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Abstract 

This paper establishes a partial axiomatic characterization of the predicate I(X, Z, Y), to 
read "X is conditionally independent of Y, given Z".  The main aim of such a characteriza- 
tion is to facilitate a solution of the implication problem namely, deciding whether an 
arbitrary independence statement I(X, Z, Y) logically follows from a given set Z of such 
statements. In this paper, we provide a complete axiomatization and efficient algorithms for 
deciding implications in the case where ,~ is limited to one of four types of independencies: 
marginal independencies, fixed context independencies, a recursive set of independencies or a 
functional set of independencies. The recursive and functional sets of independencies are the 
basic building blocks used in the construction of Bayesian networks. For these models, we 
show that the implication algorithm can be used to efficiently identify which propositions are 
relevant to a task at hand at any given state of knowledge. We also show that conditional 
independence is an Armstrong relation [10], i.e., checking consistency of a mixed set of 
independencies and dependencies can be reduced to a sequence of implication problems. This 
property also implies a strong correspondence between conditional independence and graphi- 
cal representations: for every undirected graph G there exists a probability distribution P 
that exhibits all the dependencies and independencies embodied in G. 

Keywords: Bayesian networks, conditional independence, graphoids, graphical representation, 
probabilistic reasoning. 

I. Introduction 

T h e  role of  cond i t iona l  i n d e p e n d e n c e  s t ems  f r o m  several  p rac t i ca l  cons ide ra -  
t ions.  First ,  knowledge  a b o u t  i ndependenc ie s  saves  space  w h e n  s to r ing  an  explici t  

d i s t r ibu t ion  func t ion  (e.g., b y  a table) ,  and  saves  t ime  w h e n  c o m p u t i n g  a n d  
upda t i ng  the p r o b a b i l i t y  of  an  event .  F o r  example ,  in the  e x t r e m e  case  of  

represen t ing  the d i s t r ibu t ion  of  n i n d e p e n d e n t  b i n a r y  var iab les ,  ignor ing  the  
independenc ies  wou ld  requi re  an  explici t  t ab le  of  2" entries,  a n d  to  ca lcu la te  P ( x  
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is true) would require a summation over the other n -  1 variables in the table. 
Recognizing the independencies among the variables enables us to replace the 
table by n parameters and to reduce computations to a single operation. Second, 
if we choose to represent and process random variables by networks [28], then the 
topology of such networks must reflect the conditional independencies that 
govern the variables in the domain and, therefore, the set of transformations [33] 
we are permitted to apply to the networks must, likewise, be determined by the 
rules that govern conditional independence. Third, in eliciting probabilistic 
models from human experts, dependencies among variables can often be asserted 
qualitatively while numerical assessments are subjected to a great deal of uncer- 
tainties. Obtaining a direct representation scheme for judgements about depend- 
encies would guard the model builder from assigning numerical values that lead 
to conceptually unrealistic dependencies. Examples of such representation schemes 
are graphical dependency models such as Undirected Graphs (UG, section 3) 
[18,21,26], Directed Acyclic Graphs (DAG, section 4) [16,19,22,28,33], or Recur- 
sive models [20,41]. 

In this paper we concentrate on probabilistic conditional independence (al- 
though some results extend to other definitions of independence) because of its 
role in probabilistic reasoning systems (such as [1,4,7]). Information about 
dependencies can be specified by a list of independence statements (or simply 
statements) of the form I(X, Z, Y)e where, X, Y and Z are three finite 
disjoint * sets of variables and I(X, Z, Y)e stands for " X  is conditionally 
independent of Y, given Z" ,  or equivalently, 

I(X, Z, Y)ec*P(x,  y lz)  = P ( x l z ) . P ( y l z ) ,  

for any instantiation x, y and z of the variables X, Y and Z, for which P(z) > O. 
(By convention, we assume that I(X, Z, ~) always holds.) When an indepen- 
dence statement does not hold we say it is a dependency. 

Our objective is to answer the following three questions: 
1. The implication problem: Does an independence statement o logically follow 

from a set of such statements X, namely, does o hold in very distribution that 
obeys all statements in X? 

2. Given a set of independence statements, is the set redundant, i.e., are some of 
the statements implied by the others? 

3. Given a set of independence statements X+ and a set of dependence state- 
ments X-, is the combined set X+U ~ -  consistent, i.e., could it be realized 
simultaneously by some probability distribution? 
The last two problems are reducible to a sequence of implication problems. To 

answer the second question we simply select each statement a in X and check 
whether o logically follows from ~ -  (o  }. The answer to the third problem is 
affirmative iff ~+ does not imply the negation of any dependency in ~ - .  The 

* An assumption used for clarity of presentation. 
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correctness of this reduction stems from the fact that independence is an 
Armstrong relation as shown in section 2. 

The most common strategy for solving the implication problem involves a two 
step process [2,3,8]; first finding a complete set of inference rules called axioms, 
and second, finding an efficient algorithm that repeatedly applies these axioms to 
determine whether o is derival~le from ,~. Completeness guarantees that, by 
repeated application of the axioms, each statement o that logically follows from 
2~ will eventually be derived. Examples of axioms for conditional independence 
are [28]: 

Symmetry 
Decomposition 
Weak union 
Contraction 

I( X, Z, Y) ~. I(Y, Z, X), (1.a) 

I (X,  Z, YU W) ~ I (X,  Z, Y), (1.b) 

I(X, Z, WU Y ) ~ I ( X ,  ZU W, r) ,  (1.c) 

I(X, Z, Y)&I(X, ZU Y, W ) =  I(X, Z, YU W). (1.d) 

These axioms are used in [30,31] to generalize the concept of independence; any 
ternary predicate obeying axioms (1.a) through (1.d) is called a semi-graphoid 
[31]. Other examples of semi-graphoids include Partial Correlation [5,30], Ordinal 
Conditional Functions [17,37], Embedded Multivalued Dependencies [9], Qualita- 
tive Independence [34], Vertex Separation [30], d-separation [28] and D-sep- 
aration [15] (hence the name semi-graphoid). Similar axioms for probabilistic 
independence were used by Dawid [6], Spohn [36], and Smith [35]. 

In this paper we carry out these two steps for four classes of independence 
statements: marginal independence (section 2), fixed context independence (sec- 
tion 3) and both a recursive and a functional set of independence (section 4) (for 
which axioms (1) are shown to be complete). The general implication problem for 
unrestricted sets of conditional independence statements X, remains unsolved. 
The results reported in [23,38] suggest that a finite complete set of axioms for 
conditional independence does not exists. This, however, does not exclude a 
possible solution to the implication problem because a non-axiomatizable set of 
statements can still admit an efficient implication algorithm (e.g., [32]), but the 
existence of such a solution is less likely [39]. 

2. Some completeness results 

The following notations are employed; a, possibly scripted, denotes an inde- 
pendence statement, 2~ denotes a set of independence statements and P denotes a 
class of probability distributions, for example strictly positive distributions (PD +), 
normal distributions (PN), distributions over binary variables (PB) and the class 
of all probability distributions (PD). 
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DEFINITION 
An axiom 

OI•O2&...&O n =:~ 0 

is sound for P if every distribution P ~ P that obeys the antecedents of the axiom 
also obeys o. Axioms (1.a) through (1.d) are examples of sound axioms for PD. 

DEFINITION 
o is logically implied (logically follows) by ,~, denoted ~ 1 ,  o, if every 

distribution in P that obeys ~ also obeys o. ~ ~A o iff o ~ dA(~), i.e., there 
exists a derivation chain o 1 . . . . .  o n = o such that for each oj, either oj ~ ~ ,  or oj is 
derived by an axiom in A from the previous statements. 

DEFINITION 
A set of axioms A is sound for P iff for every statement o and every set of 

statements 

~A o only if ~ ~l, o. 

The set A is complete for P iff 

2 ~ A O  if ~ p o .  

PROPOSITION 1 
A set of axioms is sound for P iff each axiom in the set is sound for P. 

The proof is achieved by induction on the length of a derivation. 

PROPOSITION 2 (After Fagin [8]) 
A set of axioms A is complete iff for every set of statements ~ and every 

statement o ~ dA(~ ) there exists a distribution Po in P that satisfies Z and does 
not  satisfy o. 

Proof 
This is the counter-positive form of the completeness definition, if o ~ dn(~ ) 

(i.e., ~ ~A o) then ~ ge e o. [] 

Next  we present a complete set of axioms for the class of marginal indepen- 
dence statements. 

DEFINITION 
A marginal statement (or marginal independency) is an independence statement 

I (X ,  Z, Y) where Z is ~ ,  i.e., 

I(X, ~, Y)e iff P(X, Y) = P(X) .P(Y) ,  
for each instantiation of X and Y. The inequality P(X, Y)--# P ( X ) . P ( Y )  is 
called a marginal dependency. 
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THEOREM 3 (Completeness for marginal independence) [12] 
Let ~ be a set of marginal statements, and let cl(~) be the closure of ~ under 

the following axioms: 

Trivial independence I( X, 0 ,  0 ). 

Symmetry I( X, 0 ,  Y) e ~ I(Y, ~, X) ~. 

Decomposition I( X, 0 ,  Yt3 W ) p ~  I( X, 0 ,  Y)p. 

Mixing I(X, 0 ,  Y)e & l(XkA Y, 0 ,  lu ~ I(X, 0 ,  Yt3 W)e. 

(2.a) 
(2.b) 
(2.c) 
(2.d) 

Then for every marginal statement a = I(X, 0,  Y)e q~ ci(27) there exists a prob- 
ability distribution Po that obeys all statements in el(X) but does not obey a. 

Proof (sketch) 
Let o = I(X,  O, Y) be a statement not in el(Z) where X =  ( x l , . . . ,  x t) and 

Y =  (Yl,- . . ,  Y,,}- Assume a is minimal, i.e. that for all nonempty sets X'Y '  
obeying X '  _ X, Y' __. Y and X'Y '  ~ XY, we have I(X' ,  0,  Y') ~ el(f ) .  We 
construct Po as follows: Let the variables in f U { I (X,  0 ,  Y)), except x 1, be 
independent binary variables with probability �89 to each of their two values (e.g., 
fair coins) and let 

l m 

x l =  ~-'~ x , +  E Y j  (mod 2). 
i = 2  t = l  

It is shown in [12] that Po satisfies the requirement of the theorem. If o is not 
minimal, then we delete variables from X and Y until we obtain a minimal 
statement o ' =  I(X,  0 ,  I 7) where X___ X and 17_c Y. Then we construct Po, as 
above. Po, does not satisfy a' .  By the decomposition axiom, Po, does not satisfy o 
either (while satisfying el(f)).  Thus, Po, satisfies the requirements of the theorem. 
[] 

PROPOSITION 4 
Axioms (2) are sound for PD (i.e., hold for all distributions). 

The proof of Proposition 4 rests on the basic definition of independence. For 
example, to prove (2.d) we observe that P( X, Y) = P( X) . P(Y) and P( X, Y, Z) 
= P(X, Y).  P(Z) imply that P(X, Y, Z)= P(X, Y, Z). Moreover, summing 
over X yields P(Y, Z ) = P ( Y ) . P ( Z ) ,  hence P(X, ]1, Z ) = P ( X ) . P ( Y ,  Z), 
which establishes the right-hand side of (2.d). 

Theorem 3 and Proposition 4 guarantee that by repeatedly applying axioms 
(2.a) through (2.d) on a set of marginal statements Z, any marginal statement o 
that logically follows from f will eventually be derived and, conversely, any 
marginal statement that is derivable, logically follows from ~. Paz [12,24] 
provides an efficient algorithm to check whether a marginal statement o is 
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derivable from ~. The complexity of his algorithm is O( I~1 �9 n 2) where n is the 
number  of distinct variables in ~ U { o }. 

A complete set of axioms does not provide sufficient means for deriving all the 
information that is implied by a given set of statements. For  example, assume 
that the set ~ = { I( X, a, Y), 1( X, 0 ,  Y)} is given, where a is a single variable 
and all variables are bivalued i.e., drawn from PB. It can be shown that the 
disjunction I (X,  0 ,  a) or I(Y, ~ ,  a) logically follows from ~ and, yet, it cannot 
be derived by a complete set of axioms. Such a set only guarantees to reveal 
(correctly) that neither of the disjuncts is logically implied by Z but would not 
show that one of the two statements must hold. To obtain all disjunctions, a 
strongly complete set of axioms is needed. 

DEFINITION (After [3,8]) 
A set of axioms A is strongly complete in a class of distribution P, if for every 

set of statements ~ and for every set of single statements { o,[i = 1, . . . ,  n } the 
following relation holds: 

~p O 1 o r . . .  or o n iff ~ ~-A ol o r . . .  or o n 

Similar to Proposition 2, the following holds: 

PROPOSITION 5 (After [3,8]) 
A set of axioms A is strongly complete iff for every set of statements ~ closed 

under axioms A, there exists a distribution P in P that satisfies all statements in 
,~ and none other. 

Clearly, a complete set of axioms is strongly complete but  the converse is not  
always true [8]. The notion of Armstrong relation [10] provides a condition under 
which strong completeness is equivalent to completeness. 

DEFINITION 

Conditional independence is an Armstrong relation in a class of distributions P 
if there exists an operation | that maps finite sequences of distributions of P 
into a distribution of P, such that if o is a conditional independence statement 
and if P,, i = 1 . . .  n are distributions in P, then o holds for | { P, I i = 1 . . .  n ) iff 
o holds for each P,. 

We concentrate on two families of distributions P: All distributions, denoted 
PD and strictly positive distributions, denoted PD +. 

THEOREM 6 [14] 
Conditional independence is an Armstrong relation in PD and in PD +. 

The operation | is realized by the direct product. Let /'1 and P2 be two 
distributions sharing the variables x , . . . ,  x n. Let A 1 . . . .  , A n be the domains of 
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X 1 . . . . .  X n in P1 and let a l , . . . ,  O/n be an instantiation of these variables. Similarly, 
let n l , . . .  , n n be the domains of x l , . . . ,  xn in P2 and/31,. . . , /3n an instantiation 
of these variables. Let the domain of P =/ '1  | P2 fie the product domain 
A 1 B 1 , . . .  , A , B ,  and denote an instantiation of the variables of P by alt~ 1 . . . . .  a n i ~  n. 

Define P1 |  by the following equation: 

P ( O / I ~ I ,  O / 2 ] ~ 2 , ' " , o / n ~ n ) : P a ( ~  0/2 . . . .  , O / n ) ' P 2 ( ~ I ,  /~2 . . . .  , /~n)" 

The construction of | for more than two distributions and the proof that | 
satisfies the definitions of Armstrong relations, uses only the definition of 
independence and can be found in [14]. 

An immediate application of strong completeness is the reduction of the 
consistency problem to a set of implication problems. 

DEFINITION 
A set of marginal dependencies ~ -  and a set of marginal independencies ~7 + 

are consistent iff there exists a distribution that satisfies Z§  X-. The task of 
deciding whether a set is consistent is called the consistency problem. 

The following algorithm answers whether Z + U Z  - is consistent: For each 
member of ~ -  determine, using the implication algorithm, whether its negation 
logically follows from X+. If the answer is negative for all members of X-,  then 
the two sets are consistent, otherwise they are inconsistent. 

The correctness of the algorithm stems from the fact that if the negation of 
each member o of Z -  does not follow from Z+ i.e., each member of Z -  is 
individually consistent with X+, then there is a distribution Po that realizes Z+ 
and --lo. The distribution P = | ( Po 17o ~ ~ - }  then realizes both ~+ and Z - ,  
therefore the algorithm correctly identifies that the sets are consistent. In the 
other direction, namely when the algorithm detects an inconsistent member of 
Z - ,  the decision is obviously correct. 

3. A graph-based closure algorithm 

In this section we concentrate on another class of statements called U-state- 
ments. 

DEFINITION 
Let U be a set of variables (the universe). A statement I (X,  Z, Y) is called a 

U-statement if X U Y U Z = U. A set of U-statements is called fixed-context. 

The interest in this set of statements stems from two reasons. First, for the 
class of strictly positive distributions, U-statements obey the same axioms as 
vertex separation in undirected graphs. Second, there exists a compact representa- 
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Fig. 1. Example of a Markov chain. 

tion of all independence statements that logically follows (in PD +) from a given 
set of U-statements, requiring only O( I U [ 2) bits of storage. These two properties 
rely on an additional axiom of independence that holds in every strictly positive 
distribution: 

Intersection I(X, ZU Y, W) & I(X, Zt.3 W, Y)=* I(X,  Z, YU W). (3) 

(That intersection does not hold in all distributions can be seen by examining the 
case, X = Y = W a n d  Z- -  O.) 

To exemplify the representation of probabilistic knowledge by undirected 
graphs, consider a language govemed by a Markov process, namely, the probabil- 
ity of the ith letter is determined solely by the (i - 1)th letter via P(l i [ l,_1) > 0. 
The dependencies embedded in the distribution function can be represented by 
the Markov chain of fig. 1. 

This graph asserts, for example, that the variables l I and l 3 are conditionally 
independent given l 2, since the node l 2 blocks all paths from 11 to l 3. More 
generally, for every three disjoint sets X, Y and Z of nodes in graph G, let us 
define the predicate I(X, Z, Y)~ by 

I(X,  Z, Y)~ ,x, Z separates X from Y in G. 

We then say that G perfectly represents the dependencies of P if there exists a 
1-1 correspondence between the variables in P and the vertices of G such that, 

I(X,  Z, Y )ce*I (X ,  Z, Y)e. 
Such a graph is called a perfect-map of P [28]. 

Suppose that by sampling 5-letter words from some unknown language (see 
previous example), the following two independencies (U-statements) were identi- 
fied: 

~ =  ( I ( ( l , ,  12}, 13, ( l , ,  15)), I(13, (12 14), ( l l / 5} ) ) .  

The question arises: Are these statements sufficient to guarantee the Markov 
nature of the language and, moreover, is the chain structure a complete represen- 
tation of all independencies that logically follow from ~? The main result of this 
section is a polynomial-time algorithm that generates all independence statements 
that logically follow (in PD +) from a set of U-statements ~:, i.e., it generates all 
statements that hold in every strictly-positive distribution which obeys ~:. In 
particular it reveals that ~ implies the Markov nature of the language via 

P(l, ll,_l, l i_2, . . . , l l )=P(l ,  ll,_l) i = 2  . . . . .  5, 

or, in our notation, that 1(l 1, l~_1, (li_2... l l ) )  m u s t  hold for i = 2 , . . . , 5  and, 
moreover, that no other statement is logically implied by ~. This closure al- 
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gorithm generates from Z the graph of fig. 1. It starts with a complete graph (over 
all the variables) and simply deletes every edge (a, r )  for which a statement of 
the form 1( X U { a }, Z, Y U ( fl }) is found in Z, for sorrie X, Y and Z. We show 
that the resulting graph represents all the independencies that are shared by all 
strictly-positive distributio~;s that obey ~, and must therefore be obeyed by the 
language. Thus the two statements of Z constitute a sufficient code for the chain 
structure of the distribution P, and the algorithm uncovers this structure without 
resorting to numerical calculations. The next two theorems justify this algorithm. 

THEOREM 7 [14] 
For every undirected graph G, there exists a non-extreme distribution P, and a 

1-1 correspondence between the variables in P and the nodes of G such that for 
every three disjoint sets of nodes X, Y and Z the following holds: 

I(X, Z, r ) ~  iff I(X, Z, r)e .  

THEOREM 8 (strong completeness) [14,25] 
Let Z be a set of U-statements and let el(Z) be the closure of ~ under 

symmetry (1.a), decomposition (1.b), weak union (1.c) and intersection (3). Then, 
(1) there exists an undirected graph G for which I( X, Z, Y)G satisfies exactly the 
statements in d(Z) ,  and (2) there exists a strictly positive distribution P that 
satisfies exactly the statements in d (Z)  (i.e., G is a perfect map of P). G is 
constructed by removing from the complete graph over U every edge (a, /3) ,  such 
that a ~ X, fl ~ Y for some statement o = I(X,  Z, Y) ~ ~, and only these edges. 

The closure algorithm is now dear: given ~, it constructs G by the procedure 
of Theorem 8 and uses graph separation to identify the elements of d (~) .  The 
construction of G requires O(kn 2) steps, where k is the size of ~ and n is the 
number of variables, while to verify if a specific statement belongs to d (Z)  
requires O(n) steps. The simplicity of this algorithm stems from the fact that 
axioms (1.a) through (1.c) and (3) are complete for fixed context statements both 
when interpreted as vertex separation (Theorem 8, part 1) as well as when 
interpreted as conditional independence in PD § (Theorem 8, part 2). 

Theorem 7 is important by itself because it justifies the use of undirected 
graphs as a representation scheme for probabilistic dependencies. It allows one to 
choose any UG for representing dependencies and be guaranteed that the model 
is supported by probability theory (similar results for Directed Acyclic Graphs 
are presented in [13]). The converse, however, does not hold; there are many 
distributions that do not have a perfect representation either in DAGs or in UGs 
and the challenge remains to devise graphical representations that minimize this 
deficiency. 

The construction presented in the proof of Theorem 7 [14] leads to a rather 
complex distribution, where the domain of each variable is unrestricted. It still 
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does not guarantee that a set of dependencies and independencies represented by 
UGs is realizable in a more limited class of distributions such as normal or those 
defined on binary variables. We conjecture that these two classes of distributions 
are sufficiently rich to permit the consistency of undirected graph representations. 

4. AppLication to Bayesian networks 

A Bayesian network encodes properties of a probability distribution using a 
Directed Acyclic Graph (DAG). Each node i in a Bayesian network corresponds 
to a variable X~, a set of nodes I correspond to a set of variables X i and x i is a 
value from the domain of X,.. Each node in the network is regarded as a storage 
cell for the distribution P(xi  I x~(o) where X,~(o is a set of variables that 
correspond to the parent nodes ~r(i) of i. The distribution represented by a 
Bayesian network is composed via 

n 

P ( X l , . . . , x , )  = I-I e ( x ,  lx~(i)) (4) 
i = 1  

(when i has no parents, then X,~(,.)= O). The role in a Bayesian network is to 
record a state of knowledge P, to provide means for updating the knowledge as 
new information is accumulated and to facilitate query answering mechanisms for 
knowledge retrieval [22,27]. A standard query for a Bayesian network is to find 
the current belief distribution of a hypothesis variable X l, given a composed 
evidence set Xj = xj  i.e., to compute P(xz l x j )  for each value of X t and for a 
given combination of values of Xj. We examine the following related problem: 
Given a variable X k, a Bayesian network D and the task of computing P(x l l x j ) ,  
determine, without resorting to numeric calculations, whether the answer to the 
query is sensitive to the value of X k. 

This question is an instance of the implication problem because it amounts to 
verifying whether the statement I ( X  t, Xj, X~) logically follows from the set of 
independencies that define the topology of the DAG. Let the nodes (and 
variables) be arranged in a total ordering d that agrees with the directionality of 
the DAG, namely, i must precede j whenever there is a link from i to j .  Let U(i) 
stand for the set of nodes that precede i in the ordering d. The rule of 
decomposition (4) implicitly encodes a set of equalities P(xilx~r(i)) = P(x,  [Xu(i)), 
i = 1 . . .  n, or in our notations, a set of n independence statements 
I(Xi, X~(,), Xu(,) - X~(,)). This set of statements, denoted L, is said to define a 
Bayesian network and is called a recursive basis. Thus, the problem at hand is to 
determine whether I ( X  l, X s, Xk) logically follows from L. If it does, then 
P ( x t l x : )  = P (x t l x j ,  xk) for all instantiations x t, x/, and x,,, hence the value of 
X~ will not affect the computation. If the statement does not follow, then the 
value of X1, may have an effect on P(x t lxs ) .  
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THEOREM 9 [13,40] 
An independence statement o logically follows from a recursive basis L iff o 

can be derived from L using axioms (1). 

Theorem 9 provides a characterization of all statements that logically follow 
from L, whereas [29] also establishes a compact representation of these state- 
ments, based on a graphical criterion called d-separation. [15] employs d-sep- 
aration to facilitate a linear time (in the number of links) implication algorithm 
for inputs forming a recursive basis. This result is analogous to Theorem 8, since 
it provides a compact representation of the closure of L (via a DAG) and a linear 
time algorithm to determine whether a statement belongs to the closure. 

Theorem 9 assumes that L contains only predecessor independencies of the 
form I(X~, X~(i) , Xu( i ) -  X~(,)). Occasionally, however, we are in possession of 
stronger forms of independence relationships, in which case additional independ- 
encies should be read off the DAG. A common example is the case of a variable 
that is functionally dependent on its corresponding parents in the DAG (de- 
terministic variable [33]). The existence of such a variable Xi could be encoded in 
L by a statement of global independence I (X, ,  X~O), X U - X~o ) - X,.) asserting 
that conditioned on x,~0), X~ is independent of all other variables, not merely of 
its predecessors (Xu~,)). A set combining predecessor independencies and global 
independencies is called a functional basis. 

THEOREM 10 [11,15] 
An independence statement o logically follows from a functional basis L iff o 

can be derived from L using axioms (1). 

[15] shows that the independencies implied by a functional basis can be 
identified in linear time using an enhanced version of d-separation, named 
D-separation. 

5. Discussion 

This paper establishes a partial axiomatic characterization of conditional 
independence. This characterization, aside from its use in inference systems, also 
highlights plausible lines of reasoning that would otherwise be hidden in numeri- 
cal calculations. Our axioms could serve as building blocks of systems that 
provide qualitative explanations as to why certain facts were or were not  taken 
into account in a given computation. For example, the weak union axiom can be 
phrased verbally to read, "if  two items together are irrelevant then learning one 
of them leaves the other still irrelevant". A numeric representation of this 
inference, however, involves several equations that hide the intuition that so 
strongly supports this inference. Finding an axiomatic basis for probabilistic 
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independence,  which is the ma in  cont r ibut ion  of this paper,  also plays a role in 
determining an appropr ia te  uncer ta in ty  calculus. The  axiom system clearly estab- 
lishes (1) the quali tat ive relat ionships that  are guaran teed  to be preserved by  
adhering to the rules of probabi l i ty  calculus, and  (2) the quali tat ive relat ionships 
that  are in danger  of being compromised  as a result  of choosing an  al ternat ive 
calculus. 
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