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A CHARACTERIZATION OF THE DIRICHLET 
DISTRIBUTION THROUGH GLOBAL AND 
LOCAL PARAMETER INDEPENDENCE' 

BY DAN GEIGER2 AND DAVID HECKERMAN 

Technion and Microsoft Research 
We provide a new characterization of the Dirichlet distribution. Let 

i 1 <? k, 1 < j < n, be positive random variables that sum to unity. 
Define Oi.= E> 1 OijG, e9.= {&i .) li, 8j = oij/j tij and O li = {[01i,jn1-7'. We 
prove that if {6I., OJIl-. .., OJIk) are mutually independent and 
{6. J, O 11 . i - - X I n1 are mutually independent (where 8. j and 91 j are de- 
fined analogously), and each parameter set has a strictly positive pdf, then 
the pdf of Oij is Dirichlet. This characterization implies that under 
assumptions made by several previous authors for selecting a Bayesian 
network structure out of a set of candidate structures, a Dirichlet prior on 
the parameters is inevitable. 

1. Introduction. A statistical model that represents a large collection of 
discrete random variables imposes severe computational complexity unless 
some notion of independence is introduced that decreases the dimensionality 
of the model. Graphical models address this problem. A graphical model 
represents a collection of random variables by a graph; each node in the 
graph represents a random variable, and the lack of an edge between two 
nodes represents a conditional independence assertion. Such models have 
been extensively studied in the fields of statistics (e.g., [17, 34, 18, 15, 31, 6, 
25]), artificial intelligence and computer science (e.g., [20, 21, 10, 23]), opera- 
tions research (e.g., [28, 29]) and philosophy (e.g., [32]). For an introduction to 
graphical models, see [22, 35] and references therein. 

Graphical models are based on directed acyclic graphs, undirected graphs 
or a combination thereof. A class of graphical models that is based on directed 
acyclic graphs, called Bayesian networks, is the most suitable among current 
graphical models to be constructed from expert knowledge rather than from 
sampling data. Each node i in a Bayesian network represents a random 
variable si and the joint distribution satisfies 

p(si, .isn) = Jlp(silsil,-- sik), 

where il, ik are nodes from which a directed edge is drawn into node i. 
These nodes are called the parents of i. A simple example of a Bayesian 
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network is the well-known Markov chain over {sill < i < n}, which represents 
the distribution p(sl,..., sn) = Hip(siIsi l). Because the joint distribution is 
composed of local conditional probability tables between closely related vari- 
ables, these tables can often be assessed directly from experts. Consequently 
Bayesian networks have become the dominant model in artificial intelligence 
for representing knowledge needed for reasoning tasks that require the 
explicit representation of uncertainty. 

In recent years, researchers have realized that, although Bayesian net- 
works can be constructed directly from expert knowledge (often using ad- 
vanced computerized elicitation techniques [11]), it is advantageous to use 
data to update both the parameters and structure of a graphical model. The 
latter problem has been addressed by several researchers who have investi- 
gated Bayesian methods for model averaging and selection when the models 
are Bayesian networks [2, 4, 12, 30]. Such a task is often referred to as 
learning. These approaches all have the same basic components: a scoring 
rule and a search procedure. The scoring rule takes data and a network 
structure and returns a score reflecting the goodness-of-fit of the data to the 
structure. A search procedure generates networks for evaluation by the 
scoring rule. These approaches use the two components to identify a network 
structure or set of structures that can be used, for example, to predict future 
observations. 

Suppose we have a set of discrete random variables {si, S. n = U, and a 
data set D = (Cl,... ,Cm} where each case Ci is an instance of some or of all 
the variables in U. Let B be a Bayesian network structure (a directed acyclic 
graph) and Bh stand for the hypothesis corresponding to B (see Section 3). 
An important quantity for both model averaging and model selection is the 
posterior probability of B h given D, p(Bh I D) = cp(B h)p(DIB h), where c is a 
normalizing factor. 

To compute p(DIB h) in closed form, researchers have made several as- 
sumptions. One, the prior probability of each structure is positive-that is, 
p(Bh) > 0 for every B. Two, for each network structure, the parameters 
associated with each node are mutually independent (global parameter inde- 
pendence [31]), and the parameters associated with a node and each instance 
of its parents are mutually independent (local parameter independence [31]). 
Three, if a node has the same parents in two distinct networks structures, 
then the prior distribution of the parameters associated with this node are 
identical for both structures (parameter modularity [12]). Four, each case is 
complete-namely, each case is an instance of all the variables represented 
by the network. Five, the prior distribution of the parameters associated with 
each node and each instance of its parents is Dirichlet. The last two assump- 
tions are made so as to create a conjugate sampling situation. Namely, after 
data is seen, the distributions of the parameters stay in the same family-the 
Dirichlet family. 

The contribution of this article is a characterization of the Dirichlet 
distribution based on local and global parameter independence, and on the 
assumption that the prior distributions of all the parameters are strictly 
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positive pdfs. In Section 3, we explore the circumstances under which our 
characterization implies that the distribution of the parameters associated 
with each node in a Bayesian network must be Dirichlet, in which case the 
fifth assumption for learning is redundant. The assumption of parameter 
modularity, which is further discussed in Section 3, plays a key role in 
learning Bayesian networks, but is not needed for the characterization 
theorem. Consequently, the characterization can be described more easily 
without reference to graphical models as follows. 

Suppose s and t are two discrete random variables having finite domains, 
{si1} 1 and {tj3J17 1, respectively. We wish to infer an unrestricted joint proba- 
bility p(s, t) from a sample of pairs of values (si, tj) of s and t. A Bayesian 
approach to this statistical inference problem is to associate with p(si, tj) a 
(multinomial) parameter Oij, assign {0ij1I < i < k 1 < j < n} a prior joint pdf 
and compute the posterior joint pdf of {0ij) given the observed set of pairs of 
values. There are two alternatives to this approach that can be described as 
follows. 

Let 0,.= EJ= 1 0zj stand for the parameter associated with p(s = si), and 
let Oji = ij/Ej Oij stand for the parameter asociated with p(t = tjls = si). 
Furthermore, let Qj.= (0i.}V-- and Oj]i = {0j1li}j"=11 We assume that 
(0i., kill,. , ijk are mutually independent and that each has a prior pdf. 
According to Bayesian practice, we compute the joint posterior appropriately 
-that is, we update the pdf for QI. according to the counts of s = si in the 
observed pairs, and update the pdf of 0J i according to the counts of t = tj in 
all pairs in which s = si. In a symmetric fashion, let 0.3 = 1 j7 0i/I 0I 
O. j = {0}jn=-ll and 0 jj = {0)Jil)k. We assume that {0. J, 0Il1,., oI0n} are mu- 
tually independent, and that each set of parameters has a prior pdf. We 
compute the posterior pdf for 0.,, according to the counts of t = t3, and the 
posterior pdf of 0ilj according to the counts of s = si in all pairs in which 
t = tJ. 

To make these techniques operational, one must choose a specific prior pdf 
for the multinomial parameters. The standard choice of a pdf for {0i3}-typi- 
cally made for practical reasons-is a Dirichlet distribution. When such a 
choice is made, it can be shown that (01., Ojll,..., OJIk} are mutually indepen- 
dent and each parameter set has a prior Dirichlet pdf, and (similarly) that 
{(0. , O III,.., 0In are mutually independent and each parameter set has a 
prior Dirichlet pdf. 

The result proved in this article is that under these independence assump- 
tions and the assumption that each parameter set has a strictly positive pff, 
a prior Dirichlet pdf for {0ij} is the only possible choice. We conjecture that 
the assumption of strict positivity can be dropped without affecting the 
conclusion. In Section 2, we discuss our proof technique, which uses the tool 
of functional equations. We also review briefly the applicability of this 
technique to other characterization problems in statistics. In Section 3, we 
discuss an extension of our characterization from two-way tables to n-way 
tables, as well as the implications of our characterization for learning 
Bayesian networks. Further extensions are described in Section 4. An analo- 
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gous result that characterizes the normal-Wishart distribution is outlined 
in [9]. 

2. Background and technical summary. The Dirichlet pdf is defined 
as follows. Let 41,..., 4, be positive random variables that sum to 1. Then 
k1, . . .,(i- have a Dirichlet pff f if 

F(E>=ra) 

where 41 = 1 - E 1 4 i and ai are positive hyperparameters (See, e.g., [7], 
[361). 

We use the following conventions. Suppose {ij}, 1 ? i < k, 1 ? j ? n, is a 
set of positive random variables that sum to 1. Let Oi., O j, 01 0 j o0li ilij Oi 
and Ojlj be defined as in the introduction. Consequently, Oi.0j1j = 010u for 
every i and j. Let fu be the joint pdf of {Qij}, f1 be the pdf of OI., and f,ji be 
the pdf of OjQi. Similarly, let f, be the pdf of0. j, and fi be the pdf of %l. 
Finally, let fIj be the joint pdf of 0g., Oj I, OJIk nd JI be the joint pdf of 
0- J) 0111 - * - * OIln- 

A Dirichlet pdf for {0ij} is given by 
k n 

(2) fu(10ij)) = c H otj P 
X 

=1 J=1 

where Ok. = 1 - EA Oij, A = (i, j)I1 < i, j < n, i + k or j 0 n}, c is the nor- 
malization constant and aii are positive constants. 

We observe that fu and fiJ are related through a change of variables. 
Because both {i .}i.k and {0jil7jn=1 are defined in terms of {Qij), and because 
6iJ = 06. 1i, there exists a one-to-one and onto correspondence between {0ij) 
and {0i.} u {10ji}. The Jacobian Jk, n of this transformation is given by 

k 

(3) Jkn HQrlIl 
i = 1 

(see [12]). 
The following lemma provides a known property of the Dirichlet distribu- 

tion. A slightly different version is stated in [6], Lemma 7.2. 

LEMMA 1. Letj{0,}l1?Si<kl1<j<n,wherekandnare integers greater 
than 1, be a set of positive random variables having a Dirichlet distribution. 
Then, f1(01.) is Dirichlet, fj1i(0j1i) is Dirichlet for every i, 1 < i < k, and 
{0j., OJll ... * OJIk} are mutually independent. 

PROOF. Set Oij = Oi.0ji in (2), multiply by Jkn, and regroup terns. o 

The main claim of this article is that, under the assumption of a strictly 
positive pdf for (Oij, the converse holds as well. More specifically, we prove 
the following theorem (the proof is given in the Appendix). 
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THEOREM 2. Let (.ij},I < i <k,l j< n, Oij= 1, where k and n are 
integers greater than 1, be positive random variables having a strictly posi- 
tive pdf fu({f i-)D If {Q-., Oj , * .., 0.jIk) are mutually independent and 
{0. J, OwIl,, oIln are mutually independent, then fu({0Sj}) is Dirichlet. 

Recall that fu can be written both in terms of fiJ and in terms of fj1 by a 
change of variables and using the Jacobian given by (3). Because both 
representations must be equal, and using the independence assumptions 
made by Theorem 2 to factor f1j and f,j, we get the equality, 

n n k -1 k 

(4) l J(.J I li(li J_1 1( ok-) 
1 

fI f 1 1 ' Of(0.) ftili( jIi). 

This equality, which is a functional equation, summarizes the independence 
assumptions stated in Theorem 2. 

Methods for solving functional equations such as 4, that is, finding all 
functions that satisfy them under different regularity assumptions, are dis- 
cussed in [1]. We use the following technique. First, we argue that any 
positive solution to (4) must be differentiable in any order ([1], Section 4.2.2, 
"Deduction of differentiability from integrability"). Then we take repeated 
derivatives of (4) and obtain a differential equation, the solution of which 
after appropriate specialization is the general solution of (4) ([1], Section 4.2, 
"Reduction to differential equations"). 

For example, to demonstrate that the only differentiable functions that 
satisfy f(x + y) = f(x) + f(y) are linear, one can take a derivative wrt (with 
respect to) x and obtain f'(x + y) = f'(x). Because the latter equality holds 
for all y, it follows that f'(t) is constant and thus f(t) is linear in t [1]. This 
functional equation is one of Cauchy's fundamental equations and it estab- 
lishes the memoryless property that characterizes the exponential distribu- 
tion (e.g., [ 19]). In (4), there are several functions and several free variables, 
the number of which depends on n and k. For example, when n = k = 2 and 
by renaming of variable and function names, (4) can be written as follows: 

(5) f0(y)g1(z)g2(w) = g0( x)fi(-) f2( Y(1z ) 
where 

x =yz + (1-y)w 

and where y, z and w replace 0.ji= 1 j=, 0i=1j=-2, respectively. The 
solution of this equation is given in the Appendix. 

Jarai [13] has extensively investigated the following type of functional 
equations: 

(6) f(t) = h(t, y, fo(y), fi(gi( t Y)) * fn(gn(t, y))), 
where f, fo,..., fg are known functions 
satisfying some regularity conditions and all variable and function values 
may be vectors. Our functional equation, as well as many other functional 
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equations, can be written in this form. Jarai showed that every measurable 
solution of this equation must be continuous (Theorem 3.3 in [ 131). Because 
(4) can be written in this form and does satisfy the needed regularity 
conditions, we may conclude that any pdf that solves it must be continuous 
(because a pdf is Lebesgue integrable and thus measurable). 

Jfirai has also dealt with functional equations of the type 
n 

(7) f(t) = E h1(t, y, fi(g1(t, y))), 
i = 1 

where f and fi are the unknown functions. Note that this equation is a 
special case of (6). For this type of equation, Jarai proved, under regularity 
conditions on the known functions gi and hi (which hold in our case), that 
any continuous solution must be indefinitely differentiable (Theorems 5.2,7.2 
in [131). Actually some stronger results of this sort are proved in [13]. Thus, 
for example, the above theorems imply that any measurable solution of 
f(x + y) = f(x) + f(y) must have a first derivative and so we are allowed to 
take a derivative of this equation; therefore, all measurable solutions are 
linear. 

In solving (4), we can use the first part of Jarai's contribution and obtain 
continuity. To apply the second part, we take the logarithm of the equation 
and obtain a functional equation of the form of (7). We assume that the 
solutions are strictly positive and measurable. Because the logarithm of a 
positive measurable function is measurable, we can now use Jarai's theorems 
and obtain that all positive measurable solutions of (4) have infinitely many 
derivatives. 

Jarai's theorems are very useful in statistical applications because they 
"upgrade" results proved for smooth pdfs to any pdfs. We shall now demon- 
strate their usefulness for another well-known characterization of the Dirich- 
let distribution due to Darroch and Ratcliff [5]. Their bivariate theorem 
states: 

Let X and Y be two continuous, positive random variables 
which satisfy the inequality X + Y < s. Assume the pdf of X 
and Y on (0, s) and X/s - Y and Y/s - X on (0, 1) are all 
continuous. Then, if and only if X/s - Y, Y are independent 
and Y/s - X, X are independent, X, Y have a Dirichlet pdf. 

This theorem is similar in flavor to Theorem 2 because it also merely 
assumes independence assumptions on some transformation of the given 
random variables. The difference is the transformation. In Theorem 2, the 
transformations arise from the use of a Dirichlet pdf as a prior distribution of 
multinomial parameters while the Darroch and Ratcliff bivariate theorem is 
derived from conditions of neutrality. Nevertheless, Jarai's theorems are 
applicable also for the latter problem. As Darroch and Ratcliff do, the joint 
pdf of X and Y can be written in two distinct ways. Equating these represen- 
tations, as in (4), forms a functional equation. This functional equation is of 
the type dealt with by Jarai and consequently, the theorem by Darroch and 
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Ratcliff holds even without assuming continuous pdfs. Indeed, among other 
results, this was shown, using other techniques, by [8, 14]. Note that if a pdf 
is in fact a gpdf, that is, it contains a discrete element, then Lebesgue 
integrability is not satisfied and this technique is not applicable as is. In this 
case, one may resort to the functional equations defined by the characteristic 
functions near the origin. A review of many characterization problems in 
statistics can be found in [16, 26,27]. These texts do not use the elementary 
solution method used herein. 

Another well-known characterization of the Dirichlet distribution which is 
described by several authors is based on W. E. Johnson's sufficientness 
postulate (See [37] and references therein). This characterization is based, 
loosely speaking, on the assumption that for exchangeable sequences the 
expectation of the parameter of the ith category depends only on the counts 
of the ith category and the total count. Our assumptions on the other hand, 
in particular, global parameter independence, were originally made so as to 
facilitate a prior-to-posterior analysis [6]. In this article, we show that these 
assumptions, as a by-product, also determine a restrictive class of prior pdfs. 
Clearly, any set of assumptions that yields a Dirichlet prior is doomed to be 
violated in a general setting because the class of Dirichlet priors is not 
expressive enough; for example, all members are unimodal and thus Dirichlet 
mixtures are sometimes preferable. This point is raised again in Section 3. 

As a word of caution, one must realize that there are functional equations 
in statistics that include solutions which do not have a derivative. For 
example, in [ 19], the functional equation that defines a multivariate exponen- 
tial distribution F(X, Y) through an extended version of the memoryless 
property, 

F(xl+y,x2+y)=F(xl,x2)F(y,y), 

xl, x2, y > 0, yields, provided we assume that the marginals are exponential, 
a distribution function of the form, 

P(X> x,Y >y) = exp{-A1x-A2y-A12 max{x,y}}, 

which is not differentiable. By taking the logarithm and a derivative of this 
functional equation, we would have obtained the solution, 

P(X > x, Y > y) = exp{ - A1x - A2y} 

thus losing an important term of the general solution. This situation occurs 
because a regularity condition of Jarai is violated [the rank of the matrix of 
the first derivatives wrt y,(dgi(t, y)/dy), for each gi in (6) must equal the 
dimensionality of the domain of fi; here, the mapping y -3 (y, y) fails to meet 
this condition because the rank is 1 rather than 2]. 

3. Implications for learning. We now explain how our characteriza- 
tion applies to learning Bayesian networks. We concentrate on Bayesian 
networks for two discrete random variables s and t whose joint distribution 
is p(s, t). There are three possible Bayesian network structures with two 
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nodes: the structure that contains no edge between its two nodes s and t 
(Bo), the structure s -* t (Bl) and the structure t -4 s (B2). The structure Bo 
corresponds to the assertion that s and t are independent, whereas the 
structures B1 and B2 correspond to the assertion that s and t are dependent; 
B1 represents the factorization p(s, t) = p(s)p(tIs), whereas B2 represents 
the factorization p(s, t) = p(t)p(sIt). 

DEFINITION. Two Bayesian network structures B1 and B2 for a set of 
discrete random variables U are Markov equivalent if they encode the same 
set of independence assertions for U. 

For example, network structures in which every pair of nodes are con- 
nected (complete network structures) are equivalent, because each such a 
network structure encodes no independence assertions for U. Another exam- 
ple is given in Figure 1. Characterizations of Markov equivalent Bayesian 
networks for discrete random variables are obtained in [3,33]. 

Given a set of discrete random variables U having a joint pdf p(U) and a 
network structure B, we define Bh to be the hypothesis that precisely the 
independence assertions entailed by B hold in the joint distribution p(U). By 
this definition of B h if network structures B1 and B2 are Markov equivalent, 
then Bh = Bh. 

Recalling the notation introduced in Section 1, we have that Oi.= n= 1 6j 
denote the multinomial parameters associated with p(s = si) and joli = 
OI/E -Q, denote the multinomial parameters associated with p(t = tji s = si). 
Given Bh = Bh and that s and t have a joint multinomial distribution, we 
obtain 

fIJ ( 0I-7 0JJI ***XOJlk I l)=fJ(0* J1***|o} Bh h 

tJI(-JsoIIS ** *S oIkl2 = fJI (0- J OIIll * *Il I oIkBi 

(i) (ii) 

(iii) 

FIG. 1. The pair of network structures (i) and (ii) are Markov equivalent because both encode 
precisely those distributions where A and C are conditionally independent, given B. Network 
structure (iii) is not Markov equivalent to them, because it encodes those distributions where A 
and C are marginally independent. 
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Using local and global parameter independence to factor fjj and fj,, we 
immediately obtain (4). (We suppress the conditioning hypotheses because 
Bh = Bh.) Thus for the two complete network structures, the only possible 
strictly positive prior pdfs on their parameters is, according to Theorem 2, the 
Dirichlet distribution. 

In this derivation, in order to apply Theorem 2, we assumed local and 
global parameter independence, a regularity condition that each B h has a 
positive probability (because we condition on B/h), and that each fjj is a 
strictly positive pdf Also, we used the equality Bh = Bh. 

The parameter priors for the noncomplete network structure Bo are deter- 
mined from the added assumption of parameter modularity, which says that 
if the nodes corresponding to a random variable have the same parents in two 
different structures, then the prior pdfs associated with the parameter(s) of 
those nodes are equal. In our two-variable example, parameter modularity 
gives us 

fi(0i.IBh) =fi(0i-1Bh 

fj(0.jlBh) = fj(G.jJBh). 

These equalities imply that the prior for each parameter set of Bo is a 
Dirichlet distribution as well. 

Recall that the hyperparameters of a Dirichlet distribution can be written 
as Na j where N is an equivalent sample size (the size of an imaginary set of 
complete cases that summarize a person's prior knowledge) and aij is the 
expectation of Oij. The equivalent sample size can be viewed as the assessor's 
confidence in the expectations of each Oij. A joint Dirichlet prior is therefore 
quite restrictive, because it accommodates only one equivalent sample size or 
confidence for the entire set of variables. Thus, a practical ramification of our 
characterization is that the commonly made global and local parameter 
independence assumption is inappropriate whenever a single equivalent 
sample size is not sufficient to describe prior knowledge. Such a situation 
occurs, for example, if knowledge about Ojli is more precise than knowledge 
about 01.. 

The inevitable choice of a Dirichlet prior for two-variable networks (two-way 
tables) is easily generalized to the n-variate case by induction and without 
the need to solve additional functional equations. The inductive proof uses 
the fact that the sample space of a set of discrete random variables can be 
viewed as the sample space of a single discrete random variable. Here, we 
state the result in the notation of this article. For a proof, consult [12], 
Theorem 7. 

Suppose sl, ... . sm are m discrete random variables having finite domains. 
With each of the nj possible assignments of values to sj, j = 1,..., m, we 
associate a multinomial parameter Oi1.Ei. Analogously, to the case m = 2 
discussed in previous sections, let 

oil,...ai Ef m and Oi. l= i. oi. 
ij + 1, m ./i 
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For every configuration il,...X i1, j = I,..., m, we define, 

(for j = 1, Oii i. i = (0)[ I). Similarly, we define 

Lm.i,- 
. 
.,L 

iJ 
0l,. 

'. .n im 0M 1 j- E and il I ., i 
Lj+ i l m- 

and let 

0IjIZm.hi, ***j^ij = { LIjlm, il* * t ij_ 1}= 

(for j = m, Ijlim, ij 1 ={Oim} = mmim?)^ 

THEOREM 3. Let (0 im},1 < ij < nj, 1 ? j ? m, be positive random 
variables that sum to 1 and have a strictly positive pdf fu({0il,..., i}) (where m 
and nj, j = 1,..., m, are integers greater than 1). Then {0(i, ) i} have a 
Dirichlet distribution-namely the pdf is given by 

(8) fu({0 J.j) a [l Oj ;m . 
.m 

where ai m . are positive constants, if and only if 

E)j =0jJil'...illjl<il < nl,..., 1<?ij- < nj 1) 

are mutually independent (local parameter independence), {0jll <1j < m} are 
mutually independent (global parameter independence), 

c(1=j {0Ijl j1. 1l1 < im < nm, 1 < il ? nl,..., 1 < ij_ 1 < nj-1) 
are mutually independent and {(Ijll < j < m} are mutually independent. 

We note that some researchers give Bayesian network structures a causal 
interpretation [32, 25]. For example, it is common to associate the network 
s -+ t -vith the statement s causes t, and the network t -+ s with the 
statement t causes s. Under this causal interpretation, define BC to be the 
hypothesis that "precisely the independence assertions entailed by B hold in 
the joint distribution and the edges in B are in the causal direction." Given 
this definition, it does not follow that B' = B' whenever B1 and B2 are 
Markov equivalent network structures. Nonetheless, it is often reasonable to 
assume that if B1 and B2 are equivalent, then p(0lIB ) = p( I BO), where 3 
is the set of all parameters associated with one of the network structures. 
Under this assumption, our characterization still applies. 

4. Discussion. The independence assumptions made by Theorem 2 can 
be divided into two parts: {OJIl ,..., oJjk} are mutually independent and 
(01I1,..., OlIn} are mutually independent (local parameter independence), and 
OI. is independent of {0J11,..., oIlk and 0. j is independent of (0111,..., 0ilj 
(global parameter independence). A natural question to ask is whether global 
parameter independence alone implies a joint Dirichlet pdf for { Ois. 
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This question is particularly interesting in light of the analysis of decom- 
posable graphical models given by [6]. Dawid and Lauritzen term a pdf that 
satisfies global parameter independence a strong hyper-Markov law, and 
show the importance of such laws in the analysis of decomposable graphical 
models. We now show that the class of strong hyper-Markov laws is larger 
than the Dirichlet class. 

When n = k = 2, and using the notation of (5), the new functional equa- 
tion can be written as follows: 

(9) 0(y)g(z,w) h(l z) 

where x = yz + (1 - y)w. Note that (5) is obtained from this equation by 
setting g(z, w) = gl(z)g2(w) and f(tl, t2) = f1(td)f2(t2). These equalities cor- 
respond to local parameter independence. 

Let fu be a joint pdf of (6ij} given by 

[22 (o o0 
(10) fu ( 0iJ) = K[ n l 0[i ii I H 11 22 

where K is the normalization constant, aij are positive constants and H is 
an arbitrary positive Lebesgue integrable function. That this pdf satisfies 
global parameter independence can be easily verified. In fact, by solving (9), it 
can be shown that every positive strong hyper-Markov law can be written in 
this form (when n = 2 and k = 2). This solution includes the Dirichlet family 
as a proper subclass. 

Because H is a single function that does not depend on a particular 
network structure, one can conclude that if local parameter independence 
holds in one network structure, then fu must still be Dirichlet. Therefore, 
due to Lemma 1, local parameter independence must hold for all network 
structures. We have proved this claim for two-variable networks, but we 
believe that it holds for the n-variate case as well. It would be interesting to 
find specific pdfs of the form given by (10), because such pdfs can be used as 
priors for the parameters of Bayesian networks while still retaining the 
advantages of a decomposable prior-to-posterior analysis guaranteed by global 
parameter independence. 

APPENDIX 

This Appendix proves Theorem 2. Section A. 1 shows that we are allowed to 
take derivatives of the functional equation which Theorem 2 defines. Section 
A.2 solves a special case of this functional equation, Section A.3 gives some 
lemmas needed for the general solution and Sections A.4 and A5 provide the 
general solution. Section A.6 uses the general solution to complete the proof 
of Theorem 2. 
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A.1. The functional equation. By renaming variable and function 
names, (4) can be written as follows: 

n 

fo(Yls* - Yn- 1) H gj(Zi,j,* Zk- 1j) 
j=1 

(11)~~~~~~~~ IzilYl Zi,n-lYn-1 

where 
n 

xi:= E: zijyj, l < i <k- 1, 

(12) 
j=1 

k-i 
Zkj l j E z, 1j ? n 

i= 1 

and where 
n-1 k-1 

(13) Yn = 1- E yj, Xk =1- E Xi. 
j=1 i=1 

Note that the free variables in (11) are Y, ... Yn - 1 (yj replaces 0.j) and 
Zij, 1 < i ? k - 1, 1 <j ? n (zij replaces OiQj). All other variables which 
appear in (11) are defined by (12) and (13). Note also that we may consider 
any yj1 to be a dependent variable instead of Yn as long as j= = 1, in 
which case we remain with the same functional equation. Similarly, we may 
consider xi, and zi,j to be dependent variables instead of Xk and Zkj 
respectively, as long as 1*= xi = 1 and Ek= 1 zij = 1. These observations are 
particularly apparent when recalling the probabilistic origin of this equation 
by which {xj}*=1, for example, are the multinomial parameters associated 
with a random variable having k states, and no state is distinguished from 
the other states. 

Furthernore, we may consider xl,..., Xk (xi replaces Os.) and wij = 
(zijyj/xi),1 < i < k, 1 < j < n - 1 (wij replaces Ojli) to be free variables and 
rewrite (11) in terms of these variables. Namely, 

k 

g0( x1, * *, Xk-1)F fi( Wi, 1 *, Wi, n- 1) 
n 

_______ Wk l,jXk- 1~ 
(14) = f0(Yy1,.. Yn-i)171g ( w131 jX *l X_ 

j= i Yj Yj 

where 
k 

y1= .wijxi, 1< jn- 1, 

(15) L n1 n-i 

win =1- E wj 1 < i < k 
j=1 
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and where Xk and y,n are defined by (13). This symmetric representation of 
(11) will be used in the derivation of its solution. 

We assume that all functions mentioned in (11) originated from pdfs and 
thus are Lebesgue integrable in their domain. According to Jarai's theorems 
(see Section 2) these assumptions yield that each set of positive functions that 
solves (11) consists of functions for which any finite-order partial derivative 
exists for every point in their domain. The importance of this claim is that in 
order to find all positive Lebesgue integrable functions that satisfy (11), it is 
permissible to take any derivative at any point in the domain because it 
exists. 

A.2. The bivalued equation. We shall now find all positive Lebesgue 
integrable solutions of (11) when k = n = 2. This derivation is different from 
the general derivation which is given in the next sections. 

When k = n = 2, (11) reduces to 

(16) fO(Y)g1(Z)g2(W) =go(X)fl( L )f2(( 1 ) ) 

where 
(17) x=yz + (1-y)w. 

Let 
A d 

(18) I= n fi(t), 

and 
d 

( 19) ^'( t) -Id ngi( t) . 

Taking the logarithm and then a derivative once wrt y, once wrt z and 
once wrt w of (16) yields the following three equations: 

fo(y) - (z - w)go(x) 

(20) Z YZ )+ ( 1 - z)( l - w) A, 
A 

tl Z)) 

( x2 ( x 

91(z) - (1 -y)g(x) 

(22) Y(l -Y)jYZ)(l-z)(1 l Y)2 (Y( - z) 

Solving f(yz/x) and f2(y(1 - z)/(l - x)) from (21) and (22), plugging the 
result back into (20) and collecting all the terms involving gO(x), g(z), 92(w) 
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and fo(y) yields 

h(y, z, w)g" (x) 
- z(1 - z)gl(z) + w(l - W)g (w) -y(l -y)(w -z) 

where 

h(y, z,w) = y(l - y)(w _ Z)2 + yz(1 - Z) + (1 - y)(1 - W). 

Taking a derivative wrt z of (23) and multiplying the result by 1 - y, and 
similarly, taking a derivative wrt w of (23) and multiplying the result by y 
yields, after subtracting the two equations, 

[(1 - y)h_,(y, z, w) - yhw(y, z, w)] " (x) 
- (1 - y)[(1 - 2z)g'(z) + z(1 - z)g'(Z)] 

( 24)~ (1 y ) [y ( y Y) fol ( Y)] 

-y(1 - 2w)g"(w) + w(l - w)g'"(w) - y(l - y)f (y)], 

where hz and hw are the partial derivatives of h wrt z and w, respectively. 
But we also have 

(1 - y)hz(y, z, w) - yhw(y, Z, w) =_ O 
and therefore (24) yields 

(1- 2w)g"(w) + w(1 - w) "(w) 
(25) l -y 
( 25) = [(1 - 2z) 1(z) + z(l - z) 1(z)I + (1- y)fo(Y) 

Because w does not appear in the right-hand side of this equation, we get 
(26) ( 1-2w)g"(w) + w( 1-w) "(w) = cl, 
where cl is an arbitrary constant. Equation 26 is a first-order linear differ- 
ential equation, the general solution of which is given by 

b cl 1-2w 
2(w 

= 
w(l-W) 2 w(l-w)' 

where b is an arbitrary constant and b/w(l - w) is the homogeneous 
solution. Thus, 

a 
w w 

where a and j3 are arbitrary constants defined by a = b - cl/2 and 8 - 

- (b + 3c1/2). Hence, g2(w) = cw (1 - w) where c is a third arbitrary 
constant. 

From (25) we also get 
(y A 

(1 - 2z) ^1(z) + z(l - z)"'{(z) = + UfA(W. 91 91~~~ - 
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Hence both sides are equal to a constant, say c2. Consequently, 
A C2 Cl 

y l-y 
and 

a' /3' a 
gl(1) z 1-z 

Consequently, fo(y), gl(z) and g2(w) all have the Dirichlet functional form 
and each function depends on three constants. 

A.3. Preliminary lemmas. We now provide several lemmas that are 
needed for the derivation of the general solution of (11). 

LEMmA A.1. The general solution of the following partial differential 
equation for f(xl,..., xn), 
(27) f + xifx + xjfx =0 

in the domain (0, c)m, is given by 
1 Xi~ 

(28) f(xl,..., x.) =- l h 
X 

x 

or, equivalently, by 
1 (xXt 

(29) f(Xl,., Xn) = -gl- xi,,..., 'xi ,,xi+,,.., Xj 1,,Xj+1,--,,XnJ 

where h and g are arbitrary differentiable functions having n - 1 arguments. 

PROOF. Let s = xi and t = xi/xj. Thus, fx, = f8 + (t/s)ft, fx. = -(t/s)f. 
Hence, after a change of variables, the differential equation becomes 

f + sf8 = o 
and therefore f = (1/s)h(t, xl,..., xi-1, xi+1,...,X Xj,xj+11,...,xn). By 
changing the roles of xi and xj in this derivation, we get the other form 
of f. o 

LEMMA A.2. The general solution of the following partial differential 
equation for f(xl,..., xn), 

a /3 
(30) fxi -xi xi +x ' 

is given by 

(31) =alnxi -jlnxj 
+ h(xi + xj, Xdiffern iable funxi+c t Xhavn Xn+- 1a Xn), 

where h is an arbitrary differentiable function having n - I arguments. 
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PROOF. Let s = xi + xi and t = xi - xj- Thus, fi = fs + ft fXJ = fs - ft- 
Hence, after a change of variables, the differential equation becomes 

a / 
f ~~ + t s +t s-t 

Integrating wrt t and changing back to the original variables yields the 
desired solution. o 

LEMMA A.3. Let f(xl,..., xn) be a twice-differentiable function. If for all 
1 ? i <j < n, 
ff xl,..., x.) = ai lnxi + aiInxj 

+ fjj(xj + xj, Xj,..., Xi_l xi+l,.-- xj_l )xj+ ?'- Xn)2 

where fij are arbitrary twice-differentiable functions having n - 1 arguments, 
then 

n n 

(32) f(xj, ... , xn) = g E xi + E ai lnxi, 
i=l i=l 

where g is an arbitrary twice-differentiable function. 

Proof can be found in [9]. 

AA4. The general solution. We now solve (11) for any n and k. First we 
assume n and k are strictly greater than 2. We use the following notation: 

g1(tli - , tAr-1)i 

d 
- Id ng, (tiS* tk - ), 1 < i < k -1, 0 < I < n, at. 

gl(ti tl** tk- l)ij 

d d 
=Ing, dt l I..., tk- )I 1< i,j<5k -1,0 <I <n, () a~~~ti at. 

(33) fi(tl , .. ., tn- )i 

d 
- Infl(ti...,--,tn - ), 1 <i < n - 1, 0 <I<k, atj 

fl(til -tn- Dii 

=I--lnf1(t1,., tn- 1), 1 < iJ < n - 1,0 < 1?< k. 

Also we use the following notation: 
X= (Xl,...,Xk-1), ZJ (z1jl...Zk-11,) 

(34) Y=(y1,.*.,Yn 1) w ( z 1 _Zi,_n-1Yn-l) 

Thus, for example, gj(Zj) stands for gj(z1 j, . . ., Zk- 1 j)- 
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By taking the logarithm and then a derivative wrt zij (1 < i < k - 1, 1 < 
j < n - 1) of (11), we get 

gi(Z) i =yjgo(X)i +Y[E fi (Wi)[ Zil2 ] + X i(Wi)i 
(35) 

I 
1 n 1 ~ ZkIYl 1 / TI 

+Yj[ E fk(Wk)l 2 I fk(Wk)j 
1=1 ~ [Xk Xk 

By setting i = il and i = i2, 1 < i1 < i2 < k - 1 (k 2 3) in (35), subtracting 
the resulting two equations and dividing by yj, we get 

y gi (Zi)i -gi (Zi) i 2 

= [g0(X)il -g0(X)i2J 

(36) + n-1 [ 2(W2) [ i2lYi ] -fi(W4) [ i 1 
I1 L12 

+ -f'l(Wl)j - - fi2(Wi2)j 

Now taking the logarithm and then a derivative wrt zin (1 < i < k - 1) of 
(11) yields 

gn(Zn)= Yngo(X)i + Yn Efi(Wi)lH X2 jj 
(37) 

+ Yn[r fk( Wk) L 2 
L1=1 ~Xk 

Similarly, by setting i = i1 and i = i2, 1 < il < i2 < k - 1 in (37), sub- 
tracting the resulting two equations and dividing by Yn, we get 

1 
- [gn(Zn)ii gn(Z- 2] Yn 

(38) -[g?0(X)il -g0(X)i2] 

+ n fi 2(W[2)1[i'] - fi(W J) 

Subtracting (38) from (36) and setting j = j1 yields 

y gjl(z-l)il gil(Zil)i2J - [gn(Zn)i, gn(Zn)i-] 

(39) 1 t;1(w~1)~1 - 1 
- Xfi1(Wi1)jj X _fi2(Wi2)jj' 

12 

where 1 < i1 < i2 < k - 1,1 <?jl < n - 1. 
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Now we take a derivative wrt z - of (39) and obtain 

ygjl(Zjl)ilil gJl(Zil)i2i 1 

(40) Y n-i1 zily] Y 

= - 2-fti(Wj)j +- E 
f1i(Wji l x2] + Xi fij(Wij)jlj- 

i, L~1=1 [ X1 X L1 

Similarly, we take a derivative wrt ziln of (39) and obtain 

1 
- [gn(Zn)ijij gn(ZA)1241J 
Yn 

(41) - x21'1(l1,)j1 +L - 2iW,(ji ) Z Y [- 2] 
xi, Xiixi 

Equations (40) and (41) yield 

Yj2 [gil(Zjl)ili, gjl(zjl)i2il] + 
;72 [gn(Zn)iiil 9n(Zn)i2i1] 

J1 n 
(42) 1 

Xi2 fij(Wij)jjj 

Now we take a derivative wrt zi,j2 of (39) where 1 < 2 < n - 1, i2 il 

(n 2 3), and obtain 

( y3 n- i ) 2] + X 2 ) 

0= X. X E f(W(l4)l+ 

Equations (41) and (43) yield (ji * i2) 

(44) y~~2 [ gn(Zn)'il 
- 

gn(Zn) i2il] x ij(Wij)j 2 1 1 

Putting (42) and (44) into (43) and recalling [from (12)] that 
n-i n 

- 
1 

Zi,nYn =Xil zillYI 2 

we get 

X y gj=(Z-l)ilil gj-(Zjl)i2il 

(45) + Ji[ 

+ y gn(Zn) iii, 9n(Zn)i2i1j Yn 
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Similarly, we derive an analogue to (40) by taking a derivative wrt Z 
(instead of wrt zid of (39), follow the same steps up to (45) and get 

1 Z 
X- fi2(Wi2)jl y2J gjl(Zjl)i,i2 gjl(Zj1)i2i2] 

(46) 2 1 

+ 2[ gn(Zn) li2 gn(Zn)i2i2]- 
Yn 

Plugging (45) and (46) into (39) and collecting all terms involving yn on 
one side and all terms not involving Yn on the other side implies that each 
side is equal to a constant, say c. Namely, 

IgA(Z1)A - gA(ZA)2J + lgj(z)ilil-ggj(Zj)i 
(47) g] 

+ 
[gj(Zj)'1'2 gj(Zj)i2i2 

= 
C, yi 

where 1 ? j ?g n. 
This equation holds for every value of yj and therefore c = 0. Thus we 

obtain 

gj(ZA) - gi (Z3)'] + Z gi M) i iI 
- 

gi(Z )i2 i] 

+ Zi2[ gj(Zj)ili2 - gj(Zj)2i2 = 0. 

Let h(Zj) = gj(Zj)i, - gj(Zj)i2. Thus (48) can be written as follows: 
dh dh 

(49) h z 
.~ = 0. 

'Jdzilj 
12 

Zi2j 

Lemma A.1 provides the general solution for h and thus, 

(50) h(Zj) = gj(Zj)il - g)(Zi)i = -g -i Z z,j 

where 

Zili2,j Zlj* Zil-l j Zil+ j1+ * Zi2-j, 1 zi2+l,j-* Zk-1j) 

and where gj is an arbitrary function having one argument less than g,, or 

(51)~~~~~~~~~~ ( 5 1) gi(Z3)il - gi(Z3)i2 = zjgj ( 1i2J 

where again gj is an arbitrary function having one argument less than gj. 
Similarly, because fi and gj play a symmetric role in (11) as shown by (14) 
and hence have the same form, we get 

(52) iW(Wi)ij - (XD)2- fi l 
_Yjlj2 
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where 

W. , , = (z1 }y1 zjjiy - j1 - z,jl1+lyjl+l Wjlj2,' i '* ' ' x. xi ~~~xi x 

Z'1j2-1yj21 ZiJ2+lY12+1 Zin_Yn 

xi xi xi 

or 

(53) -f(W xi (ziyf W ) fi(Wi)j~~ Z ij2yj2 z j2 yj2 
l2 

Now, by setting j = j, and j =j2 in (39) and subtracting the resulting 
equations, we get 

-y [gj1(zj1)i' -g(Zj1)i21 - [g12(Zj2)il g2(Z12)i] 

(54) ~~~~~~1 1 

= [fi1(wi1)jl -fil(Wl)j21 X[fi2(Wi2)jl fi2(Wi2)2]- 

Plugging (50) through (53) into (54) yields 

1 (zl J1 1 2 (Z 2JJ2112J2 

1 - z f111y11 .. 1 1 ____ f ijlj 

(55 ____. 1 
ij Y2j2 J2 ) 22j I 

Let x~ ~~~ i Zij,Yjl fY Z zi 2 j2y 
' W 

zlj2, zi 2 and fw 2 'zi 2j2 in W(56). The 

Note that the variables in Zl2,do not appear elsewhere in this equlation. 
Therefore, x, is only a function of its first argument. Similarly, 

- 
Y fil and 

fi tare only functions of their first argument. Thus (55) can be rewritten as 
follows: 

(56) i i 2l Z22Y Z i2j 

zillyj 1 iJ2 j2 iJ2 YJ2 Z ( )j j 
Let X =zi11y1 l y = Zi2jly11, Z = Zijy2and W = Z2 Y in (56). Then 

(57) +[4 fi~() = 4i2( t2() 

By taking a derivative wrt y of (57), we get 

(58) ~~~~~~~~~~~~Y2 W 
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Setting y = w, we see that &j(t) = f3l and gjl(t) = /3lt + cra, where ail and 

Oil are constants. Plugging this result into (50) yields 

(59) gj(Z) = 

ii 2J 

where 1 < i1 < i2 < k - 1. 
Equation (59) is a first-order partial differential equation, the general 

solution of which is given by Lemma A.2. Consequently, due to (33), we get 

(60) gj(t (.. tk - t) 

il)= t9jt i2Jg (t1 + ti2, 1t' ., til-1' til+1 . ... . ti2- 1 ti2+1,. ..,tk-). 

Now, due to Lemma A.3 we have 

(61) gj(t,.. ., tk1) = [LI tiaiGj E ti). 

Similarly, 
n - 1 n -1 

(62) fi(t1 ...* t 1) = pij Fi E tj 

which is obtained by repeating the derivation starting at (14) rather then at 
(11). Note that we have almost derived the Dirichlet functional form. It 
remains to derive the form of the functions Fi and Gj. 

In (11) let zlj = Z2j = *-- = Zkj for 1 <j < n. Thus, according to (12), 
zij = xi. Consequently, we get 

n 

fo(Yi* Yn-l1) ri j( Xi,* xk- 1) 

(63) k 

go (Xi, .. I Xk- 1) Fl fi(yi Y1 - * * Yn- 1 
i = 1 

Equations (11) and (63) yield 

n6)r gi(Zi, j, Zk - 1 n) kl fi(ZiiYi1Xi,--, Zi,n-iYn-iX/i) 
(64) H =1 1 

Plugging (61) and (62) into (64), we get 

I,=l iri Xi I jt[lG(Fk- 
1 
Xi)] 

(65) k n-1 Z k F(En-1 [kr (.l ~ ]k(z~(z13/~ 
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Thus, using Zkj = 1 - E2 11 zij [by (12)], 

k-'#-1(Zi [ zJi) I kF I(E;2q (Zi,jy/ x)) 

JV1 r=1 ( i J=] j =l i=j7=l j 

where for I < i < k - 1 and 1 <j < n - 1, cij =aj - I3j, 

Fi(t) = (1 - t) Fi(t), Gj(t) -(1 -t) jGj(t) 

and where Fk(t) 8 Fk(t) and Gn(t) = Gn(t). We will show that F(t), i = 
1,... , k - 1, are constants. Consequently, due to (62), fi has a Dirichlet 
functional form. That the function fk also has a Dirichlet functional form can 
be obtained by choosing z1j as a dependent variable defined by z1j= 1- 
rk 

Ei22zij instead of Zkj as defined by (12) and repeating the same arguments. 
By symmetric arguments, each gj also has a Dirichlet functional form. 

Let y3 = 1/n, for all j, 1 < j < n and zij = 1/k for all i and j,1 < i < k 
1 ? j < n - 1. Hence, the only free variables remaining in (66) are Zin where 
1 ? i < k - 1. Note that xi = E7, zijyj = (n - 1)/kn + (1/n) Zin, 1 < i < 
k- 1, and so G.(Ekl xi) is a function of EV--lzn Also 1zij) is a 
constant for 1 < j < n - 1 and a function of Ek21 -z for j = n. Consequently, 
(66) becomes 

(67) fE Zin) = 1pj(( d ) [ inf 

where c = (n - 1)/kn, d = 1/n and ai = EjI cij. Note that Zkn 1 
Ek- 1 Zi n and so the k th term on the right-hand side of (66) is absorbed, along 
with some constants, into the definition of f in (67). 

Let ti = c/(c + dz1n); Zin = (c/d)((l - ti)/ti). Taking the logarithm of 
(67), we get 

(68) (AC k-1 ti) k-= n a-F( 

Taking a derivative wrt tL1, 1 : i< k - 1 we get 

(69) d t ) = [ln t-ailFil(ti)]. 

Thus, f'((c/d) E'I-((1 - t)/t)) must be a constant. Hence, by integrating 
(69), 

(70) i(t) = c,ta te 1 < i < k - 1, 

where K is a constant not depending on i. 
To complete the derivation, we substitute (70) into (66), and let yj = 1/n, 

for 1 ? j < n and zij = 1/k except ziL1, 1 < i < k - I which remain free 
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variables. Consequently, we get 
(k1\ k-1 (Zi1 + W0)a i1 

gE zi) = H ( l exp( K E ) i=1 Zil ~~k-1 i ii 
w 

where wo = (n - 2)/k. Therefore, K = 0, ai = 0 and F is a constant as 
claimed. 

Thus, 

(71) fi(ti'* tn- 1) = kit 17 tPi] (1- E tj 
L- J j- 1 1x 

(72) gj(t, tkl) Cj 1- t 

A.5. Special cases. We now solve (11) when n = 2 and k > 3. This proof 
follows the general lines presented in Section A.4 but circumvents the appli- 
cations of the fact n 2 3 assumed in Section A.4. When k = 3 and n > 3, a 
similar derivation can be obtained, as implied by the symmetric roles of n 
and k in (4). 

Note that up to (42) the derivation is valid when n = 2. Furthernore, note 
that the sum in (41) consists now of one term, where I = j, = 1. Thus, (41) 
and (42) yield, using xi = zijly- + ZinYn (n = 2,j1 = 1), 

_________ - y [gn(Zn )iiii gn(-Zn)i,il 

(73) Xi, Yn 

xy, glfljl)ilil gil(Zil)i2il 
- 

yj1 
Similarly, 

_i2_Wi2__l 
Zi2n 

f gn(Zn) i -i2 gn(Zn) i2i2] 

(74) Xi2 Yn 

12ygljll y gil(Zil)ili2 i(i)i2i21X 

which is obtained by taking a derivative wrt zi,j, of (39) (instead of wrt ziljl) 
and repeating the derivation up to (42). 

Plugging (73) and (74) into (39) and collecting all terms involving Yn on 
one side and all terms not involving Yn on the other side implies that each 
side is equal to a constant, say c, namely, we obtain the partial differential 
equation for gj(Zj), 1 < j < n, given by (47). Consequently, as given by (50) 
and because n = 2, 

1 ) ll z 

(75) -=P7~ ~J 
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and 
1 (j 

(76) gi2(Zi2) - g= z222 R 
Zi2J2 Zi2h 

Also, when n = 2, we have xi = Zlj,Yjl + ZinYn, and hence, 
1 1 ( \ 1 (z. Azilny (77) (5 and(7) intof_ (IJ9 yl 

xi,[l 
Ji 

xi, Xi,n1 J i Z inYi ) ln Yn 

1 1 ( Zi2 ly ) A( Z i 1 Y ' 

(78) s -fi2(W2)31 is o i . )qu=tio y (262) J 
no2 2 12 proof 21 in 1n 

Plugging (75) and (78) into (39) yields 
1 1 , Zil 

(79 ) iiiiy l _ I_____ _______ Z i2__ z 2j y 
Z. - ~z A 1 

This equation parallels (56) where j2 is replaced by n and can be solved in 
the same way. Thus (61) is obtained. Equation (62), on the other hand, needs 
no proof when n = 2 because an arbitrary function f( x) defined on (0, 1) can 
always be written as A(x) = xag(x) where g(x) = xa"f(x). The remainder of 
the derivation follows Section A.4 closely. 

AA6. The joint density. In previous sections we have shown that, under 
the assumptions made by Theorem 2, the densities f1(0g.) and fj1i(o 1i) are 
Dirichlet. Similarly, we have shown that fJ(6. j) and fflj(0Qlj) are Dirichlet. 
We now show that fu({0ii)) is Dirichlet. This completes the proof of Theo- 
rem 2. 

We can write 
n k k n 

fIi( J, Oiii* 0Ilk) =f (0) H fij(ellj) = C 0r1 0 H Ho ilj. 
j=1 j=1 J=1 i=1 

However, fjj(01., OJl,.'. ., OJIk) can be expressed using ftj by two applications 
of the Jacobian given by (3). Thus we get 

fIJ (I., J1Oi*0j ,Ik) 

( 80) k n k k nJ la J= l-lj -1 

where 0., = OiQ.oji Because fIJ is a product of Dirichlet functions 
f1, fj1,... , fln, it follows from (80) that the exponent coefficients for O.j, 1 ? 
j ? n, must vanish. Consequently, fu({fij}), which is obtained from (80) by 
multiplying with (H = 1 0/n - 1}- 1 and using the relationship 0 j= ojli O., is 
Dirichlet. 
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Note added in proof. Jarai has recently shown that the assumption of 
strict positivity is redundant [Regularity property of the functional equation 
of the Dirichlet distribution. (1996). Aequationes Mathematicae. To appear.]. 
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