
Reverse Engineering of an ASIC – State of the Art

The Scan Technique
• Designed to automate production test

• Chains all memory elements in a shift register

• The tester verifies correctness by

1. Setting the device state (Shift-In)

2. Running one cycle (Capture)

3. Reading the next state (Shift-Out)

Phase 1 Invasive - ASIC to Circuit

Delayering, SEM, Nanoscale Imaging, Cross-section

Phase 2 Algorithmic – Circuit to Spec

FSM Extraction, Model checking, SAT

Tester 0

1

1

1

1

0
1

0

1
1 0 1

0 0

1

1

Scan Test

Scan Side Channel Analysis: a New Way for Non-Invasive
Reverse Engineering of a VLSI Device

Leonid Azriel, Avi Mendelson, Ran Ginosar
Electrical Engineering, Technion - Israel Institute of Technology

Unfolding Sequential Circuits with Scan

• Scan turns the ASIC to a stateless circuit

• Mapped to the Boolean Function Learning problem: {0,1}n {0,1}n

• Exhaustive Search: Extract the Truth Table by running queries for all inputs

• Exponential Size: 2n

Shannon Effect
• Shannon Effect: “almost all” Boolean functions

have a complexity close to the maximal possible
(~O(2n)) for the uniform probability distribution

• Corollary: For large n, “almost all” Boolean
functions are not realizable in VLSI technology

Limited Transitive Fan-in
• In practice, logic cones have limited number of

inputs: Transitive Fan In = K

22 n functions
Search space for
realizable digital
circuits

Algorithm for Limited Transitive Fan-in (K)

0 0 0 0 a 0 b 0 c 0

Fi

v

• Suppose F(0) = 0 (simple extension to any F)

• Example for K = 3

• Testing all values of input v with Hamming

Weight 3 or less covers all combinations of

{a,b,c}

• Runtime ~ nK

• Computational complexity theory has more efficient algorithms for learning limited fan-in functions or
Junta functions

• Runtime complexity: O(n*2k)

• Scalable – can be applied to large scale devices

• Still exponential growth with K.

What Next
• Find ways to learn high fan-in functions

• Machine Learning

• Special function classes (e.g. linear)

• Overcoming practical limitations

• Compression

• Masking

• NPN transformations

• Non-scan logic

• Protection methods

• Hide the function without sacrificing
testability

• Finding Hardware Trojans

• Detecting mismatches with scan

Heuristic Based Incremental Search

• Best First Approach

• When reached computational limit (large K)

continue only the winning paths of the tree

• Expand already discovered implicants to

new vectors

• Very efficient for arithmetic circuits (carry

propagation)

K=0

K=1

K=Kinit

K=Kinit+Kstep

K=Kinit+i*Kstep

Our Target

10 15 20 25 30 35 40
10

0

10
5

10
10

10
15

N
u

m
b

e
r

o
f
p

ro
b

e
s

ESoTT

KSoTT/CSoTT

ISoTT

10 15 20 25 30 35 40
10

0

10
5

10
10

10
15

N

S
p

a
c
e

ESoTT

KSoTT (bound)

CSoTT/ISoTT

0 5 10 15 20 25 30
10

0

10
5

10
10

ESoTT

KSoTT/CSoTT

ISoTT

0 5 10 15 20 25 30
10

0

10
5

10
10

10
15

N

ESoTT

KSoTT (bound)

CSoTT/ISoTT

Example: Arithmetic Circuits

Successfully reconstructed a full AES engine with 6K registers

0 50 100 150 200 250 300
0

200

400

Fan In

N
u
m

b
e
r

o
f
re

g
is

te
rs

 a
n
d
 o

u
tp

u
ts

0 50 100 150 200 250 300
0

25

50

75

100

C
u
m

u
la

tiv
e
 P

e
rc

e
n
ta

g
e

Transitive Fan-in Statistics for ITC’99 benchmark
Adder Multiplier

