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Abstract. We show that if a strictly positive joint probability 
distribution for a set of binary variables factors according to a tree, 
then vertex separation represents all and only the independence rela- 
tions encoded in the distribution. The same result is shown to hold 
also for multivariate nondegenerate normal distributions. Our proof 
uses a new property of conditional independence that holds for these 
two classes of probability distributions. 
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1. INTRODUCTION 

A useful approach to multivariate statistical modeling is first to define the 
conditional independence constraints that are likely to hold in a domain, and 
then to restrict the analysis to probability distributions that satisfy these con- 
straints. Directed and undirected graphical models where independence con- 
straints are encoded through the topological properties of the corresponding 
graphs are an increasingly popular way of specifying independence constraints 
(Lauritzen (19891, Lauritzen and Spiegelhalter (1988), Pearl (1988), Whitlaker 
(1 900)). 

The key idea behind these specification schemes is to utilize the correspon- 
dence between vertex separation in graphs and conditional independence in 
probability; each vertex represents a variable and if a set of vertices Z blocks all 
the paths between two vertices, then the corresponding two variables are as- 
serted to be conditionally independent given the variables corresponding to Z.  
The success of graphical models stems in part from the fact that vertex separa- 
tion and conditional independence share key properties which render graphs 
an effective language for specifying independence constraints. 

* Part of this work was done whiIe the author was on sabbatical at Microsoft Research. 
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In this paper we show that when graphical models are trees and dis- 
tributions are from speclfic classes, then the relationship between vertex separa- 
tion and conditional independence is much more pronounced. More specifical- 
ly, we show that if a strictly positive joint probability distribution for a set of 
binary variables factors according to a tree, then vertex separation represents 
all and only the independence relations encoded in the distribution. The same 
result is shown to hold also for multivariate nondegenerate normal distribu- 
tions. 

The class of Markov trees has been studied in several contexts. Practical 
algorithms Tor learhhg Markov trees from data have been used for pattern 
recognihon (Chow and Liu (1968)). Geometrical properties of families of tree- 
like distributions have been studied in Settimi and Smith (1999). Finally, the 
property of perfectness, when a graphical model represents a11 and only the 
conditional independence facts encoded in a distribution, is a key assumption 
in learning causal relationships from observational data (Glymour and Cooper 
(1999)). 

Throughout this article we use lowercase letters for single variables (e.g., 
x, y, z) and boldfaced lowercase letters (e.g., n, y, z)  for specific values for these 
variables. Sets of variables are denoted by capital letters (e.g., X, Y, Z), and 
their values are denoted by boldfaced capital letters (e.g., X, Y, Z). For exam- 
ple, if Z = {x, y), then Z stands for {x, y), where x is a value of x and y is 
a value of y. Let P stand for a density function or a probability distribution 
function as appropriate. We use PIX) as a shorthand notation for P ( X  = X). 
We say that P (X) is strictly positive if V X P (X) > 0. We use Xy as a shorthand 
notation for X u  (y). 

- Let X, Y and Z be three disjoint sets of variables having a joint dis- 
tribution P(X, Y, 2). Then X and Y are conditionally independent given 2, 
denoted by X I, Y I 2, if and only if 

- 

vxv uvz  P(X, Z)P(Z) = P ( X ,  Z ) P ( Y ,  Z). 

The ternary relation X I, Y 1 Z was studied by Dawid (1979) and further 
investigated (e.g., in Spohn (1980), Pearl and Paz (1985), Pearl (1988), Geiger 
and Pearl (1993), MatuS (1992), Studeny (1992)). The ternary relation 
X I ,  Y 1 Z satisfies the following five properties which are called the graphoid 
axioms (Pearl and Paz (1985)): 
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If P is strictly positive, then -- - 
INTEFG~CTION: 

The following property holds for multivariate normal distributions 
P ( X ,  I: Z ,  c)  (Pearl (1988)). It also holds for discrete variables if Z = 0 and 
c is a binary variable (Lauritzen and Spiegelhalter (1988), p. 219). 

A Markov graph of a probability distribution P ( x l ,  . . ., x,) is an undirec- 
ted graph G = (V; E), where V = (x,, . . ., x,) is a set of vertices, one for each 
variable xi ,  and E is a set of edges each represented as (xi, xj)  such that 

( x i ,  xi) E E if and only if 1 xi I ,  x j  I ( x ,  , . . . , x,}\{xi, x j }  . 
A Markov tree is a Markov graph where G has no cycles; namely, every pair of 
vertices in G is connected with at most one path. This definition of a Markov 
tree permits G to be disconnected (often called a forest). 

A key property of Markov graphs is the following. Let A I ,  B  I C stand for 
the assertion that every path in G between a vertex in A and a vertex in B passes 
through a vertex in C, where A, B, and C are mutually disjoint sets of vertices. 
Note that whenever A I G B  1 C holds in G, A and B  are separated by C. The 
ternary relation A I G  B  I C satisfies all the properties we listed for-A I, B I C 
and -some additional properties that do not hold for A I p B I C  (Pearl 
(1988)). 

THEOREM 1 (Pearl and Paz (1985)). Let G be a Markou graph of 
P (xl , . . . , x,), and suppose Intersection holds for P .  Then 

for every disjoint set of vertices A, B, and C of G and their corresponding 
variables in ( x l ,  . . ., x,}. 

The main result in this paper is a converse to the relation (7) under 
suitable conditions. When the converse holds, we say that G is a perfect 
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representation of P. To facilitate our argument we must first introduce a new 
property for conditional independence. 

3. NEW PROPERTY OF CONDITIONAL INDEPENDENCE 

We now prove that Decomposable transitivity holds for joint probability 
distributions of bhiary variables and for multivariate nondegenerate normal 
dihribu'tions. We then show that Decomposable transitivity holds also for 
vertex separation in undirected graphs. 

THEOREM 2. Let a, c, e be binary variabIes, B and D be (possibly empty) sets 
of variables, and P(a, c ,  e,  B ,  D) be a joint probability distribution for these 
variables. Then 

holds for P. 

P r o  of. We use a to denote a value for a, B to denote a value for a set of 
variables B, and aQ and a1 to denote the two values of a binary variable a. If 
P(c) = 0 for any of the values of c, then the conclusion of the theorem is 
immediate. 

From all I, De I c it follows that 

for every value a, c, e, B, D of the corresponding variables. From a I, e I BD we 
obtain 

for every value 3, D of B, D. Since c is a binary variable 

(11) .- . 
P ( a , B , D , e ) = P ( a , B , c O , D ,  e)+P(a,  B , c l ,  D ,  e). 

- 

Now, substituting (9) into (ll), then substituting the result into (lo), we get 

a(B)B(DI= 0 ,  
where 

a(B)  = P ( a l ,  B ,  cO)-P(aO,  B,  c1)-P(aO, B ,  c O ) - P ( a l ,  B ,  c l )  

and 

B(D) = P(cl ,  D,  eO).P(cO, D ,  e1)-P(cO, D ,  eO).P(cl ,  D ,  el). 

Consequently, either a (B) = 0 or f i  (D)  = 0. Furthermore, since B and D 
are arbitrary values of B and D, respectively, we have V B  V D  [a (B) = 
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0 v fl  (D) = 01, which is equivalent to [V B a (B) = O ]  v D fl  (D)  = 01, which 
is equivalent to 

~ R B M  3. Let a, c, and e be continuous variables, B and D be (possibly 
empty) sets of continuous variables, and let P(u ,  c ,  e ,  B ,  D) be a multivariate 
nondegenerate normal distribution for these variables. Then 

holds for 2. - - -- - 

Proof. '  We use a formal logical deduction style to emphasize that the 
only properties of normal distributions being used are the ones encoded in 
Symmetry, Decomposition, Intersection, Weak union, and Weak transitivity. 
Recall that Weak transitivity holds for every normal distribution and that 
Intersection hoIds for nondegenerate normal distributions. The other proper- 
ties hold for every probability distribution. 

We now derive the conclusion of the theorem from its antecedents. 
1. aB I, De I c (given). 
2. a lp  e I BD (given). 
3. a l p D  I cB {Weak union, Decomposition, and Symmetry on (I)). 
4. B l,e 1 cD (Weak union, Decomposition, and Symmetry on (1)). 
5. a l p e  1 BDc (Weak union and Symmetry on (1)). 
6, a ip c 1 BD v c 1, e 1 BD (Weak transitivity on (2) and (5)). 
7. a ip CD I B v Bc ip e I D (Intersection and Symmetry on (31, (4) and (6)). 
8. a lp  c 1 3 v c l, e 1 D (Symmetry and Decomposition on (7)). a 

THEOREM 4. Let a, c, and e be distinct uertices of an undirected graph G, 
and let B and D be two (possibly empty) disjoint sets of vertices of G that do not 
include a, c or d. Then 

holds for G. 

Proof.  Assume the assertion of the theorem does not hold in  but its 
antecedents hold. Then there exists a path y ,  in G between a and c such that no 
vertices from 3 reside on y,, and there exists a path y, in G between c and 
e such that no vertices from D reside on y,. If B and D are empty, then the 
concatenated path y1 y, contradicts a I ,  e I BD, which is assumed to hold in G. 
Thus, we can assume that either B or D are not empty. The concatenated path 
y1 y, contains a vertex from B or D (or both) because a 1, e I BD is assumed to 
hofd in G. Assume that a vertex d E D resides on the path y between a and c or 
that a vertex ~ E B  resides on the path y, between c and e. In the first case 
vertices a and d are connected and the path that connects them does not 
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include c, and in the second case vertices b and e are connected and the path 
that connects them does not include c. Thus, in both cases, a 3  I G D e  I c does 
not hold in G,  contradicting our assumption. I 

Note that the proof of Theorem 3 is also a valid proof of Theorem 4 be- 
cause it merely uses properties that hold for graph separation, namely, Syrn- 
metry, Decomposition, Intersection, Weak union, and Weak transitivity. How- 
ever, the proof of Theorem 3 is not a valid proof for Theorem 2 because Weak 
transitivity does not hold for binary variables (Meek (1997)). 

d 
7 .  

-- .. 

L 4. PERFECT MARKOVIAN TREES 

We are ready to prove the main result. 

THEOREM 5. Let G be a Markov tree for n probability distribution 
P (xi, . . ., x,), where P satisJies Intersection and Decomposable transitiuity, then 

(12) AIGBIC $and only if A I , B I C  

for every disjoint set of vertices A, B, and C of G and  heir corresponding 
variables in ( x i ,  . . ., x,). 

Proof .  Theorem 1 proves one direction of (12), and so it remains to show 
that 

(13) A I ~ B  I c implies A I ~ B I  C .  

To prove (13) it is ~ ~ c i e n t  to show that a I ,  b I C implies a I, b I C for every 
pair of vertices a €  A  and b ~ 3 .  This is sufficient because A I p B ]  C  implies 
V a V b a I p  b I C (due to Decomposition and Symmetry) and Q a V b a I ,  b I C 
is equivalent by definition to A IG B ]  C. An extended version of this reduction 
from sets A, B to singletons a, b has been studied by MatuS f1992), Lemma 3. 

We proceed by contradiction. Let x and y be a pair of vertices for which 
there exists a set of vertices Z satisfying 

and such that x and y are connected with the shortest path among all pairs 
x', y' for which there exists a set 2' satisfying 

Note that the unique path between x and y does not include vertices from Z. 
Suppose first that the path between x and y is merely an edge connecting 

the two vertices. We will now reach a contradiction by showing that G cannot 
be a Markov tree of P because P would have to satisfy x l p y  1 U,, where 
U,, are all variables except x and y. 

Let U,  be all the vertices on the x side of the edge (x, y) and U ,  be the rest 
of the vertices. (Namely, U ,  are the vertices in the component of x after 
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removing the edge (x, y) from the tree G.) Let B = U,n Z and D = U ,  nZ. By 
these definitions and because G is a Markov tree of P we have: 

1. x l P y l B D .  
2. U , l p y U , I x .  
3. x u ,  I ,  U, I y. 

We proceed by a formal deduction using Symmetry, Decomposition, Contrac- 
tion, Weak union, and Intersection, to show that (I), (2), and (3) imply 
x ~ P Y  l u x  uy. 

4. B 1, y 1 xD (Weak union, Symmetry, and Decomposition on (2)). 
5 ,  xB I p y J  D (Inte-rsection and Symmetry on (1) and (4)). - 
6. - x iR y 1 D (Decomposition and Symmetry on (5)). 
7, x -1, D  1 y (Decomposition and Symmetry on (3)). 
8. x  l , yD 10 (Intersection on (6) and (7)). 
9. x l y  1 0 (Decomposition on (8)). 

10. x  l U, 1 y (Decomposition and Symmetry on (3)). 
11. x  l y U ,  I CI (Contraction on (9) and (10)). 
12. X U ,  l p y U ,  IO (Contraction and Symmetry on (2) and (11)). 
13, x l , y  1 U ,  U, (Weak union and Symmetry on (12)). 
Now suppose that the path between x and y has more than one edge and 

that c  is a vertex on this path. We reach a contradiction by showing that the 
pair x, y is not the closest pair of vertices that satisfy (14) for some set Z', 
contrary to our selection of these vertices. Let BD be a partition of Z such that 
3 is the set of the vertices in Z on the x side of c  and D  = Z\B. The rest of the 
derivation is a formal deduction using properties of conditional independence. 

1 .  xB I G D y  I c  (by definition of B and D in G). 
2. xB I ,  Dy  l c  (from (1) and since G is a Markov graph of P). 
3. x  lp  y 1 BD ( Z  = BD and x l ,  y 1 Z is assumed). 
4. x lp  c 1 B  v c 1, y 1 D (Decomposable transitivity on (2) and (3)). 
5. 7 x IG  c 1 B A 1 c I ,  y  1 D  (by definition of B and D  in G). 
6.  [ X I ~ C I B A  ~ X I ~ C I B ] V [ C I ~ Y I D A  l c l , y I D ]  (by (4) and (5)). 

- Each disjunct in Step 6 exhibits a pair of vertices that are closer to each 
other than x and y and yet satisfy (14) for some set Z', contradicting our choice 
of x and y. H 

- 
Note that the theorem applies in two interesting cases: when x,, . . ., x, are 

binary variables and P ( x , ,  . . ., x 3  is strictly positive or when x,, . . ., x, are 
continuous variables and P is a multivariate nondegenerate normal distribu- 
tion, because in these cases Intersection and Decomposable transitivity hold. 

5. REMARKS 

Our axiomatic approach to reasoning about conditional independence 
and its relationship to separation in graphs follows the approach taken by 
Pearl and Paz (1985). Our proof uses a new property of conditional indepen- 
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dence that holds for the two classes of probability distributions we have fo- 
cused on. 

The algorithmic consequence of Theorem 5 is that in order to check 
whether a Markov tree G of P represents all the conditional independence 
statements that hold in P, assuming P satisfies Intersection and Decomposable 
transitivity, requires merely to test: whether for each edge (x, y) in G,  x 1, y ] 0 
holds rather than testing the harder condition of whether x I, y U,, holds in 
P as required by the definition of a Markov graph. An open question remains 
as to what is the minimal computation needed to ensure that a Markov graph 
G (other than a tree)- of a probabiIity distribution P represents all the con- 
ditional independence statements that hold in P and what properties P or 
G need to satisfy to accommodate these computations. 

A straightforward attempt to extend our results without changing the tests 
or the assumptions on P is quite limited because we have counterexamples to 
Theorem 5 when G is a polytree (a directed graph with no underlying undirec- 
ted cycles) and when P does not satisfy Intersection or Decomposable tran- 
sitivity. 
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