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Probabilistic Relevance Relations
Dan Geiger and David Heckerman

Abstract—The intuition behind the construction of Bayesian
networks and other graph-based representations of joint prob-
ability distributions from expert judgments is based on the
assumed relationship between “connectedness” in the graphical
model and “relatedness” among the variables involved. We show
that several plausible definitions of relatedness do not adhere
to such an equivalence. We then provide a definition of prob-
abilistic relatedness that is closely related to connectedness in the
graphical model and prove that the two concepts are equivalent
whenever the model uses only propositional variables and assum-
ing every combination of value assignment to these variables is
feasible. We conjecture that the equivalence established holds also
when these restrictions are lifted.

Index Terms—Bayesian networks, conditional independence.

I. INTRODUCTION

BAYESIAN networks are graph-based representations of
joint probability distributions which have found a variety

of applications for diagnosis, prediction, image recovery, and
in many other domains [9]. There are three options for
constructing Bayesian networks. The first is to build a network
manually with the help of a domain expert. This approach
is used quite often and is most useful for moderate-size
models. A second approach is to construct a Bayesian network
completely from data. This approach is most useful when a
database of cases is available and when experts are too costly
or unavailable. Finally, a hybrid method by which a rough
model is build from expert’s judgments and then tuned by
data is perhaps the most promising approach. The analysis of
this paper concentrates on issues arising from the construction
of Bayesian networks from expert’s judgments.

To be concrete, let us first consider a simple Bayesian
network of the form . This network represents
a joint probability distribution of three random
variables , , and , such that .
It is a minimal Bayesian network of if none of it edges can
be removed, that is, neither nor

hold for all assignments for, ,
and .

The intuition behind the construction of Bayesian networks
from expert judgments is based on the assumed relationship
between “connectedness” in the graphical model and “related-
ness” between the variables involved. That is, for example,
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and are connected in because they are related to each
other through . However, one can easily construct examples
of a distribution such that is a minimal network of
yet and are marginally independent, and also conditionally
independent given any specific value of. Such an example
seemingly contradicts the analogy between “connectedness” in
the graphical model and “relatedness” in the joint distribution
because and are seemingly unrelated in any context—when

is unknown and when is known—yet they are connected
in the graphical representation.

In this paper, we seek a definition of relatedness that fits the
intuition that connected nodes in the graphical representation
correspond to variables that are related probabilistically. We
shall prove that our concept of relatedness is indeed equivalent
to connectedness in a minimal Bayesian network under the
assumption that all variables are propositional and that every
combination of value assignment is feasible. We conjecture
that the analogy established holds even when these restrictions
are lifted and hope that this paper will stimulate the resolution
of this conjecture

Apart from the epistemological reassurance given by our
definition, our results also justify prevailing decomposition
techniques that simplify the process of acquiring probabilistic
knowledge from domain experts via models known as simi-
larity networks [7]. A similarity network is a set of Bayesian
networks, called the local networks, each constructed under
a different set of hypotheses . In each local network ,
only those variables that “help to distinguish” between the
hypotheses in are depicted. The success of this model
stems from the fact that only a small portion of variables helps
to distinguish between the carefully chosen set of hypotheses

. Thus, the model usually includes several small networks
instead of a single large Bayesian network. A plausible formal
definition of what is meant by “help to distinguish” is provided
herein, where helps to distinguish values of means that
and are related probabilistically.

This paper is organized as follows. In Section II, we provide
definitions of a Bayesian network and conditional indepen-
dence and review some of their properties. In Section III,
we associate connectedness with conditional independence.
In Section IV, we develop a definition of probabilistic relat-
edness, and in Section V we prove the equivalence between
relatedness and connectedness under some restrictions.

II. BACKGROUND

Throughout the discussion we consider a finite set of
variables each with a finite domain

and a probability distribution having the Cartesian
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product as its sample space. We use lowercase
letters possibly subscripted (e.g.,, , , or ) to denote
variables, and use uppercase letters (e.g.,, , or ) to
denote sets of variables. A bold lowercase or uppercase letter
refers to a value (instance) of a variable or of a set of
variables, respectively. A value of a set of variables
is an element in the Cartesian product , where
is the set of values of . The notation stands for

, where and
is a value of .

We let denote the statement that and
are conditionally independent given , namely, that

for
every value of and . We let denote the statement
that and are independent given every value for, namely,
that holds for every . Similarly, denotes
the statement and are marginally independent which can
also be thought of as a shorthand notation for .

A Bayesian network is a representation of independence
statements as well as a representation of a joint probability dis-
tribution. Below we give a definition and some consequences.
For a more comprehensive overview, consult [9].

Definition [9]: A directed acyclic graph of a joint prob-
ability distribution is a Bayesian network of if is
constructed from by the following steps: assign an arbitrary
construction order to the variables in , and
designate a node for each variable .1 For each in ,
identify a set such that

(1)

holds wrt (with respect to ). Assign a link from every
node in to . Each node is associated with the conditional
probability distribution . The resulting network is
minimal if, for each , no proper subset of satisfies
(1).

By the chaining rule it follows that

and by the definition of we
further obtain

(2)

Thus, the joint distribution is represented by the network and
can be used for computing the posterior probability of every
variable given a value to some other variables.

Note that the number of parameters that a Bayesian network
requires and the complexity of its topology depend on the
construction order, which is not dictated by its definition.
There are many possibilities to choose a construction order.
In practice, cause-and-effect and time-order relationships often
suggest construction orders that yield simple networks.2

1We deliberately denote withui the node that corresponds to variableui.
It will be clear from the context whether we talk about a node or a variable.

2Bayesian networks are often calledcausal networks.

Fig. 1. An example of a Bayesian network.

For example, a Bayesian network can represent the follow-
ing situation. Suppose an alarm system is installed in your
house in order to detect burglaries; and suppose it can be
activated by two separate sensors. Suppose also that, when
the alarm sound is activated, there is a good chance that a
police patrol will show up. We are interested in computing the
probability of a burglary given a police car is near your house.

We consider five binary variables,burglary ( ), sensorA
( ), sensorB( ), alarm ( ), and patrol ( ), each having
two valuesyes and no. We know that the outcome of the
two sensors are conditionally independent givenburglary, and
that alarm is conditionally independent ofburglary given
the outcome of the sensors. We also know thatpatrol is
conditionally independent ofburglary given alarm (assuming
that only the alarm prompts a police patrol). This qualita-
tive information implies that the following three indepen-
dence statements hold in any probability distribution that
describes this story:

. Consequently, according to our def-
inition, the graph shown in Fig. 1 is a Bayesian network of
the burglary story.

In addition to the topology of the network, we need to spec-
ify the following conditional distributions: , ,

, , and . From these condi-
tional distributions, we can compute via (2) any probability
involving these variables. However, to do such computa-
tions efficiently we need to know additional independence
statements which follow from the topology of the network
but were not used to construct the Bayesian network (such
as patrol burglary sensorA sensorB). The criteria of

-separation, defined below, provides the most general mech-
anism to infer independence statements from the topology
of the Bayesian network. Some terminology is first estab-
lished.

A trail in a Bayesian network is a path in in which
links are taken regardless of their direction. A nodeis called
a head-to-headnode wrt a trail if there are two consecutive
links and on . Two nodes areconnectedin
a Bayesian network if there exists a trail connecting them.
Otherwise they aredisconnected. A connected component
of a Bayesian network is a subgraph of in which every
two nodes are connected. A connected component ismaximal
if there exists no proper super-graph ofthat is a connected
component of . If is a link in a Bayesian network,
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then is a parent of and is a child of . If there is a
directed path from to , then is an ancestorof and
is a descendantof .

Definition [9]: A trail is active wrt a set of nodes
if 1) every head-to-head node wrteither is in or has a
descendant in and 2) every other node alongis outside .
Otherwise, the trail is said to beblocked(or -separated) by .

In Fig. 1, for example, both trails between and
are -separated by ; the trail is

-separated by because node , which is not a head-to-
head node wrt this trail, is in . The trail is

-separated by , because node and its descendant are
outside . In contrast, is not -separated by

because is in .
The theorem below is the major building block for most of

the developments presented in this article and is fundamental
to the theory of Bayesian networks.

Theorem 1 [13]: Let be a Bayesian network of a proba-
bility distribution and let , , and be three disjoint
subsets of . If all trails between a node in and a node in

are -separated by , then holds wrt .
For example, in the Bayesian network of Fig. 1, all trails be-

tween and are -separated by . Thus, Theorem
1 guarantees that holds wrt . Geigeret
al. [5] generalize Theorem 1 and show that no other graphical
criteria reveals more independence statements ofthan does

-separation. Lauritzenet al. [8] establish another graphical
criteria and show that it is equivalent to-separation.

One immediate consequence of Theorem 1 is that if two sets
of nodes and are disconnected in a Bayesian network of

, then holds (wrt ) because there is no
active trail between a node in and a node in . Another
well-known consequence is that if is the set of parents of a
node , and are the set of all nodes that are not descendants
of except ’s parents. Then, holds (wrt ). The
argument is simple. The set -separates all trails between a
node in and because each such trail either passes through
a parent of and therefore is blocked by , or each such trail
must reach through one of ’s children and thus must contain
a head-to-head node, where neither nor its descendants
are in .

In our proofs we will only use the following properties of
conditional independence. A variant of these properties was
introduced by Dawid [1] and Spohn [12] and further studied
by Pearl [9] and Pearl and Paz [10].

Symmetry

(3)

Decomposition

(4)

Weak union

(5)

Contraction

(6)

It is worth mentioning that the proof of Theorem 1 only uses
these properties and therefore every trinary relationthat

satisfies these properties can be represented by a Bayesian
network and the result of Theorem 1 applies. In particular,
partial correlation and embedded multivalued dependencies
(from relational database theory) satisfy these properties.

III. CONNECTEDNESS INTERMS OF INDEPENDENCE

In this section, we show that if and are disconnected in
one minimal network of then and are disconnected in
every minimal network of . This result shows that the concept
of connectivity can be phrased in terms of independence
statements that hold in. Indeed, we find that and are
disconnected in a minimal Bayesian network of if and
only if there exists a partition , of such that ,

and (a partition of a set is a pair of nonempty
disjoint subsets of whose union is ).

Lemma 2: Let be a minimal Bayesian network of ,
and be a connected component of with a set of nodes

. Then, there exists no partition of such that
holds wrt .

Proof: Assume contrary to the lemma’s claim that
is a partition of and that holds. Since

and are connected in , there must exist a link
between a node in and a node in . Without loss of
generality, assume it is directed from a nodein to a
node in . Let , be the parents of in and ,
respectively. Since holds wrt , by symmetry and
decomposition, holds too. By symmetry and
weak union, holds as well. Now since
are the parents of , according to the comment that follows
Theorem 1, holds, where is the set of

’s nondescendants except its parents. Consequently, by the
contraction property, holds. Since is a
proper subset of (because contains ), where

are the parents of in , is not minimal.
Theorem 3: If two nodes are disconnected in some minimal

Bayesian network of , then they are disconnected in every
minimal Bayesian network of .

Proof: It suffices to show that any two minimal Bayesian
networks of share the same maximal connected components.
Let and be two minimal Bayesian networks of. Let

and be maximal connected components of and
, respectively. Let and be the nodes of and ,

respectively. We show that either or . This
demonstration will complete the proof, because for an arbitrary
maximal connected component in there must exist a
maximal connected component in that shares at least one
node with . Thus, by the above claim, it must have exactly
the same nodes as . Therefore, each maximal connected
component of shares the same nodes with exactly one
maximal connected component of . Hence, and
share the same maximal connected components.

Since is a minimal Bayesian network of and
is a maximal connected component of , there is no trail
between and and so, by Theorem 1, holds.
Using symmetry and decomposition, holds
too. Thus, by Lemma 2, for to be a maximal connected
component, either or must be empty, lest
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would not be minimal. Similarly, for to be a maximal
connected component, or must be empty. Thus,
either or .

Theorem 4: Two variables and are disconnected in
every minimal network of iff there exists a partition

, of such that and and .
Proof: Suppose and are disconnected in some mini-

mal network of . Let be the variables connected to
in , and be the rest of the variables in. Thus there

is no trail between and and so, by Theorem 1,
holds (wrt ).

Suppose there exists a partition of such that
, , and holds (wrt ). We show that in every

minimal Bayesian network of , nodes and do not reside
in the same connected component. Assume, to the contrary,
that and reside in the same maximal connected component
of some minimal Bayesian network of , and that are
the nodes of that component. Now, holds
(wrt ) because it follows from by the symmetry and
decomposition properties. Moreover, and are
not empty, because they includeand , respectively. Since

and are disjoint, the two sets , partition
. Therefore, by Lemma 2, cannot be minimal, contrary to

our assumption.

IV. A LTERNATIVE DEFINITIONS FOR RELATEDNESS

In this section, we discuss several possibilities for defining
probabilistic relatedness (or unrelatedness as a complementary
notion), indicate the pitfalls of the proposed definitions and
conclude with a definition that bypasses these pitfalls. The
common ground of the proposed definitions is the idea that
two variables are unrelated iff they are independent given an
appropriately large set of contexts.

As a first alternative, we could defineand to beunrelated
[wrt ] if and only if where
is a subset of variables of and is a specific
assignment to each variable in. In other words, a context
consists of a set of assignments to a subset of variables and

and are unrelated iff they are independent given any such
context. For example, if and if both
and hold, then and are said to be unrelated. The
following well-known property of conditional independence
[1], [12], which we call property B,

and or

(7)

holds whenever is a binary variable. The converse of (7)
follows immediately from (3)–(6). Thus, due to Theorem 4,
we conclude that in any minimal network of , if
is a binary variable, then and will reside on two distinct
components iff they are unrelated (wrt).

The technical problem with this definition lies in the fact
that if is not a binary variable, then property B does not
hold anymore. The difficulty can be traced to the fact that if
we conceive and to be unrelated (and therefore expectand

to be disconnected), we indeed mean to say thatand are
marginally independent and conditionally independent given

any possible context. One particular context not considered in
our first attempt is the situation whenis equal to either
or but we do not know to which value. Of course, ifis
a binary variable, then saying thatgets one of its values is
a tautology that adds nothing to our knowledge but ifis not
a binary variable, then restricting the domain ofis a new
context and so if and are to be considered unrelated, then
they should also be independent conditioned on .

Indeed the following theorem shows one way to extend
property B to nonbinary variables. This theorem justifies a
second definition of relatedness for the simple case of three
variables.

Theorem 5: Let be a joint probability distribution
of three random variables , , and . If and

for and if
for every and , (i.e., and are unrelated),
then either or .

Proof: Let be a value of . We say that has a
Type I factorization if and it has
a Type II factorization if . We shall
now prove that every pair of values and of has
a common factorization, namely, either both values have a
Type I factorization or both have a Type II factorization. This
observation completes the proof because it implies that all
values of have a common factorization either of Type I or of
Type II. Rearrange the values ofsuch that is one value
and the disjunction of all other values is considered to be the
single second value. According to property B, the value
either has a Type I factorization or a Type II factorization.
So is the case with as well. If both values have the same
factorization, then the proof is completed. Suppose, without
loss of generality, that has a Type I factorization and
that has a Type II factorization. Now rearrange the values
of such that is one value and the disjunction of
the other values is the second value. According to property
B, the value has a Type I factorization or a Type
II factorization. If it has a Type I factorization, and since

has a Type I factorization, it follows, by subtracting the
corresponding equations, that also must have a Type II
factorization. Similarly, if has a Type II factorization
then must have a Type II factorization as well.

A straightforward generalization of Theorem 5 tovari-
ables can be phrased as follows. For a pair of variables
and in , we define a new variable whose domain is the
Cartesian product of the domains of the variables in .
Now we say that and are unrelated wrt if ,

and for every two values
of the combined variable. The difficulty with this definition
is that it is too strong. Due to Theorem 5, if and are
unrelated wrt according to this definition, then either
is independent of or is independent of .
Consequently, either or is unrelated to all other variables
and this claim is stronger than saying thatand are unrelated
merely between themselves.

So we conclude with the following definition.
Definition: Let be a probability distribution.

Variables and are unrelated if and
for every disjunction
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of values for , respectively, where
is an arbitrary subset of

.
For example, suppose that and that

the domains of and are , and ,
respectively. Then, according to our definition,and are
unrelated (wrt ) iff , ,

,
,

, and
.

Note that when are all binary variables, then the
sets are singletons, namely, a single specific assignment
for . Therefore, for binary variables, our final definition
coincides with our first one.

V. PROOF OF EQUIVALENCE

We now show that relatedness and connectedness are equiv-
alent when all variables are binary and when the distribution

is strictly positive.
Definition: A strictly positive binary distribution

is a probability distribution where every
variable has a domain of two values—say,true and
false—and every combination of the variables’ values has a
probability greater than zero.

First we must generalize property B.
Theorem 6: Let be a strictly positive bi-

nary distribution. Let , , and be
three partitions of . Let be ,
and be . Then

and and

or (8)

where and are two distinct values of.
When all three partitions are identical, the above theorem

can be phrased as follows. If two sets of variablesand
are marginally independent, and if holds as well, then
either or . This special case is
precisely property B. The proof of Theorem 6 is given in the
Appendix.

Theorem 7: Let be a strictly positive
binary distribution. Suppose and are in .
Then, and are unrelated (wrt ) if and only if and are
disconnected in some minimal Bayesian network of.

Proof: If and are disconnected in some minimal
network, then according to Theorem 4 there exists a partition

, of such that and and . Thus,
using symmetry (3), decomposition (4) and weak union (5)
it follows that where is an arbitrary subset of

. Thus, and are unrelated wrt ().
The converse is proven by induction on. If , and

and are unrelated, then holds wrt . Consequently,
there exists a partition , of such
that and so and are disconnected in any minimal
network of . Otherwise, assume without loss of generality that

is and is , and denote by . Since and are
unrelated wrt , and are also unrelated wrt

, , and
, where and are two distinct values of .

Thus, by applying the induction hypothesis three times, we
conclude that there are three partitions , ,
and of such that is in , ,
and , and is in , , and . Hence, the antecedents
of (8) are satisfied. Consequently, can be
partitioned into two marginally independent sets: either
and , or and , where is
and is . Because, in both cases, one set
contains and the other contains, it follows that and
are disconnected.

VI. SUMMARY

This paper shows that for strictly positive binary distribu-
tions the notion of probabilistic relatedness as defined herein is
equivalent to the notion of connectedness in minimal Bayesian
networks. We conjecture that the equivalence established holds
also when these restrictions are lifted.

APPENDIX

Below, we prove Theorem 6. First, we phrase the theorem
differently.

Theorem 8: Strictly positive binary distributions satisfy the
following property:3

(9)

where all sets mentioned are pairwise disjoint and do not
contain , and and are distinct values of.

To obtain the original theorem, we set ,
, , , , and
to be equal to and of

the original theorem, respectively.
Denote the three antecedents of (9) by, , and . We

need the following two Lemmas.
Lemma 9: Let and be two disjoint sets of variables,

and let be an instance of a single binary variablenot in
. Let be a joint probability distribution of the variables

. If holds for , then for every pair
of instances of and of , the following
equation must hold:

Proof: Bayes’ theorem states that

3In complicated expressions,A1A2 is used as a shorthand notation for
A1 [ A2 andeA1 denotesfeg [A1.
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Thus,

The middle equality follows from the fact that
holds for .

Lemma 10: Let , , , , , , , and be
disjoint sets of variables, and be a single binary variable
not contained in any of these sets. Letbe a joint probability
distribution of the union of these variables. If the antecedents

, , and of (9) hold for , then the following conditions
must also hold:

(10)

(11)

(12)

(13)

(14)

(15)

where each and denote a specific value for and
, respectively. [In words, (10) states that if and are

conditionally independent for one specific value of
and of , then they are conditionally independent given
every value of and , provided the values of the other
variables remain unaltered. The other five equations have a
similar interpretation.]

Proof: First, we prove (10). Then we show that the
proofs of (11)–(13) are symmetric. Finally, we will prove (14)
and (15). Let and . Then,
Lemma 9 and yield (15a), shown at the bottom of the page,
where , , and are arbitrary instances of , ,
and , respectively. Applying and cancelling equal terms
yields

(16)

Furthermore, [the antecedent
of (10)] implies that

Thus, from (16), it follows that

(17)

Subtracting each side of (17) from 1 yields

(18)

Thus, holds for . Because
and are arbitrary instances,
also holds for . Thus, (10) is proved.

Equation (11) is symmetric with respect to (10) by switching
the role of with that of and the role of with that
of . Equation (12) is symmetric with respect to (10) by
switching the roles of and . Equation (13) is symmetric
with respect to (11) by switching the roles of and .

Now we prove (14). Equation (15) is symmetric with respect
to (14) by switching the role of with that of and the
role of with that of .

Let and . Applying
Lemma 9 and and then using to cancel equal terms,
yields the following equation:

(19)

where , , and are arbitrary instances of , ,
and , respectively. Similarly, let and

. Then, applying Lemma 9 and and using
to cancel equal terms, yields the following equation:

(20)

Now implies the following two
conditions:

(21)

(22)

(15a)
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After using (21) to cancel equal terms in (19) and using (22)
to cancel equal terms in (20), we compare (19) and (20) and
obtain

(23)

Equation (23) has the form

which yields .
Consequently, we obtain .

Furthermore, because and are arbitrary instances,
holds for .

Next, we prove Theorem 6. Let and
. We will see that , , and imply the following

four properties:

or (24)

(25)

(26)

(27)

First, we prove (9), using these four properties. Then, we
will show that these properties are valid. From (24), there are
two symmetric cases to consider. Without loss of generality,
assume holds. [Otherwise, we switch the
roles of subscripted ’s with subscripted ’s in (25)–(27).]
By a single application of each of (25)–(27), the following
independence statements are proved to hold for:

These three statements yield ( )
by two applications of contraction. Consider (9).
The statement (i.e., )
implies using weak union,
which together with imply using contraction

. This statement together
with the statement imply, using contraction,
the statement , thus completing
the proof.

It remains to prove (24)–(27). First, we prove (24). Let,
, , , , and be arbitrary instances of , ,

, and , respectively. Let and . Then,
Lemma 9 and yield the following equation:

(28)

From , we obtain . Conse-
quently, (28) yields

(29)

Equation (29) has the following algebraic form, where sub-
scripted s replace the corresponding terms

(30)

Using Lemma 9 and , we obtain a relationship similar to
(29), where the only change is thatis replaced with

(31)

We rewrite (31) in terms of s, and then use (30) to obtain

(32)

where . Equation (32) implies that either
(i.e., ) or . Because

the choice of instances for and is arbitrary, at least one
of the following two sequences of equalities must hold

• for every instance of
;

• for every instance of
;

where are the instances of and
are the instances of .

Thus, by definition of the s, we obtain

instances of

or (33)

On the other hand, (24), which we are now proving, states

or (34)

which is stronger than (33). Equation (24) can also be written
as follows:

(35)

We prove (35). The statement implies that
there exists instances , , , , , , , , and
of , , , , , , , , , and , respectively,
such that

(36)

Hence,

(37)

From Lemma 10 [contrapositive form of (11)], (37) implies

(38)

where and are arbitrary instances of and ,
respectively. Hence, in particular, if , we have

(39)

Similarly, from Lemma 10 (13), (39) implies

(40)
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where is an arbitrary instance of . Also, from Lemma
10 (15), (40) implies

(41)

where is an arbitrary instance of . Examine (33).
Equation (41) states that the second disjunct cannot be true
for every instance of and . Hence, for each of
these instances the other disjunct must hold. That is,

(42)

or, equivalently,

(43)

Applying (43) to (10) yields,

(44)

Similarly, applying (44) to (12) and (14) yields the statement

(45)

which is the desired consequence of (35). Thus, we have
proved (24).

Next, we show that (25) must hold. Lemma 9 andyield
(46), shown at the bottom of the page. Incorporatingand

(45), and cancelling some equal

terms yields

Further cancellation of equal terms yields

Thus, for every instance
, and . That is, holds. Because

and are arbitrary instances, follows.
Next, we show that (26) must hold. Lemma 9 and

yield (47), shown at the bottom of the page. Incorporating
, , and and

cancelling some equal terms yields (48), shown at the bottom
of the page. Further cancellation of equal terms yields

Thus, for every instance
, and . That is, holds. Because

is an arbitrary instance, follows.
Finally, we must show that (27) holds. Lemma 9 and
yield (49), shown at the bottom of the page. Incorpo-

rating , , , ,
and and cancelling some equal terms yields

(46)

(47)

(48)

(49)

(50)
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(50), shown at the bottom of the preceding page. Further
cancellation of equal terms yields

Thus, for every instance , and
. That is, holds.
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