each having a finite set of pos- 
sible values denoted by dom(H), dom(Fi), respectively. Let Idom(H)l = k 
and Idom(Fj)I = ki and let p(h) stand for p(H = h) where h e dom(H). 
A naive Bayes model is a set of discrete distributions for the sample space 
dom(F1) x ... x dom(Fn ) such that 

n 
(2) P(f 1 ..., fn) = , p(h) H p(fjIh), 

hEdom(H) i=1 

where fi e dom(Fi). The variable H is called the class variable and each Fi 
is called a feature. When k = 2 we get a Binary naive Bayes model and when 
ki = 2 the feature Fi is binary and its domain is {f , f i}. In applications, 
H denotes a mutually exclusive and exhaustive set of classes and each Fi 
is a measurement that has a finite set of possible outcomes. By observing 
outcomes of Fi, a common task is to infer how many classes H should have, 
or when the number of classes is known, to find the most likely class given 
the measurements. We focus on inferring the number of classes and more 
generally on model selection. 

We note that equation (2) defines a mapping gn' k, kl.kn: A c R R m 
where n = k-i +En=(ki - 1)k is the number of coordinates on the right-hand 
side and m = (H=U1 ki) - 1 is the number of coordinates on the left-hand side 
minus 1 (since these coordinates sum to 1). The set A is an open set of Rh 
defined by the following inequalities. For each h e dom(H) and f i E dom(Fi), 
1 < i < n, we have 0 < p(h) < 1, 0 < p(fiIh) < 1, and for each Fi and 
h E dom(H) we have EfiEdom(F) pff i I h) = 1. These are the usual restrictions 
regarding strict probabilities. Note that the set A depends on n, k and ki but 
this dependence is suppressed in our notation. 

In order not to clutter our notation, we first present the results for naive 
Bayes model with binary features and then extend to naive Bayes model with 
features for which ki > 2, and to other graphical models. When all ki equal 2, 
the mapping defined by equation (2) is denoted by gn,k: A c Rh -- Rm where 
n = nk + k - 1 and m = 2n - 1. For binary naive Bayes models with n binary 
features, the mapping defined by equation (2) is denoted by gn: A c R- > Rm 
where n = 2n + 1 and m = 2n - 1. The set gn, k klk v kn(A) is called the image 
of a naive Bayes model. 

We now show that the image of a naive Bayes model with k classes and n 
binary features is not a smooth manifold when n > 2k. Assume {h1, ..., hk} 
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are the k values of dom(H) and {fi, fi} are the two values of dom(Fi). Let 
the source coordinates of gn,k be tl, ..., tk-, ai, 1 < i <n 1 < c < k, where 
tc = p(hc) and aic = p(filhc). Note that tk = 1 - c*i tc is not a source 
coordinate. The target coordinates of gnf k can be indexed as follows: 

k 
(3) Wi,i2...i, = E tc l(l - aic) aic 

c=1 iEI iET 

where each index i has two possible values, I is the set of r indices {i, .. ., ir 
which are assigned with their second (or last) value and I is the set of the 
remaining n - r indices. The first coordinate, when I = 0, is denoted by w0. 

THEOREM 7. The image of a naive Bayes model with k classes and n > 2k 
binary features is not a smooth manifold. 

PROOF. The crucial fact we use is that if the image of gfnl k were a smooth 
manifold, then the image would have a tangent hyperplane at each point and 
the dimension of that tangent hyperplane could not exceed the dimension of 
A, which is kn + k - 1. Furthermore, if the image of gn,k were a smooth 
manifold, then dgnkl/daic evaluated at a point x in the domain of gn,k would 
be a tangent vector to M at the point gn,k(X) in the image. This is because 
these partial derivatives are columns of the Jacobian matrix for gn,k and the 
Jacobian matrix gives the mapping between the tangent space of A and the 
tangent space of M. The proof provides a point in the image at which there 
are more than kn + k - 1 linearly independent tangent vectors. Hence, the 
dimension of the tangent hyperplane is too large for the image to be a smooth 
manifold. (See, for example, Figure 2 where there are three independent tan- 
gent vectors at the origin while the surface has only two dimensions.) 

Suppose now that the image of gn, k is a smooth manifold M in R2n-'. 
Pick some j < n and some point Xj E A with tc = 1/k and aic = 1/2 for 
all c and i # j. Furthermore, for xi, let aj, aj2, ac =1/2 for c > 2, 

Smooth manifold Topological manifold Non-manifold 

FIG. 2. Three types of surfaces. 
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and 1/2 = IZkUA tca jc (i.e., a j1 a j2 = 1). Note that y = gn k (x j) is independent 
of which j we choose because W1i2 = (1/2)i 

Consider the partial derivatives dgn, kidaic, c = 1, 2, evaluated at 
x15 ... . xn. Each partial derivative, as well as any linear combination of par- 
tial derivatives, is a tangent vector at y. We show that there are n + n(n - 1)/2 
linearly independent tangent vectors at y. Consequently, since kn + k - 1 < 
n + n(n - 1)/2 for n > 2k we reach a contradiction: the number of independent 
tangent vectors is greater than the dimension of A. Consequently, M is not a 
smooth manifold at y. 

We select the following n + n(n - 1)/2 tangent vectors: dgn, kldail + dgn kl 
dai2 evaluated at xi, 1 < i < n, and dgn kl/daj1 - dgn, k/daj2 evaluated at xi, 
1 < i < j < n. We consider these vectors as columns of a matrix and examine 
the submatrix formed by the first 1 + n + n(n - 1)/2 coordinates, denoted wo, 
wi, wij, i < j. By subtracting line wo from each of the other lines wi and wij, 
removing w0 from the matrix, and pulling the common constant from each 
column, we get a convenient square matrix of size n + n(n - 1)/2. This matrix, 
which consists only of zeros and ones, has the form 

[I B] 
LB C Y 

where I is the identity matrix of size n x n, B' is the transpose of B and 
every line wij when restricted to B has two ones, in column i and j, and 
zeros otherwise (in B), and the square matrix C has zeros on the two main 
diagonals and ones otherwise. By subtracting lines wi and wj from line wij, 
1 < i < j < n, we get a diagonal matrix as needed. These calculations are 
facilitated by the equation 

-(1 - a1c), j E I, IE I, j + 1 
-alc, j E I,l E T, jUl, 

dw112 ir Idaj(xl) = (1/k)(1/2)-2| 1 - alc, j ET, I E I, j 5 1, 
6w ~~~~ ~ ~~~~~alc, j E TlC ET j# 

-1/2, j, l E I, j =1, 
1/2, j, EI, j1, 

and by the fact that all + a12 = 1 for < I < n. 

Suppose now that the features are not all binary. Let f ij. be the jth element 
in dom(Fi). Let aicj stand for p(fij, Ihc) and let tc = p(hc). Then the target 
coordinates of gnf k, k, -- kn can be indexed as follows: 

k ki-1 (4 'Wili2 ..ir =Etcu - Eaicj,V aicj,, 
C=1 iEI ji=1 iEI 

where each index i has ki possible values, I is the set of r indices {i1, ..., i,} 
which are assigned with their last value and Iis the set of the remaining n - r 
indices. 
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THEOREM 8. The image of a naive Bayes model with k classes and n fea- 
tures is not a smooth manifold, whenever n > 2(k' - 1)k, where k' = maxi ki, 
ki = Idom(Fi)l. 

PROOF. We use the same idea as in the proof of Theorem 7 and so we only 
describe the relevant changes. The image of a naive Bayes model is discussed 
in the notation of equation (4). The point y for which we count the number 
of linearly independent tangent vectors is given as follows. Let t, = l/k and 
aicji = l/ki, for all i =A j, 1 < ji < ki and 1 < c < k. Let ail, 7& aj2l and 

ajcj = l/k otherwise. Finally, let l/kj = yk L tca jcj (i.e., ajll + aj21 = 2/kj). 
Note that y = gnl k, kl ,.-. kn(Xj) is independent of which j we choose because 
Wil in = li(l/ki). We now compute the same derivatives as in Theorem 7, 
namely, with respect to ail, and ai21 (which are denoted in the previous proof 
by ail and ai2). The 1 + n + n(n - 1)/2 lines are also selected as before; in 
line wo every index is assigned its first value. In line wi, 1 < i < n, index i is 
assigned its last value and all other indices are assigned their first value. In 
the next n(n - 1)/2 lines, wij, j > i, the indices i and j are assigned their last 
value and all other n - 2 indices are assigned their first value. The resulting 
matrix, after pulling constants from each column, is identical to the one given 
in the proof of Theorem 7 and so its rank is n + n(n - 1)/2. Now, since the 
dimension of the image is at most k - 1 + EnZl(ki - 1)k < k - 1 + n(k' - 1)k 
and since k - 1 + n(k' - 1)k < n + n(n - 1)/2 when n > 2(k' - 1)k, the image 
is not a smooth manifold at y. E 

The proof technique of Theorems 7 and 8 can, with minor modifications, 
be used to show that the image of any discrete DAG model with a hidden 
variable H with n children is not a CEF whenever n(n + 1)/2 is larger than 
the cardinality of the state space over the observable variables. We note that 
these proofs exhibit one singular point y at which the image of a graphical 
model is not a smooth manifold. They do not describe the set of all singular 
points at which the image is not a smooth manifold. They also do not determine 
whether the point y is singular because the image is not a topological manifold 
at y or because it is not smooth at y. (See Figure 2 for an example of this 
distinction). 

In the Appendix we give full answers to these questions for binary naive 
Bayes model with n binary features. In particular, we show that the image is 
not even a topological manifold at singular points and that the singular points 
are precisely those for which p(filh) = p(filh) for all values of i, except at 
most two values {il, i2} where inequality is possible. Additional results are 
provided in the Appendix that shed light on the geometry of the image of 
binary naive Bayes models with binary features. We derive a formula that 
provides the two possible source points for every nonsingular point in the 
image of a binary naive Bayes with n binary features. 

4.4. Computation of the dimension. The dimension of a SEF is the dimen- 
sion of the highest stratum. In this section we present an algorithm that 
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computes the dimension of a SEF when specified as an image of a polynomial 
mapping composed with a diffeomorphism. For this discussion, it is sufficient 
to consider only the polynomial portion of the mapping because diffeomor- 
phisms do not change the dimension. 

The next lemma suggests a randomized algorithm for calculating the maxi- 
mal rank of the Jacobian matrix of a polynomial mapping. The algorithm and 
Lemma 9 were also studied more generally for analytical mappings in Bamber 
and van Santen (1985). A proof for polynomial mappings, which is all we need, 
is much simpler and thus included herein. 

LEMMA 9. Let g: Rm -+ Rn be a polynomial mapping. Let J(x) = dgldx 
be the Jacobian matrix at x. Then the rank of J(x) equals the maximal rank 
almost everywhere. 

PROOF. Let d be the maximal rank of J(x). Because the mapping g is 
polynomial, each entry in the matrix J(x) is a polynomial in x. When diago- 
nalizing J(x), the leading elements of the first d lines remain polynomials in 
x, whereas all other lines, which are linearly dependent given every value of 
x, become identically zero. The rank of J(x) falls below d only for values of x 
that are roots of some of the polynomials in the diagonalized matrix. The set 
of all such roots has measure zero. D 

A randomized algorithm for computing the maximal rank of J(x) is now 
evident. At the first step, the algorithm computes the Jacobian matrix J(x) 
symbolically from g(x). This computation is possible since g is a vector of 
polynomials in x. Then it assigns a random value to x and diagonalizes the 
numeric matrix J(x). Lemma 9 guarantees that, with probability 1, the result- 
ing rank is the maximal rank of J(x). 

The next theorem shows that this algorithm computes the dimension of the 
image of a polynomial mapping. Recall that the dimension of the image is 
defined to be the dimension of the highest stratum of the image. 

THEOREM 10. Let g: A C Rm Rn be a polynomial mapping where A is 
a semialgebraic open set. Let J(x) = dg/lx be the Jacobian matrix at x. Then 
the maximal rank of J(x) is equal to the dimension of g(A). 

This theorem is a special case of the following theorem [with V = Rm and 
Pv(x) being the identity matrix]. 

THEOREM 11. Let g: Rm -? Rn be a polynomial mapping. Let A be an 
open semialgebraic subset of R' and let V be an algebraic subset of Rm. Sup- 
pose that A n V is contained in the nonsingular points of V. For x E A n V, let 
J(x) = dg/lx be the Jacobian matrix of g at x, and let Pv(x) be the matrix 
of orthogonal projection to the tangent space of V at x. Let d be the maximum 
over x e A n V of the rank of the matrix J(x)Pv(x). Then g(A n V) is a 
semialgebraic set whose dimension is d. 
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PROOF. We recall a few facts about semialgebraic sets. Let A and B be 
semialgebraic sets. If A c B then dim(A) < dim(B). Also dim(A U B) = 
max(dim(A), dim(B)). The closure A is semialgebraic and dim(A) = dim(A). 
Finally, any semialgebraic set has only a finite number of connected 
components. 

We prove this theorem by induction on d. By Proposition 2.4.3 of Akbulut 
and King (1992), we know the entries of Pv(x) are rational functions, whose 
denominators do not vanish on the nonsingular points of V. Consequently, 
there is an algebraic subset W c V so that W n A is the set of points x E A n V 
at which J(x)Pv(x) has rank less than d. [The subset W is given by the 
vanishing of all d x d minors of J(x)Pv(x), or, alternatively, see the proof of 
Lemma 9.] By induction, we know that g(W n A) has dimension less than d. 
In particular, let WO = W and let Wi be the singular points of W_1 if i > 1. 
We apply this theorem with A replaced by A - Wi+1 and V replaced by Wi. 
Note that if x E Wi then the tangent space of Wi at x is contained in the 
tangent space of V at x and so the rank of J(x)Pw (x) is less than or equal 
to the rank of J(x)Pv(x) which is less than d. So by induction the dimension 
of g(A n (Wi - Wi+1)) is less than d. So if B is the closure of g(A n W), then 
B is semialgebraic and dim(B) < d. 

Let C = A - g-1(B). Note that C is an open semialgebraic set and J(x) x 
Pv(x) has rank d at all points x E C n V. We have reduced to showing that 
dim(g(C n V)) = d. Take any point y E g(C n V) and any x E C n V n g-l(y) 
Theorem 5.4 of Brocker and Janich (1982) gives a local description of g near 
x in V. In particular, there is a neighborhood U of x in V so that g(U) is 
a d-dimensional submanifold of RI and g-1(y) n U is a submanifold of V. 
So if x' E g-1(y) n V is close enough to x, a neighborhood of x' in V will 
be mapped to the exact same d-dimensional submanifold as a neighborhood 
of x. Consequently, if x' is any point in the same connected component of 
C n V n g-1(y) as x, a neighborhood of x' in V will be mapped to the exact 
same d-dimensional submanifold as a neighborhood of x. Since C n V n g-l(y) 
is semialgebraic, it has only a finite number of connected components. Hence a 
neighborhood of y in g(C n V) is a finite union of d-dimensional submanifolds. 
So dim(g(C n V)) = d. O 

In the context of graphical models g is the mapping from the network 
parameters 0 to the joint space parameters W. For example, for naive Bayes 
models g is replaced with gnf k,kl, 1kn. We have implemented the algorithm in 
Mathematica and used it to find the dimension of several graphical models 
with hidden variables. Here we summarize the results for gnf k, kl,.k [Imple- 
mentation details can be found in Geiger, Heckerman and Meek (1996).] 

For k = 2, the maximal rank of gnf k computed by the algorithm was full; 
namely, all results were consistent with the formula min(2n + 1, 2' - 1). In 
the Appendix, among other results, we prove that the maximal rank is indeed 
full for every n. For k > 2, the maximal rank of gnf k found by the algorithm 
was min(nk + k - 1, 2n - 1), except when (n = 4, k = 3), where the maximal 
rank is 13 rather than 14. This drop in dimension has also been observed 
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by Goodman [(1974), page 221]. When n = 2, the maximal rank of gn,k,klik2 
can be far from full. Settimi and Smith (1998) show that for k < min(k1, k2) 
the dimension drops by k(k - 1). The algorithm confirms this dimension drop. 
Other examples are discussed in Geiger, Heckerman and Meek (1996). 

5. Discussion. An obvious challenge remains open: is BIC a valid asymp- 
totic expansion for the marginal likelihood P(Datalmodel) when the model is 
a stratified exponential family? 

One solution to this problem may be as follows. Exclude from the stratified 
model all points aside of the highest stratum. As a result, only a measure 
zero set (with respect to the volume element of the highest stratum) of points 
is excluded. The remaining set is a smooth manifold and so BIC is a correct 
asymptotic expansion, under the appropriate regularity conditions, as long as 
the MLE point converges to a point that has not been excluded. 

This requirement about convergence is not always satisfied. To be concrete, 
suppose points in R2 are generated from a standard two-dimensional normal 
distribution N((m,, my), I). Suppose also that we have, a priori, two equally 
likely models. The first model consists of all standard two-dimensional normal 
distributions for which {(mx, m)2 = m3 } and the second model consists of 
all those distributions for which {(0, my) my < - 1}. The first model has one 
singularity at (0,0). Although this singularity has measure zero with respect to 
the first model, we cannot exclude it from the model. In particular, the MLE 
value for the first model will converge to (0,0) whenever the second model 
contains the true distribution, an event that will happen with probability 1/2 
according to our prior. A more careful asymptotic analysis of the behavior at 
singular points is needed. 

There are other obstacles in applying Haughton's results to graphical mod- 
els with hidden variables. These consist of Haughton's (1988) technical 
assumptions, as well as the assumptions that the prior is bounded and bounded 
away from zero in a local coordinate system on the natural parameter space. 
Priors are usually defined on the network parameters and when the prior is 
transformed to the natural parameter space, it is not necessarily bounded. In 
particular, for a DAG model with a hidden variable, the prior on the natural 
parameter space is usually not bounded whenever the prior on the network 
parameters is bounded and bounded away from zero. 

APPENDIX 

In this Appendix we study the image M of a binary naive Bayes model with 
n binary features. In particular, we characterize the set of points S for which 
the image is not a topological manifold, show that M\S is a smooth manifold, 
show that every point in M\S has exactly two sources and provide an explicit 
formula that computes these source points. In addition we resolve a conjecture 
made in Geiger, Heckerman and Meek (1996) by showing that the dimension 
of these models is full, namely, 2n + 1 when n > 3. For n = 1, 2, the dimension 
is 2n - 1. 
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These results are facilitated by a sequence of diffeomorphisms some of 
which are applied to the source coordinates and some to the target coordi- 
nates. Such transformations are valid because they preserve the properties 
we study herein. Our starting point is equation (3) with k = 2, ail = ai, 
ai2 = bi, t1 = t and t2 = 1 - t. 

Using a nonsingular linear transformation on the target coordinates we 
obtain the following mapping: 

Zij... r = taiaj ar + (1-t)bibj .. *br, 
where zi stands for the probability of the ith feature being true, Zij stands for 
the probability that the ith and jth features are both true, etc. 

We now apply a diffeomorphism on the source coordinates where s, xl, 
x2,..., xn, and ul,..., un are the new coordinates as given by 

t = (s + 1)/2, ai = xi + (1 - s)uj, bi = xi - (1 + s)ui. 
The mapping in the new source coordinates becomes 

zij =xixj + (1 -s2)Uiuj, 

Zijk = XiXjXk + (1-S2)(XiUjUk + UiXjUk + UiUjXk) - 2s(1- S2)Ui UjUk, 
r 

Z12...r = X1X2 ... Xr + E pi(s)* (,(products of i u's and r - i x's)) 
i=2 

where pi(s) = 1/2(1 - s2)((1- S)i-1 _ (_l)i-l(l + S)i-1), and, in particular, 
P2(S) = 1 - S2 and p3(S) = -2s(1 - s2). 

Now we subtract products of the first n coordinates to get rid of the leading 
terms. So, we do zij -zij 

- z1zj. Then we subtract products of the first n 
coordinates with one of the next n and choose two coordinates to get rid of the 
second terms, namely, Zijr < Zijr - ZijZr - ZirZj - ZjrZi - ZiZjZr, and so forth. 
We end with the mapping 

Zi = Xi Zij = P2(s)uiU *j*, Zij...r = Pr(S)UiUi ... Ur- 

Let us denote this mapping with Fn: U c R2n+l > R2n-1, where U is the 
set of (x, u, s) E Rn x Rn x R such that 

? < Xi '<1 -1 < s < 1 

-Xi < (1-S)ui < 1 -Xi, 

Xi- 1 < (1 ? s)ui < Xi. 

We denote the coordinates of Fn with Fn(x, u, s) = xi, Fn(x, u, s) = P2(s)iu j, 
Fij...r(X, U, s) = Pr(S)UiU .7- etc. 

We are now ready to analyze the image of U under Fn. Let M = Fn(U) 
be the image of U. Let S be the set of points in M for which at most one of 
the coordinates zi; is nonzero. Let S' be the set of points in M for which all 
coordinates Zij are 0. Note that S' c S. 
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THEOREM 12. The dimension of the image of a naive Bayes model with 
n > 3 binary features is 2n + 1. 

PROOF. The dimension of the image of a naive Bayes model is equal to 
the maximal rank of Fn because Fn is obtained from gn by composition with 
diffeomorphisms. Thus one just needs to compute the maximal rank of the 
Jacobian matrix of Fn. Let Jn denote this Jacobian matrix. We show that the 
maximal rank of Jn is 2n + 1 for n > 3. 

The matrix Jn has two blocks along the main diagonal where the first block 
of size n is an identity matrix. It remains to argue that the second block has 
a maximal rank of n + 1. We establish this claim by selecting n + 1 rows and 
showing that this submatrix has full rank. The rows selected, among many 
other valid possibilities, are those that correspond to the target coordinates 
z1i,i 2 < i < n, Z23 and Z123. Assuming the columns of the second block are 
organized according to the order u2, ..., un, u1, s, then this submatrix of Jn 
is 

p(s)u1 0 0 0 ... p(S)u2 -2su1U2 

o p(s)u1 0 0 ... p(S)U3 -2su1U3 

O 0 p(s)u1 0 ... p(S)U4 -2su1U4 

O 0 0 0 p(s)u1 P(S)Un -2sulun 

p(S)U3 p(S)u2 0 0 ... 0 -2sU2U3 

-2sp(s)u1u3 -2sp(s)u1u2 0 0 0 -2sp(s)u2u3 -[2sp(s)]'u1u2u3 

where p(s) = 1- s2. Using two row operations, we get a diagonal matrix with 
a maximal rank of n + 1 as claimed. O 

THEOREM 13. Let S be the set of points in M for which at most one of the 
coordinates Zi; is nonzero. The set M - S is a smooth manifold and this set is 
double covered by Fn. 

PROOF. Take any point z E M - S. Then we have z;1 = 0 and Zkf 0 0 with 
ij = ki. So if Fn(x, u, s) = z, we must have ua # 0 for a = i, j, k, f. So u 
must have at least three nonzero coordinates. Without loss of generality, we 
may suppose that ui 7& 0 for i = 1, 2, 3. Consequently, Z12, Z13, Z23 and Z123 
are all nonzero. 

Then we can solve for (x, u, s) = Fn-1(z) as follows: 

Xi = Zi, 

Ul = ?y"Z12Z13Z23 + (z123)2/4/z23, 

s =-Zl23/(2ulZ23) 

Ui = z1i/(p2(s)ul) for i > 1. 
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In particular, there are exactly two points in the inverse image, and if we 
choose one of these points (by choosing the ? sign) we have a smooth local 
inverse for Fn. Consequently, M - S is a smooth manifold and it is double 
covered by Fn. o 

THEOREM 14. Let S be the set of points in M for which at most one of the 
coordinates zij is nonzero. The set M is not a topological manifold at points 
of S. 

PROOF. A topological manifold is locally compact. (A space is locally com- 
pact if each point has a compact neighborhood. Since each point in a topologi- 
cal manifold has a neighborhood homeomorphic to closed disc, any topological 
manifold is locally compact.) We will show that M is not locally compact at 
points of S\S'. Recall that S' is the set of points in M for which all coordinates 
Zi; are 0. Loosely stated, the reason M is not locally compact at points of S\S' 
is that points arbitrarily close to the edge of U are mapped arbitrarily close 
to any point of S - S'. Finally, we argue that M is also not locally compact at 
points of S'. 

To be precise, pick any z' E S-S' and suppose it has a compact neighborhood 
N in M. Pick ? > 0 small enough that N contains the intersection of M with 
the ball of radius e around z. Pick a large constant b. We may as well suppose 
that Z12 4 0, but all other zi; are 0. Consequently the only nonzero coordinates 
of z' are zz and Z'12. Pick any (x', u', s') E U so that Fn(x', u', s') = z'. After 
applying o-, we may as well assume that u' > 0. For small enough 8 > 0, 
consider the point (x', us, s8) in U where 

s5 = 2z -1, 

u8 = 1/2- 8, 

u2 = Z12/((1/2 - )p2(s)), 

u5 = 'F/b, 
us = O for i > 3. 

We show here that (x', u6, s8) E U if 8 is small enough. Since xi E (0, 1) 
and s E (-1, 1), by the above description of U, we must only show that 

-Xi < (- S)Ui < 1 -Xi, 

Xi- 1 < (1 + S)Ui < Xi. 

These are trivially true if i > 3, and true for large enough b if i = 3. We 
also have 

-x1 < O < (1- s8)u' = (1 - 2)(1 - x) < 1x1, 
X- 1 < 0 < (1 + ss)u5 = (1 - 26)xl < x1. 

If Z12 > 0 then since (x', u', s') E U we have 
Xi > (1 + S')Ul = Z12/(( - S')U'2) > Z12/(1 - X2) 
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so z42/4x < 1 - x'2. Likewise Z42/(1 - x?) < x'2. So if 8 is small enough, we 
have the remaining inequalities, 

-x2 < 0 < (1-s8)u2 = z1/((1-28)x) < -x2 
x2 -1 < O < (I + S3*52 = Z'12/((' 6) 1-x 2'2 

Similarly, if 2 < 0 then u'2 < 0 and we have 

Xl > (1 ? S')Ul = Z12/((1 - S')U'2) > -Z12/X', 

1- > (1 - s')u' = Z12/((1 + S')U'2) > Z12/(X2 -1). 

and so for small enough 8, 

-X2 <zi 2/((1-28)xt) = (1--sa)u < 0 < 1-xl, 
X2-1 < z12/((1-28)(-xx')) = (1 + s8)u' < 0 < x1. 

Now we have 

F7(x', u5t, s) = zi 

F'2(x', ut, s6) = z2' 

Fl3(x', uV, s1) = p2(s)(1/2 - 8)/b, 

F23(x', u6, s,) = Sz12/(b(1/2 - 8)), 

F23(x' , s6) = -2s0 28/b 

and all other coordinates of Fn(x', U8,I s8) are 0. So if b is large enough (for 
example b > 2 > 1/2 + 6142) we see that Fn(x, Uit, s8) is within s of z', so it 
is in the compact N. Letting 8 approach 0, compactness of N gives us a limit 
point z" E N. We see that z' = z', Z'2= Z= 2I 3 = 2842/b, 4l = 
Z123 = - 2s8 2 s/b, and all other coordinates are 0. 

Note that z" is in M - S so we have an explicit formula above for its 
inverse image. In particular, if Fn(x ", , s") = z" then x" = x', s" = s5, 
U// = 1/2, u2 = z42/p2(s8), u3 = 8/b and all other u"' are 0. But this point 
is not in U, which can be seen by converting back to the original coordinates 
a// = X4/ + (1 - s")u' = z + (2 - 2z4)(1/2) = 1, which is outside the allowed 
range. 

So we have a contradiction. Consequently, M is not locally compact at S- S' 
and hence is not a manifold there. Note also that M cannot be locally compact 
at S' since any point of S' has arbitrarily close points in S- S' so any compact 
neighborhood of a point in S' is also a compact neighborhood of a point in 
S - S', which we have just shown cannot exist. l 

At this point one might argue that perhaps M is not a topological manifold 
for a mere technical reason. Suppose we considered M' = Fn(U) where U is 
the closure of U. Since U is closed and bounded, it is compact, so its image M' 
is also compact, and hence locally compact. Hence, there is still the possibility 
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that M' could be a topological manifold. Moreover, taking U is not unreason- 
able, we are just allowing our probabilities to be 0 or 1. Nevertheless, M' is 
not a topological manifold. In fact, we can show that at points of S - S', M' is 
locally homeomorphic to Rn+l x c(D2 x Sn-3) where c(D2 x Sn-3) is the cone on 
a 2-disc D2 cross the n - 3 sphere (A cone on a set A is the set of points lying 
on some straight line between a point in A and the origin). We can also show 
that at points of S\S', M is locally homeomorphic to Rn+1 x c(R2 x Sn-3). 
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