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Probabilistic Relevance Relations

Dan Geiger and David Heckerman

Abstract—The intuition behind the construction of Bayesian and b are connected iy because they are related to each
networks and other graph-based representations of joint prob- other throughc. However, one can easily construct examples
ability distributions from expert judgments is based on the of a distributionp such thatD, is a minimal network ofp

assumed relationship between “connectedness” in the graphical - . -
model and “relatedness” among the variables involved. We show yeta andb are marginally independent, and also conditionally

that several plausible definitions of relatedness do not adhere independent given any specific value ©ofSuch an example
to such an equivalence. We then provide a definition of prob- seemingly contradicts the analogy between “connectedness” in

abilistic relatedness that is closely related to connectedness in thethe graphical model and “relatedness” in the joint distribution
graphical model and prove that the two concepts are equivalent o5 \1se andb are seemingly unrelated in any context—when

whenever the model uses only propositional variables and assum- is unknown and whem is known—vet thev are connected
ing every combination of value assignment to these variables is € IS u w whe | wn—y y

feasible. We conjecture that the equivalence established holds alsoln the graphical representation.
when these restrictions are lifted. In this paper, we seek a definition of relatedness that fits the

intuition that connected nodes in the graphical representation
correspond to variables that are related probabilistically. We
shall prove that our concept of relatedness is indeed equivalent
l. INTRODUCTION to connectedness in a minimal Bayesian network under the

AYESIAN networks are graph-based representations 8ssumption that all variables are propositional and that every
joint probability distributions which have found a varietycombination of value assignment is feasible. We conjecture
of applications for diagnosis, prediction, image recovery, arat the analogy established holds even when these restrictions
in many other domains [9]. There are three options fée lifted and hope that this paper will stimulate the resolution
constructing Bayesian networks. The first is to build a netwof this conjecture
manually with the help of a domain expert. This approach Apart from the epistemological reassurance given by our
is used quite often and is most useful for moderate-sig€finition, our results also justify prevailing decomposition
models. A second approach is to construct a Bayesian netwétkhniques that simplify the process of acquiring probabilistic
completely from data. This approach is most useful whenkowledge from domain experts via models known as simi-
database of cases is available and when experts are too cdafijy networks [7]. A similarity network is a set of Bayesian
or unavailable. Finally, a hybrid method by which a roughetworks, called the local networks, each constructed under
model is build from expert's judgments and then tuned by different set of hypothesed;. In each local networkD;,
data is perhaps the most promising approach. The analysig®Bfy those variables that “help to distinguish” between the
this paper concentrates on issues arising from the constructipfpotheses ini, are depicted. The success of this model
of Bayesian networks from expert’'s judgments. stems from the fact that only a small portion of variables helps
To be concrete, let us first consider a simple Bayesid® distinguish between the carefully chosen set of hypotheses
network Dy of the forma — ¢ «— b. This network represents H;. Thus, the model usually includes several small networks
a joint probability distributionp(a, b, ¢) of three random instead of a single large Bayesian network. A plausible formal
variablesa, b, andc, such thap(a, b, ¢) = p(a)p(b)p(c|a, b). definition of what is meant by “help to distinguish” is provided
It is a minimal Bayesian network gf if none of it edges can herein, wherer helps to distinguish values @f means that:
be removed, that is, neithera, b, ¢) = p(a)p(b)p(c/a) nor andh are related probabilistically.
pla, b, ¢) = p(a)p(b)p(c|b) hold for all assignments fou, b, This paper is organized as follows. In Section Il, we provide
and c. definitions of a Bayesian network and conditional indepen-
The intuition behind the construction of Bayesian networkdence and review some of their properties. In Section Il
from expert judgments is based on the assumed relationshi® associate connectedness with conditional independence.
between “connectedness” in the graphical model and “relatéfl-Section 1V, we develop a definition of probabilistic relat-
ness” between the variables involved. That is, for example,€dness, and in Section V we prove the equivalence between
relatedness and connectedness under some restrictions.
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product x,,cyd(w;) as its sample space. We use lowercase Burglary
letters possibly subscripted (e.q:, b, z, or u;) to denote @
variables, and use uppercase letters (eX.,Y, or Z) to

denote sets of variables. A bold lowercase or uppercase letter

refers to a value (instance) of a variable or of a set of Sensor B @ @ Sensor A
variables, respectively. A valuX of a set of variablesX

is an element in the Cartesian productc x d(z), whered(x) @ Alarm

is the set of values of. The notationX = X stands for

X1 = X1, ", Ty = Xp, WhereX = {z1,---, z,} andx; ‘

is a value ofz;. @ Patrol

We let X 1Y|Z = Z denote the statement the and
Y are conditionally independent giveti = Z, namely, that
p(X,Y, Z=Z)p(Z =7) =p(X, Z=Z)p(Y, Z =1Z) for
every value ofX andY. We let X LY'|Z denote the statement _
thatX andY are independent given every value frnamely, For example, a Bayesian network can represent the follow-
that X LY|Z = Z holds for everyZ. Similarly, X LY denotes INg situation. Suppose an alarm system is installed in your
the statemenk andY are marginally independent which carlouse in order to detect burglaries; and suppose it can be
also be thought of as a shorthand notation %at.Y"|0. activated by two separate sensors. Suppose also that, when

A Bayesian network is a representation of independentte alarm sound is activated, there is a good chance that a
statements as well as a representation of a joint probability diglice patrol will show up. We are interested in computing the
tribution. Below we give a definition and some consequencd¥obability of a burglary given a police car is near your house.
For a more comprehensive overview, consult [9]. We consider five binary variableburglary (u;), sensorA

Definition [9]: A directed acyclic graptD of a joint prob- (u2), sensorB(us), alarm (u4), and patrol (u5), each having
ability distribution p(U) is a Bayesian network of if D is two valuesyes and no. We know that the outcome of the
constructed fronp by the following steps: assign an arbitranfwo sensors are conditionally independent gibenglary, and

Fig. 1. An example of a Bayesian network.

construction orden, , us, , -- -, u, to the variables ii7, and that alarm is conditionally independent oburglary given
designate a node; for each variables;.! For eachy; in U/, the outcome of the sensors. We also know tpatrol is
identify a setC; C {u, ---, u;_; } such that conditionally independent durglary given alarm (assuming
that only the alarm prompts a police patrol). This qualita-
{uyL{ug, -+, wi_1 } \ Ci|C; (1) tive information implies that the following three indepen-

dence statements hold in any probability distribution that
holds wrt p (with respect top). Assign a link from every describes this story{us}L{uo}|[{u1} {wa}L{us}|[{u2, us}
node inC; to u;. Each node is associated with the conditionghes } L{u1, u2, us}|{us}. Consequently, according to our def-
probability distribution p(w;|C;). The resulting network is inition, the graph shown in Fig. 1 is a Bayesian network of
minimal if, for eachw; € U, no proper subset of; satisfies the burglary story.
(2). In addition to the topology of the network, we need to spec-

By the chaining rule it follows that ify the following conditional distributionsp(u;), p(us|uy),

plusluy), pluslus, uz), and p(us|us). From these condi-
plug, <oy Up) = H plug|ug, -5 wisy) tional distributions, we can compute via (2) any probability
involving these variables. However, to do such computa-
and by the definition of{w;} L{uy, ---, ui_1} \ Ci|Ci we tions efficiently we need to know additional independence
further obtain statements which follow from the topology of the network
but were not used to construct the Bayesian network (such
plug, -y up) = H plu|Cy). (2) as{patrol} L{burglary}|{sensorA sensorB). The criteria of
d-separation, defined below, provides the most general mech-
Thus, the joint distribution is represented by the network ar@flism to infer independence statements from the topology
can be used for computing the posterior probability of eveBf the Bayesian network. Some terminology is first estab-
variable given a value to some other variables. lished.

Note that the number of parameters that a Bayesian networld trail in a Bayesian networlD is a path inD in which
requires and the complexity of its topology depend on tHiks are taken regardless of their direction. A ndéds called
construction order, which is not dictated by its definitiond head-to-headhode wrt a trailt if there are two consecutive
There are many possibilities to choose a construction ordéfks @ — b andb « ¢ on ¢t. Two nodes areconnectedn
In practice, cause-and-effect and time-order relationships oft@rBayesian network if there exists a trail connecting them.
suggest construction orders that yield simple netwérks. ~ Otherwise they arelisconnectedA connected componeidt

of a Bayesian networlD is a subgraph o) in which every

1we deliberately denote with; the node that corresponds to variaklg two nodes are connected. A connected componemiaisimal
It will be clear from the context whether we talk about a node or a variabléf there exists no proper super-graph@fthat is a connected

2Bayesian networks are often calledusal networks component ofD. If z — y is a link in a Bayesian network,
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then z is a parentof i and y is a child of z. If there is a satisfies these properties can be represented by a Bayesian

directed path fromz to %, thenzx is anancestorof ¥ andy network and the result of Theorem 1 applies. In particular,

is a descendantf z. partial correlation and embedded multivalued dependencies
Definition [9]: A trail ¢ is active wrta set of nodesZ (from relational database theory) satisfy these properties.

if 1) every head-to-head node witeither is inZ or has a

descendant ity and 2) every other node aloridgs outsideZ.

Otherwise, the trail is said to l#ocked(or d-separatediby Z. [ll. CONNECTEDNESS INTERMS OF INDEPENDENCE

In Fig. 1, for example, both trails betwedm,} and{us}  In this section, we show that if andb are disconnected in
are d-separated by = {ui}; the trailuy « w3 — u3 IS one minimal network of thena andb are disconnected in
d-separated byZ because node;, which is not a head-to- every minimal network of. This result shows that the concept
head node wrt this trail, is i. The trailus — w4 < u3 IS of connectivity can be phrased in terms of independence
d-separated by, because node, and its descendant; are statements that hold ip. Indeed, we find that, and b are
outsideZ. In contrastu; — u4 < uz is notd-separated by disconnected in a minimal Bayesian networkygt/) if and
Z' = {uy, us} becauseus is in Z'. only if there exists a partitiod/,, U, of U such thatl/, LU,

The theorem below is the major building block for most of, ¢ {7, andb € U, (a partition of a set’ is a pair of nonempty
the developments presented in this article and is fundamerd@joint subsets ot/ whose union isl/).
to the theory of Bayesian networks. Lemma 2: Let D be a minimal Bayesian network ofU),

Theorem 1 [13]: Let D be a Bayesian network of a probaand Dy be a connected component Bfwith a set of nodes
bility distribution p(U) and letX, Y, and Z be three disjoint X Then, there exists no partitiof;, X» of X such that
subsets of/. If all trails between a node iX' and a node in x, | X, holds wrt p.

Y ared-separated by, then X LY|Z holds wrtp. Proof: Assume contrary to the lemma’s claim that

For example, in the Bayesian network of Fig. 1, all trails b€X1, X, is a partition of X and thatX; LX, holds. Since
tweenu; andu; ared-separated byus, u4}. Thus, Theorem X, and X, are connected inD, there must exist a link
1 guarantees thatus } L{u; }|{uz, uz} holds wrtp. Geigeret petween a node in¥; and a node inX,. Without loss of
al. [5] generalize Theorem 1 and show that no other graphicgnerality, assume it is directed from a nodén X; to a
criteria reveals more independence statements than does nodew in X». Let Z1, Z» be the parents of in X; and X,
d-separation. Lauritzeet al. [8] establish another graphicalrespectively. SinceX; LX, holds wrtp, by symmetry and
criteria and show that it is equivalent tbseparation. decomposition,{u} U Z, 1. Z; holds too. By symmetry and

One immediate consequence of Theorem 1 is that if two s@sak union,{u}LZ|Z, holds as well. Now sinceZ; U Z,
of nodesX andY” are disconnected in a Bayesian network ddre the parents of, according to the comment that follows
p(ut, -+, un), thenX LY holds (wrtp) because there is noTheorem 1,{u}LY|Z; U Z, holds, whereY is the set of
active trail between a node ¥ and a node irt". Another ,’s nondescendants except its parents. Consequently, by the
well-known consequence is that4, is the set of parents of a contraction property{u}L1Z; UY|Z, holds. SinceZ, is a
nodea, andY,, are the set of all nodes that are not descendanigoper subset ofZ; U Z, (becauseZ; containsv), where
of a excepta’s parents. Then{a} LY,|Z, holds (wrtp). The 7z, U Z, are the parents of in D, D is not minimal. O
argument is simple. The s&, d-separates all trails between a Theorem 3: If two nodes are disconnected in some minimal

node inY, anda because each such trail either passes throughyesian network ob(U7), then they are disconnected in every
a parent ofz and therefore is blocked hy,, or each such trail minimal Bayesian network ob(U).

must reachu through one ofi’s children and thus must contain Proof: It suffices to show that any two minimal Bayesian
a head-to-head node, where neitherw nor its descendants networks ofp share the same maximal connected components.
are in Z,. Let D, and Dg be two minimal Bayesian networks of Let

In our proofs we will only use the following properties of¢, and Cz be maximal connected components Bf, and
conditional independence. A variant of these properties was, respectively. Letd and B be the nodes of’y and Cg,
introduced by Dawid [1] and Spohn [12] and further studiegbspectively. We show that eithet = B or AN B = (). This
by Pearl [9] and Pearl and Paz [10]. demonstration will complete the proof, because for an arbitrary
maximal connected compone@t, in D, there must exist a

Symmetry maximal connected component Ipg that shares at least one
X1Y|Z =Y 1X|Z (3)  node withCy. Thus, by the above claim, it must have exactly
Decomposition the same nodes aS,. Therefore, each maximal connected
XLYUW)|Z=X1Y|Z (4) component ofD, shares the same nodes with exactly one
Weak union maximal connected component éfg. Hence,D, and Dg

share the same maximal connected components.
XLYUW)|Z=X1Y[(ZUW) (5  Since D4 is a minimal Bayesian network of and Cls
Contraction is a maximal connected component bfy, there is no trail
X1Y|Z & X1W|(ZUY)=XL(Y UW|Z). (6) betweendandlU/\ A and so, by Theorem W LU\ A holds.
Using symmetry and decompositiofd N B) L(B \ A) holds
It is worth mentioning that the proof of Theorem 1 only usewo. Thus, by Lemma 2, fo€g to be a maximal connected
these properties and therefore every trinary relatiorthat component, eithedd N B or B \ A must be empty, lesDg
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would not be minimal. Similarly, forC’y to be a maximal any possible context. One particular context not considered in

connected componeni N B or A\ B must be empty. Thus, our first attempt is the situation whenis equal to eithek;

eitherA =B or AN B = 0. O or¢; but we do not know to which value. Of course,cifis
Theorem 4: Two variablesz and 4 are disconnected in a binary variable, then saying thatgets one of its values is

every minimal network ofp(U) iff there exists a partition a tautology that adds nothing to our knowledge but i§ not

Uz, Uy of U such thatl/,, LU, andz € U, andy € U,,. a binary variable, then restricting the domain cofs a new

Proof: Supposer andy are disconnected in some mini-context and so ifz andb are to be considered unrelated, then

mal networkD of p(U). Let U,. be the variables connected tathey should also be independent conditioned:eac; V ¢;.

x in D, andU, be the rest of the variables #i. Thus there  Indeed the following theorem shows one way to extend

is no trail betweerl/,, andU, and so, by Theorem 1/, LU, property B to nonbinary variables. This theorem justifies a

holds (wrt p). second definition of relatedness for the simple case of three
Suppose there exists a partitiéh, U, of U such thatr € variables.

U,y € Uy, andU, LU, holds (wrtp). We show that in every  Theorem 5: Let p(a, b, c) be a joint probability distribution

minimal Bayesian network of p, nodesr andy do not reside of three random variables, b, and c¢. If {a}L{b} and

in the same connected component. Assume, to the contray} L{b}jc=¢; fori=1, ---, kand if {a} L{b}c=c; V¢

thatz andy reside in the same maximal connected componefatr every: andj, 1 < i < j < k (i.e., @ andb are unrelated),

of some minimal Bayesian network of p, and thatC' are then either{a, c}.L{b} or {a}L{b, c}.

the nodes of that component. No@/, N C)L(U, N C) holds Proof: Let ¢; be a value ofc. We say thate; has a

(wrt p) because it follows front/, LU, by the symmetry and Type | factorization ifp(a, b, ¢;) = p(a, ¢;)p(b) and it has

decomposition properties. Moreovér, N C' andU, N C are a Type Il factorization ifp(a, b, ¢;) = p(a)p(b, c¢;). We shall

not empty, because they includeandy, respectively. Since now prove that every pair of values, and ¢;, of ¢ has

U, andU,, are disjoint, the two set&, N C, U, N C partition a common factorization, namely, either both values have a

C. Therefore, by Lemma 2) cannot be minimal, contrary to Type | factorization or both have a Type Il factorization. This

our assumption. L0 observation completes the proof because it implies that all
values ofc have a common factorization either of Type | or of
IV. ALTERNATIVE DEFINITIONS FOR RELATEDNESS Type Il. Rearrange the values ofsuch thatc;, is one value

. . . I .. and the disjunction of all other values is considered to be the
In this section, we discuss several possibilities for definin

probabilistic relatedness (or unrelatedness as a complemeneé;?l;?le second value. According to property B, the vabje

notion), indicate the pitfalls of the proposed definitions an er has a Typ_e | factorization or a Type Il factorization.
) o . o is the case witl;, as well. If both values have the same

conclude with a definition that bypasses these pitfalls. The = .~ . 2 . .
atctonzatlon, then the proof is completed. Suppose, without

common ground of the proposed definitions is the idea thl%ss of generality, that; has a Type | factorization and

two variables are unrelated iff they are independent given %nat " has a Tvpe |l factorization. Now rearranae the values
appropriately large set of contexts. Ci yp ' 9

As a first alternative, we could defimeandb to beunrelated ?;:ec ostlrig? \t/r;?l}gié ivsctiﬁelssggoenga\llileu:ni;?grcﬂ?u?;tlig Zfrt
[wrt plu, -, un)]if and only if {a} L{BHV =V whereV g% 0" . has a Type | fa;:torizationgor apT pe !
is a subset of variables d¥ \ {a, b} and V is a specific ”’f torizati ‘L It .f[2h Typ | factorizati d yp
assignment to each variable In. In other words, a context actorization. i it has a fype 1 lactorization, and since

consists of a set of assignments to a subset of variables gﬁdhas a Type | factorization, it follows, by subtracting the

a andb are unrelated iff they are independent given any Su&)r{es_potrjdmgs_eq:Jarlor?f,‘ tt'/at‘ aLsg m$st h?lvf a; T_yp$ .
context. For example, itV = {a, b, ¢} and if both aLb tﬁc 0r|‘za |0n;{ h'm'arYIL ! c“” f%t as "f:. ype a:lc 0r|za£n
and a.Lb|c hold, thena and b are said to be unrelated. The enci, Must have a 1ype 1l lactorization as wed.

following well-known property of conditional independence b'IA stralghgforwrz:\rd ggneralllzlfltlon ?:f Theore_m ?ﬁo"?‘rgl
[1], [12], which we call property B, ables can be phrased as follows. For a pair of variables

andb in U, we define a new variable whose domain is the
{a} L{b} and{a} L{b}|{c} = {a, c}L{b} or {a}L{b, c}  Cartesian product of the domains of the variable§ \{a, b}.
7) Now we say that, andb are unrelated wrp(U) if {a}L{b},
{a}L{b}|{c} and {a}L{b}|c = ¢ V ¢; for every two values
holds whenever is a binary variable. The converse of (7)f the combined variable. The difficulty with this definition
follows immediately from (3)—(6). Thus, due to Theorem 4s that it is too strong. Due to Theorem 5, df and b are
we conclude that in any minimal network ofa, b, ¢), if ¢ unrelated wrtp(U) according to this definition, then either
is a binary variable, them and b will reside on two distinct is independent ot/ \ {a} or b is independent of/ \ {b}.
components iff they are unrelated (wr). Consequently, eithet or b is unrelated to all other variables
The technical problem with this definition lies in the factind this claim is stronger than saying thandé are unrelated
that if ¢ is not a binary variable, then property B does nanerely between themselves.
hold anymore. The difficulty can be traced to the fact that if So we conclude with the following definition.
we conceive: andb to be unrelated (and therefore expeend Definition: Letp(uq, ---, u,) be a probability distribution.
b to be disconnected), we indeed mean to say dhedb are Variables »; and w; are unrelated if {u;}1l{u;} and
marginally independent and conditionally independent givem; } L{u; }|{vi = V1, -+, v, = Vi, } for every disjunction
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of values Vi, ---, V,,, for vy, -, vy, respectively, where p(uy, -+, up), p(u1, -+, uple =€), andp(u, - -, uple =
V1, +, Ut IS an arbitrary subset offuy, ..., u, e”), where ¢ and e’ are two distinct values ofu,..
bit bset ! h ! and e” t distinct val fit 1
Ui, Uy} us, by applying the induction hypothesis three times, we
y Thus, b I the induction hypoth th t

For example, suppose thdf = {a, b, ¢, d} and that conclude that there are three partitioh¥;, X}, {1, Y>2},
the domains ofc and d are {ci, c2}, and {d;, do, d3}, and{Z;, Z»} of U = {uy, ---, u, } such thate is in X, Y7,
respectively. Then, according to our definitian,and b are and Z;, andy is in X5, Y3, and Z,. Hence, the antecedents
unrelated (wrtp) iff {a}L{b}, {a}L{b}lc = ¢;(z = 1,2), of (8) are satisfied. Consequentlyy;, ---, u,+1} can be

{a} L{b}|d=d;(j =1, ---, 3), {a}L{b}|d = d;, Vd;,(1 < partitioned into two marginally independent sets: eittigr

J1 < g2 £3), {a}L{d}{c =, d =d;}(i = 1,2, j = andU\ Ry, or Ry andU \ Ry, whereR; is X; NY1 N Z;

1,--+,3), and {a}L{b}[{c = c,d = d; VvV d;,}{(t = andR; is XoN YN Z, Because, in both cases, one set

1,2, 1 €41 < j2 £3). containsz and the other containg, it follows thatz and y
Note that whenuy, - - -, u,, are all binary variables, then theare disconnected. O

setsV; are singletons, namely, a single specific assignment
for v;. Therefore, for binary variables, our final definition

L . . VI. SUMMARY
coincides with our first one.

This paper shows that for strictly positive binary distribu-
tions the notion of probabilistic relatedness as defined herein is
equivalent to the notion of connectedness in minimal Bayesian

We now show that relatedness and connectedness are eqiitworks. We conjecture that the equivalence established holds
alent when all variables are binary and when the distributigflso when these restrictions are lifted.

p is strictly positive.

Definition: A strictly positive binary distribution
P(uy, -+, u,) is a probability distribution where every
variable has a domain of two values—satrue and Below, we prove Theorem 6. First, we phrase the theorem
false—and every combination of the variables’ values has differently.

V. PROOF OF EQUIVALENCE

APPENDIX

probability greater than zero. Theorem 8: Strictly positive binary distributions satisfy the

First we must generalize property B. following property?

Theorem 6: Let p(uq, ---, upn, €) be a strictly positive bi-
nary distribution. Let{ X1, X5}, {Y1, Y2}, and{Z, Z,} be (A1 A2 A3 Ay L By By B3 By|0)
three partitions ot/ = {uy, ---, u, . Let Ry be XyNY1NZy, &(A1 A2 B3 By 1 B1 BoAzAyle =€)
al’ld R2 be X2 n Yé n ZQ. Then &(A1A3B2B4J_B1B3A2A4|C — e//)

X11X, andY  1Ysle =€ and Z; L Z,|c = €’ = (A1 LeAy A3 Ay B, By B3 By|0)
= Ri1({efUU\ Ry)or RoL({e} UU\ Ry) (8) V (B1LleA; Ay A3 Ay By B3 By|0) 9)

wheree’ ande” are two distinct values of. where all sets mentioned are pairwise disjoint and do not

When all three partitions are identical, the above theoregontaine, ande’ ande” are distinct values of.
can be phrased as follows. If two sets of variahlesand B To obtain the original theorem, we setl; A;AzA,,
are marginally independent, andAfL B|e holds as well, then B, B,B3B., A;A>B3Bs, BiBsAsAs, A;AsB>Bs, and
either AL({e} U B) or BL({e} U A). This special case is B, B;A,A, to be equal toX,, X, Y1, Ys, Z;, and Z, of
precisely property B. The proof of Theorem 6 is given in thehe original theorem, respectively.

Appendix. Denote the three antecedents of (9) Ry I, and I5. We

Theorem 7:Let p(uy, - -+, un, un41) be a strictly positive need the following two Lemmas.
binary distribution. Suppose andy are in{uy, -+, Unq1}. Lemma 9: Let X andY be two disjoint sets of variables,
Then,z andy are unrelated (wrp) if and only if z andy are and lete be an instance of a single binary variakleot in
disconnected in some minimal Bayesian networkpof X UY. Letp be a joint probability distribution of the variables

Proof: If = and y are disconnected in some minimalx UY U {e}. If (XLY|e = e) holds forp, then for every pair
network, then according to Theorem 4 there exists a partitiof instancesX’, X”” of X and Y’, Y” of Y, the following
U, Uy, of U such that: € U, andy € U, andU,LU,. Thus, equation must hold:
using symmetry (3), decomposition (4) and weak union (5)
it follows that {z} L {y}|Z where Z is an arbitrary subset of p(eXY)p(X'Y') _ ple[XY")p(X'Y")

U\ {z, y}. Thus,z andy are unrelated wrty). p(eX"Y")p(X"Y')  p(elX"Y")p(X"Y")

The converse is proven by induction enlf n = 1, andzx
andy are unrelated, thefiz} L{y} holds wrtp. Consequently,
there exists a partitiod/, = {z}, U, = {y} of U such _ pelX' Y )p(X'Y')
that U, LU, and soz andy are disconnected in any minimal pX'leY’) = p(eY)
network ofp. Otherwise, assume without loss of generality that

z isuy andy is up, and denotes, 1, by e. Sincez andy are 3, complicated expressionsi; A4 is used as a shorthand notation for
unrelated wrip(uy, - - -, u,41), 2 andy are also unrelated wrt A; U A; andeA; denotes{e} U A;.

Proof: Bayes' theorem states that
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Thus, Furthermore,(A; Le|A5ALA B B;,B5BY) [the antecedent
of (10)] implies that
pe XY )pX'Y) pXleY) pX'le,Y")
e XY Np(X'Y)  p(X"le,Y)  p(X'le,Y") p(e|A1A3A5A B B;B;BY)
_ p(eXY")p(X'Y") = p(e|ATAA3 A B B, B;BY).
p(elX"Y")p(X"Y") Thus, from (16), it follows that

The middle equality follows from the fact thaX LY |e = e) ple|A} ALALA B*BSB;BY)
holds forp. O

— * ! ! ! * * ! ! . 17
Lemma 10:Let A;, Ay, As, A4, By, B>, Bs, and B, be p(e|AlA2A3A4B1B2B3B4) ( )

disjoint sets of variables, ane be a single binary variable Subtracting each side of (17) from 1 yields
not contained in any of these sets. lpebe a joint probability et A e o
distribution of the union of these variables. If the antecedents p(e|A1A3A3A BIB;B3BY)
I, I, andI; of (9) hold for p, then the following conditions =p(e|]ATALALAB{B}B;B)). (18)
must also hold:
Thus,(A; Le|ASAS A B1B3B;BY) holds forp. BecauseB;
(A1 Le|ALALA, B B,BSBY,) andBj are arbitrary instanC(_eéAlJ_e|A’2AgAQLBlBQB’3BﬁL)
— (A LelA’AZ A" B. B-B.B' 10 also hoIQs forp. .Thus, (10).|s proved. o
( g e/| 2782 0720 3) (10) Equation (11) is symmetric with respect to (10) by switching
(B1le|A1AA3A,B,B;3ByY) the role of A; with that of B; and the role of4, with that

= (B1le|A1 Ay ALA B, BLBY) (11) of B,. Equation (12) is symmetric with respect to (10) by
(A1 Le|]ALALA B B,B;B)) switching the roles o3, and Bs. Equation (13) is symmetric
= (AL Lc|ALALAY BB, BsBY,) (12) with respect to (11) by switching the roles df, and As.

Now we prove (14). Equation (15) is symmetric with respect

(Bile|A1AA3A B, B;BY) to (14) by switching the role ofd; with that of 5; and the

= (Ble|A; Ay AsA B, BB)) (13) role of A, with that of B,.
(A1 Le|ALALA B, B,B;B)) Let X = A1 AyB3B, andY = B, ByAzAy. Applying
= (A1 Le|ALALA,B B,B,BY) (14) Lemma 9 and/; and then using/; to cancel equal terms,

ields the following equation:
(B, Le|Aj ApA;A, BB, B)) Y 9=

! ! ! ! / ! / ! ! ! ! !
= (BiLle|A,ALALAB,B,B,) (15) p(e|A1A5A3 AL B By B3 BY)p(A1AS A3 AY)
p(e|]ATA5A3A) BBy B3B )p(ATA Az AY)
where eachA’ and B} denote a specific value fad; and _ p(e|AJASAZATBIBY BB )p(A] ASA3AY) (19)
B;, respectively. [In words, (10) states thatAf ande are p(e|lATALALALBIB, BB )p(ATALALAY)

cond|t/|onally independent for on(.e.specm.c vall of Bl' where A, BY, and A% are arbitrary instances af;, Bi,
andB5 of Bs, then they are conditionally independent given . -

: and A,, respectively. Similarly, letX = A;A3;B;B, and
every value ofB; and B, provided the values of the other . .

: . . . Y = B1B3AsA,4. Then, applying Lemma 9 anf} and using
variables remain unaltered. The other five equations have]a . : o
similar interpretation.] 1 to cancel equal terms, yields the following equation:

Proof: First, we prove (10). Then we show that the p(e|A]ALALA B B,B3B))p(A]AALAY)
proofs of (11)—(13) are symmetric. Finally, we will prove (14) p(g|A*ALALA B B,B;B,)p(ATA,ALAY)
and (15). LetX = A; A»BsBy andY = B;B>A3zA4. Then, p(e|AL AL ALAIBIB, BB )p(A] AL ALAY)
Lemma 9 and, yield (15a), shown at the bottom of the page, = p(8|ATALALATBIB,BLB, )p(ATA,ALAL)
where A%, B%, and B} are arbitrary instances ofi;, B, S S A
and B, respectively. Applyingl; and cancelling equal termsNow (A; Le|A5A5A) B B,B5BY) implies the following two

(20)

yields conditions:
ple|A} ALALA B B,B,BY,) p(e|A1A3ALA B B;B;BY)
p(e|ATA3A3A) BB, B;BY) = p(e|ATAZA3A BB, B;BY) (21)
_ ple|lA1A>AA BB B3BY ) (16) p(€|ATAZALA B B B;BY)
p(e|ATAA3ABIB;B;BY) = p(e|ATA,ALA B, B,B,B)). (22)

ple|A1 AL A3 AL B By B3 BY)p(A1A3A3A LB By B3 BY)
p(e|ATASA3 A B By B3 B )p(ATAA3A B By B3 BY)
_ ple|A1A>A3ABIBIB3BY )p(A1 A A3 AL BB B3 BY)
- p(elATASALALBIBSBLBY )p(ATAL AL AL BYBSB;BY)

(15a)
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After using (21) to cancel equal terms in (19) and using (2Bquation (29) has the following algebraic form, where sub-
to cancel equal terms in (20), we compare (19) and (20) asdripted X's replace the corresponding terms

obtain
XA/B/ _ XA/BH

ple|A]ASA3ATBIBB;3BY)
p(elAJA5ALATBIB)B3BY) . . T,
p(e|A, AL ALALBIB,B,B)) Using Lemma 9 and3, we obtain a relationship similar to
= . 23 i i ithe
(3| AT A, ALATBIB,B,B)) (23) (29), where the only change is thatis replaced withe

Equation (23) has the form p(e|[A'B'C*D") _ p(e|]A'B"C*D")

(30)

XAHB/ o XAHBH'

— =2 . (31)
v 1— s p(e|A”B’C*D*) p(e|A”B”C*D*)
§ T l-y We rewrite (31) in terms of('s, and then use (30) to obtain
which yieldsz = . 1-Xap  1-kXap
Consequently, we obtair(AlJ_e|A’2A’3A_;§B’{B’2_BgBﬁL). - Xam  1-kXarp (32)
Furthermore, becausd and Bj are arbitrary instances, ) o )
(A, Le|ALALA,B B,B,BY,) holds forp. 0 Wwherek = (Xap//Xa/g ). Equation (32) implies that either

Next, we prove Theorem 6. Lef = AyAsA, andD = Xasr = Xap (e, k =1) or Xap = Xavp. Because
B,BsB,. We will see thatl, I», andI; imply the following the choice of instances fot; and B is arbitrary, at least one

four properties: of the following two sequences of equalities must hold
(A1 Le|CDBy) of (BiLe|CDA,) 24) E?r every instance of B, Xaip = Xazp = -+ =
AmB,

(A1 Le|CDBy) = (A1 LA4|ArAs) (25)  « for every instanceA of A;, Xap: = Xapz = -+ =
(A1 Le|CDBy) & (A1 LA Az As) = (A1 LA3|As) Xap»;

(26) WwhereAl, ... A™ are the instances of; andB!, ..., B"
A LelODB) & (Ay LA Ar A=) & (Ar L A=l A are the instances ab;.
(ArLel D) & (ALl dy) & (AL ds|do) Thus, by definition of theX's, we obtain

First, we prove (9), using these four properties. Then, we vC'D mstan*cef oD [(el 4,|C*D*By)

will show that these properties are valid. From (24), there are or (eLB|C*D* A)]. (33)

two symmetric cases to consider. Without loss of generalit . .

assun):e(AlJ_e|CDBl) holds. [Otherwise, we swigtch the O the other hand, (24), which we are now proving, states

roles of subscriptedd’s with subscriptedB’s in (25)—(27).] [VC*D*(eLA,|C*D*B))]

By a single application of each of (25)—(27), the following C*D*(eLB: |C*D* A 34

independence statements are proved to holdgfor or [¥ (LB V] (34)
(A1 LAs|0), (A1 LA3|Ap), (A LA AsAs). which is stronger than (33). Equation (24) can also be written

as follows:
These three statements yielfd; 1 A>A3A440) (= Iy

by two applications of contraction. Consider (9). —(B1Lle|CDAL) = (A1 Le|CDBy). (35)
The statement (A; Ay A3A, 1 B1ByBsBy|0) (i.e., I) _—
implies (A; LBy ByBsBs|A2A3A4) using weak union, We prpve_(35). The/stat/em?ﬁ(BllJ_eJCD/Al)/|mel|es tha}t
: . . ; . there exists instances], A5, A5, A}, B!, B, B, B/, ande
which together with I, imply using contraction FA A A As Be Bo B Ba B q ivel
(A1 LAA3A4B) BoB3By|). This  statement together(s) chl,thaQt’ 3 A4y D1y B2, B2, B, Ba, ande, Tespectively,
with the statementA; Le|CB; D) imply, using contraction, u
:Eg ??;g?en¢AlJ-@A2A3A4BlB2B3B4|®)1 thus completing ~(B) Le/|A}ALALA,B,B;B),). (36)
It remains to prove (24)—(27). First, we prove (24). 14t Hence,
A”, B, B”, C*, andD* be arbitrary instances ofi;, Bj,
C, and D, respectively. LetX = AC andY = BD. Then,
Lemma 9 andl, yield the following equation:

p(e|A’C*D*B/)p(A'C*D*B')

~(By Le|A A, ALALB,BLBY). (37)

From Lemma 10 [contrapositive form of (11)], (37) implies

* * ! ! ! / /
p(e|A”C*D*B’)p(A”C*D*B’) _'(BlJ-C|A1A2A3A4B2B3B4) (38)
_ ple|]A’C*D*B”)p(A’'C*D*B”) (28) where A7 and A} are arbitrary instances ofi; and A,
~ p(e|]A”C*D*B”)p(A”C*D*B")’ respectively. Hence, in particular, £7 = A/, we have
From I;, we o_btain p(ACDB) = p(AC)p(DB). Conse- ~(ByLe|A,AALA B,BLB)). (39)
quently, (28) yields
ple|A’B'C*D*) ple|A’B"C*D*) Similarly, from Lemma 10 (13), (39) implies

p(e|A”B'C*D*)  p(e|A”B"C*D*) —~(By Le|ATASALA,B,B,BY,) (40)
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where Aj is an arbitrary instance aofi;. Also, from Lemma terms yields
10 (15), (40) implies A% - xR T
(15). (40) imp p(AL|ATATAL)p(ATATAS)p(BIB;B3BY)

—(B; Le|ATA5ALA, B, B;BY) (41) p(AL|ATASAZ)p(ATASAZ)p(BIB5B3BY)
_ P(ATIATASAL)p(A1ASAZ)p(BIB;BEBY)
where B% is an arbitrary instance of3;. Examine (33). p(AY|ATA3 A% p(AYA3AL)p(BiBsBiB?)

Equation (41) states that the second disjunct cannot be t
for every instance ofi; A> A3 B; B4 ande. Hence, for each of
these instances the other disjunct must hold. That is, p(ALJATASAL)  p(ALJATATAY)

P(A{|ATAZAL) — p(Af|ATAASL)
Thus,p(A|AL A5A%) = p(AL|AY A3 A%) for every instance

Rither cancellation of equal terms yields

VATASALBIBle* (A]Le*|BIAJALAB,B;B)) (42)

or, equivalently 1, A, and A/,. That is, (441 A;|A5A%) holds. Because
' ' A3 and Aj are arbitrary instance$A, L A;|A2A3) follows.
(A Le|ByA;AsA B, B4 By). (43) .Next, we show that (26) must hold. Lemma 9 anﬁg.
yield (47), shown at the bottom of the page. Incorporating
Applylng (43) to (10) yields, 1y, (AlJ_A4|A2A3), and (GJ_A1|A2A3A4BlBQBgB4) and
cancelling some equal terms yields (48), shown at the bottom
(AyLe|By Ay A3 A, BoBLBy). (44) of the page. Further cancellation of equal terms yields
o . _ P(A5|ATAS)  p(A3|ATAS)
Similarly, applying (44) to (12) and (14) yields the statement p(ALALA;) T p(ALATAL)
(Ar1Lle|A2As Ay B1 By B3By) (45) Thus, p(A5|ATAS) = p(A%5|AYAS) for every instance

1, AY, and Aj. That is, (43 L A;|A3) holds. Because\}
which is the desired consequence of (35). Thus, we haigean arbitrary instance, 45 L A;|Az) follows.
proved (24). Finally, we must show that (27) holds. Lemma 9 and
Next, we show that (25) must hold. Lemma 9 ahdyield I3 yield (49), shown at the bottom of the page. Incorpo-
(46), shown at the bottom of the page. Incorporatingand rating (e L A;|AsAsAyB1 By BsBy), 11, I, (A1 LA4| Az A3),
(eLAy|A2A3 A4 B1 B2 B3By) (45), and cancelling some equaland (A4; 1 A3|4,) and cancelling some equal terms yields

p(e|ATAAZALBIBIBIBY)p(A1AS A A BIB;BiBY)
p(e|ATASAZABIB;B3BY)p(AT A5A3 A} BIB;B3BY)
_ Pe|ATASASABIBIBIBI)p(A1ASAZATBIB; B3 BY)
~ p(e|AYAJASAYBIB;BIB])p(A]ASASA/BIBIB;BY])

(46)

p(e|A1AA3AIBIBIBIBY)p(A1ASA3ALBIB; BiBY)
p(e|ATASAZATBIB; BB )p(AT A3 A3 AIBIB; B3 BY)
_ Pe|ATAS AT AIBIBI BB )p(A1ASA3 AIBIB; B3 BY)
- ple|AYAJALAIBIB;BIB])p(A]ASASATBIBIBSBY)

(47)

P(AG|A3A3)p(A3|A1AS)p(A1AS)p(BIB3B;3BY)

P(AL|AZAL)p(As|ATAZ)p(AT A3 )p(BIB;B3BY)
_ P(AG|ASAZ)p(A5|A1AS)p(A1AS)p(BIB3B3BY)
P(AL|AZAZ)p(A5|ATA3)p(AT A3 )p(BiB3B3BY)

(48)

p(e|A1ASASATBIB; BB )p(A1ASASATBIB; B3 BY)
p(e|ATALAZATBIB; BB )p(AT A5 A3 ABIB; B3 BY)
_ P(ElATAYASAIBIBIBEBI)p(A1 A7 A AIBIB; B3 BY)
~ p(e|ATASASAIBIB;BIBY)p(ATAJASATBIBIBSBY)

(49)

P(AL|A; * A3)p(A3[A1AS)p(As|ADp(A1)p(BIB;B3BY)
P(AG|AL  A3)p(A3|ATAS)p(As|AT)p(AT)p(BTB; B3 BY)
_ p(AGJAY « A3)p(A3|A1AY)p(As|A)p(A)p(BIB; B3 BY)
- p(AfIAY « A5)p(A5|ATAY)p(AS|AT)p(A])p(Bi B B5BY)

(50)
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(50), shown at the bottom of the preceding page. Furthpa] R. Shachter, “An ordered examination of influence diagrasfivorks,
i i vol. 20, pp. 535-564, 1990.
cancellation of equal terms ylelds [12] W. Spohn, “Stochastic independence, causal independence, and shield-
ability,” J. Phil. Logic,vol. 9, pp. 73-99, 1980.
p(A’2|A&) _ p( /2|A/1/) [13] T. Verma and J. Pearl, “Causal networks: Semantics and expres-
p(A/2/|A/1) o p(A/2/|A/1/)' siveness,” inProc. 4th Workshop Uncertainty Artificial Intelligence,
Minneapolis, MN, 1988, pp. 352-359; also, T. Verma, Tech. Rep. R-65,
Cognitive Systems Lab., Univ. Calif., Los Angeles, 1986.

Thus,p(A%|AL) = p(A5|AY) for every instanc\], AY, and
Al. Thatis,(A; L A1]0) holds. O
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